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ABSTRACT 

Most of the design codes (ACI-318-2008 and Euro Code–2-2004) propose the 

moment magnifier method in order to take into account the second order effect to 

design slender reinforced concrete columns. The accuracy of this method depends on 

the effective flexural stiffness of the column.  This paper proposes a new equation to 

obtain the effective stiffness EI of slender reinforced concrete columns. The expression 

is valid for any shape of the cross sections, subjected to combined axial loads and 

biaxial bending, both for short-time and sustained loads, normal and high strength 

concretes, but it is only suitable for columns with equal effective buckling lengths in the 

two principal bending planes. The new equation extends the proposed EI equation in the 

“Biaxial bending moment magnifier method” by Bonet et al [6], which is valid only for 

rectangular sections. The method was compared with 613 experimental tests from the 

literature and a good degree of accuracy was obtained. It was also compared with the 

design codes ACI-318 (08) and EC-2 (2004) improving the precision. The method is 

capable to verify and design with sufficient accuracy slender reinforced concrete 

columns in practical engineering design applications. 
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1 INTRODUCTION 

The codes ACI-318 [1] and Euro Code–2[2] propose the moment magnifier method 

in order to take into account the second order effect to design slender reinforced 

concrete columns. The accuracy of this method depends on the effective flexural 

stiffness EI of the column. Such parameter depends on cracking, creep and non-linear 

material behaviour. 

 Over the last three decades, many authors and national codes have proposed 

different methods to determine the column stiffness for short-time and sustained loads. 

Thus, the ACI-318 (08) code [1] proposes an equation that is independent from the 

loads applied to the column. However, the EC-2 code [2] and most authors, such as 

Mavichak and Furlong [3], Mirza[4], Westerberg [5], Bonet et al[6], Tikka and 

Mirza[7],[8] and so on, claim that flexural stiffness EI depends on the loads applied by 

means of the relative eccentricity or else through the axial load. Table 1 compares the 

different EI equations from the literature and the design codes. As it is shown, there is 

no homogeneity between the different proposals regarding the variables analyzed and 

the functions used. 

Most of the proposed EI equations by these authors are only applicable for 

rectangular cross sections.  Only, Ehsani et al [9] and Sigmon et al [10] propose an 

equation of EI for circular sections and instantaneous loads. Such authors agree that the 

EI formula proposed by the ACI-318 (08) [1]  is very conservative for this type of 

columns. Furthermore, most of the EI equations were obtained for normal strength 

concretes. Since, the mechanical behavior of high strength concrete cannot be 

extrapolated from the normal strength one, it is necessary to update the applicability of 

such expressions to any range of strength.   
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In this paper a new equation to calculate the stiffness EI in reinforced concrete 

columns with any cross section shape subjected to axial load and uniaxial bending is 

proposed. It attempts to fill the gap in the equations presented in the bibliography 

because they are only valid for rectangular and normal strength concrete, and in practice 

there are sections with different shapes: rectangular, circular, ovoid, cross shape, 

hexagonal or thin-walled box. 

Moreover, many reinforced concrete sections are subjected to biaxial bending and 

axial loads as a result of their position in the structure, the shape of the cross-section or 

the source of the external loads. For those cases, the ACI-318 (08) code [1] amplifies 

the first order bending moments in each flexure plane independently. The design of the 

cross-section of the columns is based on these magnified forces. Although the EC-2 

code [2] also magnifies the bending moment separately in each direction, the design is 

performed using the “load contour method” by Bresler [11]:  
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where  Mux, Muy  are the nominal bending moment strength around the “x” and “y” 

axes, respectively. 

 Mtx, Mty   are the nominal bending moments that are applied in the critical 

cross-section of the column considering the second order effects.  

 γ  axial load contour exponent. It depends on the shape of the cross-

section. 

For biaxial bending those methods can produce unsafe situations of design for axial 

load levels close to the the ultimate axial load of the column if the most important 

bending force corresponds to the direction of the lower slenderness (bending with 
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respect to the strong axis). Such effect was confirmed experimentally by Pallares et al 

[12]. Such methods do not take into account the interaction that both curvatures have in 

the structural behavior of the member. Hence, Bonet et al [6] proposed the “Biaxial 

bending moment magnifier method”, where an equation of the effective flexural 

stiffness was introduced for biaxial bending and rectangular sections.  It included the 

interaction between both axes of bending. 

This paper extends the proposed EI equation by Bonet et al [6] which was valid only 

for rectangular sections to any shape of the cross section. The novelty again is focussed 

in the addition of the interaction between both axes of curvature, in distinction from 

what the methods from the ACI-318 code [1] and the EC-2 code [2] do.  

A new equation of EI for biaxial bending is proposed, because it does not exist in the 

literature for a general cross-section shape. The method will be limited to the case 

where the effective buckling length of the column is equal in the two principal bending 

planes. It will be applicable if there are one or two axes of symmetry (rectangular, thin-

walled box, ovoid, or C-shape cross sections), but also if there is not any symmetry (“L” 

cross section p.e.). 

 The “biaxial bending moment magnifier” method was based on the magnification of 

the first order bending moment applied in the critical section of the column: 

 dnst MM ⋅= δ  (2) 

where  Mt  is the total vector modulus for design 

 22
tytxt MMM +=  (3) 

 Md  vector modulus of the first order bending moment  

 22
dydxd MMM +=  (4) 

 δns  magnification factor 
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 Nd design axial load 

 Ncr  critical buckling load, which is a function of the flexural stiffness of the 

column EI and of the effective length (lp) 
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The effective flexural stiffness EI of the column represents the equivalent stiffness of 

a fictitious column with constant stiffness, whose effective buckling length (lp) and 

critical axial load (Ncr) agree with those of the real column. Such column flexural 

stiffness EI represents the global behaviour of the total element and not of just one 

particular section. 

The flexural stiffness EI equation was inferred from the results obtained with the 

numerical simulation described in the next section. The adjustment of the proposed 

equation was compared with 613 experimental tests from the literature. 

 

2. NUMERICAL SIMULATION  

The flexural stiffness EI of the column was obtained from the utilisation of a general 

method of structural analysis for reinforced concrete using finite elements. This 

numerical method includes the following main issues:  

• 1-D finite element with non-constant curvature: the finite element has 13 degrees 

of freedom (d.o.f’s), Marí [13]. This element has three nodes, with 6 d.o.f.’s in the 

initial and final nodes (three rotations and three displacements), while the mid-span 

node has only one degree of freedom in the axial direction to capture the variable 

curvature of the element, Figure 1.a.  
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• The numerical integration of the cross section is performed using the Green’s 

theorem, Bonet et al. [14], Figure 1.b. 

• Non-linear concrete behaviour (Model Code-90[15], CEB-FIP [16])  

• Non-linear steel behaviour: bilinear diagram. (ModelCode-90[15])  

• Geometric non-linearity: The geometric stiffness matrix and the update of the 

displacements are included in the definition of the model.  

• Time-dependent effects: creep and shrinkage (CEB[17],[18])  

The numerical model was verified with 613 tests from the bibliography ([3], [19-41]). 

The experiments correspond to reinforced concrete columns pinned-pinned subjected to 

axial load and both to uniaxial and biaxial bending.  In those tests, the magnitude and 

the direction of the eccentricity are fixed, evaluating the maximum axial load of the 

column. The shape of the cross-sections are rectangular, square, box with one or two 

cells, ovoid, “C”-section or “L”-section. The length of the columns and the size of the 

cross-sections are the same than the experiments. A even number of finite elements 

were used because the applied load was symmetric. Moreover, it was verified that with 

a length of the finite element equal to the height of the section the results obtained had 

reasonable accuracy.  

Table 2 shows the variation of parameters studied in the experiments. The accuracy of 

the numerical model is evaluated through the ratio between the axial load of the test Ntest 

and the axial load from the numerical simulation NNS. 

Table 3 presents the accuracy of the numerical model for both the type of load (short-

term and instantaneous) and the type of the cross-section (rectangular or non-

rectangular). Table 4 shows the accuracy for the type of curvature (uniaxial or biaxial 

bending) and for the type of load. It can be seen that that an average ratio of 1.06 (safe 

side) and a variation coefficient of 0.13 was obtained when all the cases are analyzed. 
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The scatter of the results is the typical for this type of laboratory experiments. It was 

verified that the degree of accuracy is similar for all the parameters considered in this 

study.  

The previous calibrated numerical model was used here to perform the analysis of 

the main variables that exert an influence on the stiffness EI. Table 5 shows the 

analysed parameters and their variation coefficients, which when combined produced 

7360 numerical tests.  

3. PROPOSAL OF A FLEXURAL STIFFNESS “EI” 

a) Flexural Stiffness of a column for axial loads and uniaxial bending under short-

term loads.  

The estimation of the stiffness EI of the column subjected to short-term loads is 

obtained through the well-known equation: 

 sscc I·EI·E·EI +=α  (7) 

where Ec is the short-term secant elastic modulus of the concrete and equal to 

( ) 3.010/000.22 cmf⋅  (in MPa), where fcm is the mean compressive strength of concrete (in 

MPa); Es is Young’s modulus of reinforcement and equal to 200 000 MPa; Ic, Is are the 

moments of inertia of the gross section of concrete and of the longitudinal 

reinforcement with respect to the centre of gravity of the gross section and, in this 

research, α  is termed “effective stiffness factor”. This coefficient needs to be adjusted 

against numerical results. The concrete and steel elastic modulus were obtained from 

the Euro Code-2 [2]. A mean strength fcm equal to the strength of the concrete from the 

numerical test “fc” was chosen to perform the fitting of the coefficientα. 

If a numerical simulation (N.S.) is performed for a slender column (λm≠0) subjected to 

axial loads and uniaxial bending, the ultimate first order bending moment (M1)NS can be 
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obtained for a particular axial load Ni. Likewise, it is also possible to compute the 

ultimate bending moment (Mu)NS of the cross-section of the column (λm= 0) for the 

same axial force, Figure 2. 

From both values the effective stiffness factor “α” can be calculated by performing 

the following steps in sequence: 

a) First, the magnification factor is obtained: 

 NSdNStNSns MM )()()( = δ  (8) 

 b) This value allows the critical buckling load of the column to be computed by 

reordering equation 5: 

 
NSns

iN
)(11

 )(N  NScr δ−
=                                                  (9) 

 c) The flexural stiffness of the column can be computed from equation 6: 
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 d) Finally, the effective stiffness factor “α”can be obtained from equation 7:  

 
cc

ssNS
SN IE

IEEI −
=
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)(α  (11) 

Figure 3 presents (as an example) the “α” coefficient graphically in terms of the first 

order relative eccentricity η and of the mechanical slenderness λm, for the particular 

case of a circular section with 12 reinforcing bars, mechanical reinforcement ratio (ω) 

equal to 0.5, and for a concrete strength of fc=30 MPa.   

The first order relative eccentricity can be computed as:  

 ( )
c
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where ic  is the radius of gyration of the concrete section with respect to the axis of 

bending and e0 is the first order eccentricity. 

The effective stiffness factor α presents a non-linear behaviour in terms of the 

relative eccentricity η  and the slenderness λm. In fact, the effective stiffness factor α is 

independent of the slenderness λm if the relative eccentricity η is equal to 0.2, as can be 

deduced from Figure 3. It can also be inferred from this figure that the performance of α 

is different if the relative eccentricity η is lower or higher than 0.2. Thus, if “η” is 

higher than 0.2 α decreases and is appreciably independent of the slenderness and can 

be approximated by only one straight line. Otherwise, α depends strongly on the 

slenderness and has to be approximated by straight lines whose slope is non-constant in 

terms of the mechanical slenderness λm. 

For high values of the relative eccentricity (η > 0.2), the failure is produced by the 

ultimate strength of the section. Consequently,  α is not influenced by the slenderness. 

In this case, when η is increased, the cross-section of the column reaches higher 

deformations and it produces a decrease in the stiffness of the column. 

However, for small values of η and high slenderness, the failure is produced by the 

instability of the column. Therefore, α depends on the slenderness. For this case, when 

the slenderness is increased (maintaining constant the eccentricity) the possibility to 

reach an unstable position is higher and, in consequence, the cross-section is less 

deformed and the stiffness increases.  

Finally, for small values of the relative eccentricity and slenderness, the factor α 

decreases in terms of the relative eccentricity. In this case the column is very 

compressed and the failure is due to the ultimate strength of the section. Thus, when the 

relative eccentricity η decreases, the column has higher compression and the difference 
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between the real elastic modulus of the materials and the tangent elastic modulus 

adopted in equation 7 is higher. The parameter α corrects this difference. 

The least square adjustment of the lines α- η from the numerical simulation enables 

the following equations to be proposed for the effective stiffness factor (α): 

   
2.01.011.0

225
)2.0(45.0

110

2.01.011.0
225

)2.0()·035.095.1(

≥</⎟
⎠

⎞
⎜
⎝

⎛ ++−⋅⎟
⎠

⎞
⎜
⎝

⎛ +=

<</⎟
⎠

⎞
⎜
⎝

⎛ ++−⋅−=

ηforfηfα

ηforfηλα

cc

c
m

 (13) 

 
 

 

 

Figure 4 shows a comparison between the method proposed in this paper and the codes 

ACI-318[1], Euro Code 2 [2], and also with the method proposed by Westerberg[5] and 

Tikka and Mirza [8] for the same cross-section (used in Figure 3). In order to apply the 

equation from Tikka and Mirza [8] to a circular section an equivalent height of the 

section (heq) was used, equal to 12  times the radius of gyration of the concrete 

circular cross section (ic).  

It can be noticed that both design codes propose an effective stiffness factor α 

independent of the relative eccentricity  η and the mechanical slenderness λm. However, 

the other authors include the dependence of α in terms of the eccentricity or the 

slenderness. In general, these authors propose an equation of α that decreases withη. 

Only the formula from Westerberg [5] shows that for small values of η, the parameter α 

increases with this parameter. The proposals from these authors confirm the non-linear 

behavior of the parameterα. 

b) Flexural Stiffness of a column for axial loads and uniaxial bending subjected to 

sustained loads.  
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The stiffness EI equation for sustained loads is achieved in a similar manner to the 

equation from the previous section: 

 s
m

s
c

c IEIEEI ·
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ϕλξϕ
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+
=  (14) 

where ϕ is the creep coefficient and ξϕ is a reduction function of the tangent steel elastic 

modulus for sustained loads.  

In the equation 14, the elastic modulus of concrete (Ec)  is reduced through the 

expression Ec/(1+ϕ). Moreover, the design value of the modulus of elasticity of the 

reinforcement (Es) is reduced with the factor ξϕ. It is a reduction function that according 

to the numerical simulation depends on the mechanical slenderness (λm) and on the 

creep coefficient (ϕ), in such a way that if the creep coefficient is increased and the 

slenderness is decreased, the steel deformation is reduced.  This function is obtained by 

least squares from the results of the numerical simulation: 

 )25exp(·9.1 mλϕξϕ −⋅=  (15) 

In the end, taking into account the effect of the creep for small eccentricities (η<0.2) 

gave rise to appreciable modifications in equation 13: 
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For the case where the permanent load applied to the column is different to the total 

load, the creep coefficient (ϕ) from equations 14, 15 and 16 will be replaced by the 

effective creep ratio (ϕeff). According to the clause 5.8.4 from the Euro Code–2[2], this 

coefficient is the creep coefficient times the ratio between the first order bending 
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moment in quasi-permanent load combination, SLS (M0Eqp) and the first order bending 

moment in design load combination, ULS (M0Ed).    

c) Flexural Stiffness of a column subjected to axial load and biaxial bending. 

It is important to notice that if the column is subjected to axial loads and biaxial 

bending, the magnification of the bending moment is performed in accordance with the 

bending plane (Figure 5, equation 2). The equation of the column stiffness EI for axial 

loads and uniaxial bending was expanded for the biaxial case: 

 se
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where α is the effective stiffness factor:  
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 η  is the first order relative eccentricity: 
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  where e0 is the first order eccentricity  

 dd NMe =0  (20) 

  Md  is the vector modulus of the first order bending moment (Figure 5.b) 

 22
dydxd MMM +=  (21) 

    Mdx, Mdy  first order bending moments with respect to the axes of 

coordinates “x” and “y” of the section, respectively 

   Nd design axial load 
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    ic  critical radius of gyration of the cross-section (Figure 

5.a).  The minimum radius of gyration of the gross 

section with respect of the principal axes of inertia is 

selected (icu, icv) 

 ),(min cvcuc iii =  (22) 

 λm mechanical slenderness of the column 

 cpm il=λ  (23) 

 Ice  equivalent moment of inertia of the gross section 

 Ise  equivalent moment of inertia of the reinforcing bars 

 ξϕ  reduction factor of tangent steel modulus Es for sustained loads 

  )25exp(·9.1 meff λϕξϕ −⋅=  (24) 

 

The equivalent moments of inertia of the gross section (Ice) and of the reinforcement 

(Ise) are obtained by interpolating the moments of inertia of the section: 

 ( )δδ −⋅+⋅= ⋅ 1vue III  (25) 

where Iu, Iv are the moments of inertia with respect to the principal strong and weak axis 

respectively (Figure 5.a)  and δ  is an interpolating function. 

In order to compute the direction which corresponds to the principal strong axis of 

inertia (Figure 5.a) with respect to the “x” axis, the following equation must to be 

solved: 

 ( ) ( ) ( ) pcxypp2c1c 0I2cos22sinII θθθ ⇒=⋅⋅⋅−⋅⋅−  (26) 

where:  Ic1, Ic2 are the maximum and minimum moments of inertia of the section with 

respect to the “x” and “y” axes of the concrete section, respectively. 
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 ),min();,max( 21 cycxccycxc IIIIII ==  (27) 

 Icx, Icy moments of inertia of the section with respect to the “x” and “y” axes 

of the concrete section 

 Icxy product of inertia of the section with respect to the “x” and “y” axes of 

the concrete section 

If the moments of inertia of the section with respect to the “x” and “y” axes are 

equal, then from equation 26 it is obtained that 4/p πθ = .  

Otherwise: 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

⋅
=

2c1c

cxy
p II

I2
atan
2
1

θ  (28) 

The angle (θp) is positive for counter-clockwise (Figure 5.a) and the mechanical 

properties are calculated with respect to the centre of gravity of the concrete section. 

In the equation 26, it was considered that the principal axis with higher inertia agrees 

with the “x” axis (Ic1 = Icx). Otherwise, the angle θp will be increased in π/2. 

The principal moments of inertia of the section with respect to the strong axis (Icu) 

and weak axis (Icv) can be obtained with the following equations: 
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The radii of gyration of the concrete section with respect to the principal axes of 

inertia are calculated with: 

 ccvcuccucv AIiAIi == ;  (30) 

where Ac is the area of the concrete section 
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The moments of inertia of the reinforcements (Isu, Isv) with respect to the principal 

axes of inertia “u” and “v” are obtained with: 

 
sxyppsysxsysxsv

sxyppsysxsysxsu

IIIIII
IIIIII

⋅+⋅−+⋅⋅−⋅++⋅=

⋅⋅−⋅⋅−⋅++⋅=

))2/(2sin())2/(2cos()(5.0)(5.0
)2sin()2cos()(5.0)(5.0

πθπθ

θθ  (31) 

where:  Isx, Isy are the moments of inertia of the reinforcements with respect to the 

axes “x” and “y” of the concrete section. 

 Isxy is the product of inertia of the reinforcements with respect to the axes 

“x” and “y” of the concrete section. 

The calculation of the principal axes of inertia of the section and its centre of gravity 

are performed with respect to the concrete section alone for simplicity without 

considering the contribution of the reinforcement bars. A more rigorous calculation 

could be done with respect to the homogenized section.  

Equation 25 takes into account the interaction between both axes of curvature. Thus, 

as it was observed from the numerical simulation, if the column is not braced and the 

relative eccentricity (η) tends to zero, the critical axial load of the column (Ncr) is 

about the weak axis, and consequently the flexural stiffness of the member EI 

corresponds to the weak axis. Besides, if the column is subjected to biaxial bending 

with zero axial load, the relative eccentricity (η) is infinite, and in this case, the 

flexural stiffness corresponds to an intermediate value between the strong axis and 

the weak axis. This stiffness will be equal to the weak axis if the column bends with 

respects to this axis, and equal to the strong axis if the member bends with respect to 

the strong axis. For other loading conditions, the stiffness of the column will 

correspond with an intermediate value between both axes of curvature. 
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Consequently, the interpolation function δ depends on the relative eccentricity (η) 

and on the relative biaxial bending angle (βd). 

The interpolation function δ was obtained from least squares fit of the numerically 

simulated data: 

 
2

cos2
+

⋅=
η
η

βδ d
 (32) 

where  βd  is the relative biaxial bending angle. It is positive in counter-

clockwise sense.  

 ⎟⎟
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 Mdu, Mdv are the first order bending moments with respect to the principal axes 

of the section “u” and “v” respectively (Figure 5.b): 

  
pdypdxdv

pdypdxdu

cosMsinMM
sinMcosMM

θθ

θθ

⋅+⋅−=

⋅+⋅=  (34) 

Equation 25 represents the behaviour of an unbraced column subjected to an axial 

load and both single and double curvature. Such a function takes into account the 

interaction between both flexural axes. 

On the other hand, if the column is braced and is subjected to single curvature 

bending with an axial load, the equivalent moment of inertia (Ie) corresponding to its 

flexure axis (Iu or Iv) will be selected. 

4. VERIFICATION OF THE PROPOSED METHOD 

Because of the simplifications that were adopted, it becomes necessary to analyse the 

accuracy obtained using the proposed equation of the stiffness EI with respect both to 

the numerical simulation and to experimental results from the literature.  

 
4.1. Verification with the numerical results. 
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The accuracy of the proposed equation EI in this paper can be evaluated using the 

ratio of the first order bending moments obtained with numerical simulation (M1)NS and 

the proposed method (M1)method (Figure 2). However, this procedure is not appropriate 

for cases subjected to the critical axial load, where this ratio tends to infinite. To 

overcome these inadequacies, the ratio ξNS is selected as reference to evaluate the 

accuracy. 

 
method

NS
NS R

R
=ξ  (35) 

where: RNS ( )( ) ( ) ( )( )2,1
2

NSmáxuNSNSuci MMNN +=   

 Rmethod ( )( ) ( ) ( )( )2,1
2

NSmáxumethodNSuci MMNN +=   

 (Nuc)NS critical axial load of the section in simple compression  

 (Mu,max)NS bending maximum capacity of the cross section obtained from 

the numerical simulation (Figure 2) 

Table 6 and Table 7 show the accuracy with respect to the numerical simulation in 

terms of the type of load, cross-section and curvature. The same cases used to infer the 

proposed EI equation (Table 5) were used for the verification.  It can be seen that the 

average for all the experiments is 1.09 with a variation coefficient of 0.14. The same 

accuracy is observed for the different types of load, cross-section and curvature. It can 

be noticed that the proposed method adjusts accurately to the numerical results.  

 
4.2. Verification with experimental results. 

 

 
To evaluate the accuracy (ξ) with respect to the experimental results, the following 

strength ratio was adopted: 

 
method

test

N
N

=ξ  (36) 

where:  Ntest  maximum experimental axial load 
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 Nmethod  maximum axial load using the proposed method 

The proposed equation (equation 17) was compared with the same 613 experimental 

tests from the literature ([3], [20]-[42]) that were used to validate the numerical model 

(section 2). If ξ (equation 36) has a value greater than one, the proposed method is on 

the safe side. Table 2 shows the range of variation of the parameters studied in the 

experimental results. 

To calculate the ultimate bending moments of the cross-section, the parabola-

rectangle diagram for concrete under compression defined in the EC-2 (2004) code [2]  

was applied (clause 3.1.7 from Euro Code 2 (2004) [2]). The concrete strength (fc) in 

each experimental test was taken as the value of the mean compressive strength in order 

to calculate the elastic concrete modulus Ec (equation 7). 

Table 8 lists the authors that performed the experimental tests, as well as the 

accuracy degree ξ of the proposed method both for short-term and sustained loads 

(average ratio, variation coefficient, percentile 5% and 95%). The evaluation of the 

method independently of the type of load and type of cross-section has also been 

included in this table. It can be seen that an average ratio for short-term loads of 1.10 

with a variation coefficient of 0.14 was obtained. For sustained loads, an average ratio 

of 1.11 with a variation coefficient of 0.12 was obtained. Finally, for all the 

experiments, an average ratio of 1.10 with a corresponding coefficient of variation of 

0.15 was obtained. Table 8 shows that the accuracy is slightly better for rectangular 

sections than for non-rectangular sections. 

Figure 6 shows the ratio distribution ξ and its trend line in terms of the most 

important parameters. The accuracy degree is analyzed with the same reference 

variables that the selected for the comparison with the numerical results.   
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For all the graphs, the trend line is placed in a position of ξ that is slightly higher 

than one, the results lying on the safe side. Generally, the trend line seems to be 

decreasing, apart from the yielding stress of the steel (fy) and the relative first order 

eccentricity (η), where the trend line seems to be increasing. Consequently, the 

proposed method detects the variation of such variables properly.  

Finally, a comparison between the results from proposed EI equation and the 

methods proposed by the ACI-318(08) [1] and Euro Code-2) [2] was carried out in 

connection with the experimental results from the literature. Table 1 shows the E.I 

equations used in both design codes 

 The method from the ACI-318(08) code [1] suggests the use of the magnifier 

method for the design of unbraced columns. In order to take into account the second 

order effects, the following magnification factor is proposed: 

 

cr

d

m
ns

N
N
C

⋅
−

=

φ

δ
1

 (37) 

 
where:  

- Cm is the coefficient for calculating the equivalent uniform bending moment. It is 

equal to one for the case of columns subjected to an equal bending moment at 

both ends causing symmetric single curvature bending. 

- φ is the strength reduction factor. It is set to a value of one to perform this 

comparative analysis. 
- Ncr = π2·EI/lp

2 where EI is the flexural stiffness of the column. The EI is 

calculated with equation 10.14 from the ACI-318 (08) [1]. The following 

expression is used to calculate the Young modulus of concrete: cc fE ⋅= 4700  

(“fc” in MPa).   
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The first order bending moment is magnified in each direction independently for the 

case of biaxial bending. 

The method that was proposed from the EC-2 code [2]  suggests also the magnification 

factor in order to take into account the second order effects (Section 5.8.7.3. EC-2 

(2004) code [2]): 

The effective elastic modulus of the concrete section is obtained from:  

 ( ){ }effcEcmeff,cd 1/EE ϕγ +⋅=  (38) 

 γcE partial safety factor (equal to 1.2). For this comparative study, it has a 

fixed value of 1. 

 Ecm concrete secant elastic modulus: 

 ( ) 3.01022000 cmc fE ⋅=  (fcm en MPa) (39) 

 fcm mean value of concrete cylinder compressive strength. In this analysis, it 

is equal to the strength of concrete (fc) for each experiment. 

 ϕeff equivalent creep coefficient:  

 ϕκϕ ⋅=eff  (40) 

ϕ creep coefficient  

κ ratio between the quasi-permanent and the total load 

 

 If the column is subjected to axial loads and biaxial bending, then equation 1 is 

applied. 

To compute the ultimate bending moment of the section in the ACI-318(08) code [1] 

the equivalent rectangular concrete stress distribution was used.  While the parabola-

rectangle diagram for concrete under compression was used for the code EC-2 (2004) 

code [2]. 
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Table 9 and Table 10 show a comparison between the results from the proposed method 

and the methods from the ACI-318 (08) code [1]and the EC-2 code [2], with respect to 

the experimental results. In general, the proposed method achieves an average ratio that 

is closer to one, the lowest variation coefficient, and it presents an essential 

improvement for sustained loads, mainly with regard to biaxial bending. It is important 

to observe that the method proposed by the ACI-318(08) code [1] appears to be more 

conservative.  

Regarding the results obtained for non-rectangular section, the proposed method 

presents a better accuracy degree than the design codes, that is, lower variation 

coefficient, higher 5% percentile, lower 95% percentile and an average value close to 

1.10.   

If the 5 % percentile of the proposed method is compared with the design codes, it can 

be observed that it is higher for short-term loads and lower for sustained loads. The 

accuracy degree of the codes is different for short-term loads from for sustained loads, 

being more conservative for the last sustained loads (mainly in biaxial bending). 

However, with the proposed method the value of the 5% percentile is 0.9 for almost all 

types of curvatures.  

5. EXAMPLE 

In order to illustrate the practical application of the proposed method, the 

longitudinal reinforcement of an unbraced column is calculated. The column has a 

buckling length of 5 meters and it is subjected to constant forces along the length of the 

element corresponding to the ultimate limit state for the permanent or variable state.  

These are Nd = 1000 kN, Mdx = 24 kN.m and Mdy = 40 kN.m with respect to the 

centre of gravity of the gross section. The cross-section is presented in Figure 7. The 

mechanical properties of the materials are fck = 30 MPa and fyk = 500 MPa. The creep 
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coefficient (ϕ) is equal to 2 and the ratio between the quasi-permanent and the total 

axial load (Nsg/Ntot) is equal to 0.6. 

The size of the reinforcement is obtained by following the steps explained in sections 

1 and 3 using the basic hypothesis from the EC-2 (2004) code [2] to compute the 

ultimate bending moments. 

Initially, the following parameters are computed: 

 

( ) 2.12·6.0·
78.43415.1/500/

205.1/30/

===

===

===

ϕϕ

γ

γ

totsgeff

sykyd

cckcd

NN
MPaff

MPaff
  

The flexural stiffness of the column EI is obtained using equation 17, for which the 

following computations must be performed: 

-Moment of inertia (Icx, Icy) and product of inertia (Icxy) of the gross section in m4 

with respect of its centre of gravity: 

  
41033333.5

001466.0
−⋅−=

==

cxy

cycx

I

II
  

- Angle of the principal strong axis of inertia (θp) with respect to the x-axis. It is  

positive in the counter-clockwise sense (eq. 26). 

  .4 radII pcycx πθ =⇒=   

- Principal moments of inertia of the gross section (Icu, Icv) in m4  with respect of 

its centre of gravity: (eq. 29): 

  4103.9;002.0 −⋅==
⌢

cvcu II   

-  Radius of gyration of the concrete section with respect to the principal axes of 

inertia in m (eq. 30): 
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  129099.0;0881917.0 == cvcu ii   

- Moment of inertia of the reinforcement bars (Isx, Isy) in m4 with respect to the 

centre of gravity of the gross section. For the steel distribution presented in 

Figure 7, such a moment of inertia can be expressed in terms of the total area 

of reinforcement (As) in cm2: 

  ssysx AII 41001138.0 −⋅==   

- Moment of inertia of the reinforcement bars (Isu, Isv) in m4 with respect to the 

principal axes of inertia of the concrete section (u,v) in terms of the total area 

of reinforcement (As) in cm2(eq. 31): 

  scvssu AIAI ⋅⋅=⋅⋅= −− 44 10006944.0;10015833.0   

- Design bending moments with respect to the principal axes of inertia of the 

concrete section (eq. 34): 

  mkNMmkNM dvdu .31.11;.25.45 ==   

- Critical radius of gyration of the concrete section (eq. 22): 

  miiM cucdv 0881917.00 ==⇒≠   

- Mechanical slenderness of the column (eq. 23): 

  69.56== cpm ilλ   

- First order relative eccentricity (η) (eq. 19): 

  
mkNMMM

iN
M

i
e

dydxd

cd

d

c

.65.46

1322.0
·4·4
22

0

=+=

=
⋅

==η
  

- Relative biaxial bending moment (βd) (eq. 33): 



24 

  .3508.0tan 1- rad
iM
iM
cudu

cvdv
d =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅

=β   

- Effective stiffness factor α (eq. 18) for η < 0.2: 

 ( )
( ) 1.02215.011.022520)2.01322.0()2.125.069.56·035.095.1(

1.011.0225f)2.0η()25.0λ·035.095.1(α cdeffm

</=++−⋅⋅−−=

</++−⋅⋅−−= ϕ   

- Reduction factor of the stiffness of the reinforcement ξϕ (eq. 24): 

  236.0)2569.50·exp(2.1·9.1)25·exp(·9.1 =−=−= meff λϕξϕ   

- Interpolation coefficient (eq.32): 

  05469.0
2

cos2 =
+

⋅=
η
η

βδ d   

- Equivalent moments of inertia inm4 (ec.25): 

ssysxse

cycxce

AIII
III

4

4

10007430.0)1(entReinforcem
109167.9)1(Section Gross

−

−

⋅=−⋅⋅+⋅=−

⋅=−⋅+⋅=−

δδ

δδ
 

- Secant concrete elastic modulus (Ecd) for design  

The EC-2 (2004) code [2] adopts a value of 1.2 for the safety factor of the 

concrete elastic modulus (γcE). Moreover, if the real value of the mean concrete 

compressive strength is unknown (fcm), it is computed using the following 

equation: fcm= fck + 8 (in MPa). 

  ( ) MPafEE cmcEccd 81.273632.11022000 3.0 =⋅== γ  

- Elastic modulus of the longitudinal reinforcement: 

  MPa200000Es =   

- Flexural stiffness of the column EI in kN·m2 (eq.17): 

  s
ses

eff

cecd AIEIEEI ⋅+=
+

+
+

= 23.12063.2732
1
·

1
··

ϕξϕ
α   



25 

The critical axial load (Ncr) in kN is equal to (eq.6): 

 s
p

cr A
l
EIN ⋅+== 46.4780.10782

2π   

The magnification factor is equal to (eq.5): 

 
( )

0.1
46.4780.78
46.4780.1078

1
1

≥
⋅+
⋅+

=
−

=
s

s

crd
ns A

A
NN

δ   

The magnified bending moment in kN.m is equal to (eq.2): 

 mkNM
A
AMM d
s

s
dnsd .65.46

46.4780.78
10.22145.50323·* =</
⋅+
⋅+

== δ   

To determine the required longitudinal reinforcement, the design forces (Nd, Md*) 

and the ultimate forces of the section (Nu, Mu) are matched and a non-linear system of 

two equations and two unknowns (As, x) is thus obtained. This system of equations can 

be solved by using the well-known “Regula Falsi” method. Figure 8 shows the variation 

of Md
* and Mu in terms of As for the given axial load Nd. The intersection between both 

curves determines the required area of reinforcement As to be equal to 20.13 cm2, which 

is equal to 12 rebars with a diameter φ=16 mm (24.12 cm2). 

 
)x,A(M)A(M
)x,A(NN

sus
*
d

sud

=

=
 

 6. CONCLUSIONS 

This paper proposes a new equation to obtain the effective stiffness EI of slender 

reinforced concrete columns both for verification and design subjected to combined 

axial loads and biaxial bending that is valid for short-time and sustained loads, and for 

both normal and high strength concretes. The method is only valid for columns with 

equal effective buckling lengths in the two principal bending planes. 
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The new equation extends the proposed EI equation in the “Biaxial bending moment 

magnifier method” by Bonet et al [6], which was valid only for rectangular sections to 

sections with any shape of the cross-section. 

Furthermore, a new EI equation under uniaxial bending and axial load valid for any 

type of cross-section is proposed.  

The proposed formulation for biaxial bending is an extension of the general flexural 

stiffness equation EI for uniaxial bending obtained by calculating the equivalent 

moment of inertia of the gross section and the reinforcing bars. 

Such formulation includes the existing interaction between both flexural axes and the 

case of the axial load and single curvature. The effect of braced structures is taken into 

account in the behaviour of the column subjected to an axial load and uniaxial bending 

with respect to the strong axis. 

The method was compared with 613 experimental tests and it proved to be 

reasonably accurate for practical engineering design application.  

A noticeable improvement in the prediction accuracy of column strength was 

achieved using the new flexural equation of EI when compared with the current 

equations of the ACI-318 (08) code [1] and the EC-2 (2004) code [2]. It is important to 

highlight that this improvement is more relevant for sustained loads and biaxial 

bending. For the case of single bending curvature and sustained loads, the average and 

variation coefficient are 15% and 75% lower than the Euro Code 2 [2] respectively. For 

biaxial bending and sustained loads the average obtained with the proposed method is 

20% lower than the Euro Code 2 [2] being still conservative, while the variation 

coefficients are similar. Otherwise, the ACI-318 [1] is more conservative and has higher 

scattering tan the Euro Code 2 and the proposed method. 
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The equations proposed in this paper are more complex than the proposed by other 

authors or design codes; however, from the practical point of view its application is very 

easy with spreadsheets or small computer programs. A more economical design is 

obtained with a higher accuracy degree than with the actual design codes. 

The method is useful for structures in buildings since it presents a high degree of 

accuracy for application in professional practice, such as checking reinforced concrete 

sections or in the design phase. 
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Figure 1. Finite element model: a) general arrangement, b) Cross section 

integration,  Bonet et al. [14]. 
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Figure 2. Magnifier bending moment method 
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Figure 3. Effective stiffness factor α 
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Figure 4. Comparison of “α”with different authors and design codes. 
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Figure 5. Proposed simplified method 
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Figure 6. Comparison of the proposed method with the experimental results 
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Figure 7. Example. Cross-section of the column 
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Figure 8. Example. Reinforcement ratio calculation 
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Table 1. Comparison of different E.I. equations. 
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EI = flexural stiffness of compression member; Ec = modulus of elasticity of concrete; Es = modulus of elasticity of 
reinforcement; Ic = moment of inertia of gross concrete section; Is = moment of inertia of reinforcement; N = axial load; Nuc = 
maximum load capacity; e/h = eccentricity ratio; l/h = geometrical slenderness ratio; βd = ratio of the maximum factored axial 
sustained load to the maximum factored axial load associated with the same load combination; ω = mechanical reinforcement 
ratio; ν = relative normal force; λm = mechanical slenderness ratio; ϕeff  effective creep ratio; fc = concrete strength; ρl = 
geometrical reinforcement ratio; fck = characteristic compressive cylinder strength of concrete at 28 days. 
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Table 2 . Parameter variation in the experimental tests 
 

Parameter Range 
Compressive concrete strength [fc. (MPa)] 10.76  MPa – 104.84 MPa 
Steel strength [fy (MPa)] 298.55 MPa – 684 MPa 
Mechanical reinforcement ratio [ω] 0.07 – 1.42 
Geometrical reinforcement ratio [ρg] 0.01 – 0.05 

Type of section Rectangular / Square /  
“L”-shape / Box/  

 “C”-shape / Ovoid 
Mechanical Slenderness [λm] 9.13 – 115.47 
Ratio between the principal radii of gyration 
[icv/icu] 

1 – 3 

Relative eccentricity [η=e0/4/ic] 0.016 – 1.52 
Relative axial load [ν] 0.04 – 1.25 
Relative biaxial angle  [βd] 0 º – 90 º 
Creep coefficient [ϕ] 0.32 – 2.90 
Equivalent creep coefficient [ϕeff] 0.32 – 2.49 

Ratio between the axial load from the permanent 
force and the axial load from the total [Nsg/Ntot] 

0.42 – 1.00 
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Table 3 . Calibration of the numerical model. Analysis in terms of the shape of the 
section and the type of load.  

 
 

 Section Ner ξm V.C P5 P95 

Short-term 
Loads 

R 468 1.06 0.13 0.87 1.31 
NR 49 1.09 0.10 0.89 1.24 
All 517 1.06 0.13 0.87 1.31 

Sustained 
Loads 

R 96 1.02 0.10 0.88 1.21 
NR - - - - - 
All 96 1.02 0.10 0.88 1.21 

Total 
R 564 1.05 0.13 0.87 1.28 

NR 49 1.09 0.10 0.89 1.24 
All 613 1.06 0.13 0.87 1.28 

 

R =Rectangular or Square; NR= Non- Rectangular 
ξm: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
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Table 4 . Calibration of the numerical model. Analysis in terms of the type of load and 
type of curvature.  
 

 
 

Type of 
curvature Type of load Number 

of tests ξm V.C. P5 P95 

Uniaxial 
Short-term 313 1.06 0.14 0.86 1.36 
Sustained 60 0.99 0.08 0.88 1.14 

Biaxial 
Short-term 202 1.06 0.10 0.89 1.24 

Sustained 38 1.06 0.10 0.91 1.23 
 

ξm: Average ratio; V.C.: variation coefficient; 
  P5: Percentile 5%; P95:Percentile 95%; 
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Table 5 . Parameter variation. 
 

Parameters Values 
Column mechanical slenderness  (λm) • λm = 35, 52.5, 70, 87.5 and 100 

Cross-section shape  • Rectangular /Circular /Hexagonal / Cross/ 
•   Box / Ovoid / “L”-shape 

Ratio between the principal radius of 
gyration [icv/icu] 

• icv/icu = 1 a 2.5 

Biaxial bending angle (βd) with respect 
to the strong axis  

− Circular   βd  = 0º 
− “L” -shape with one axis of symmetry 
 βd = -60º, -30º, 0º, 30º, 60º, 90º 
− “L”-shape without any axis od symmetry 
− βd = 0º, 45º, 90º, 225º, 270º, 315º  
− Other types of sections:  
− βd = 0º, 22.5º, 45º, 67.5º, 90º 

Reinforcement distribution 

− Circular:  
Uniformly distributed  (with 6 and 12 bars)  

− Cross, hexagonal, “L”, Box  
In the corners 

− Ovoid 
 Uniformly distributed   
− Rectangular  

 Doubly symmetric at four corners. 
 Doubly symmetric and uniformly distributed at 

four faces 
       Symmetric at opposite faces 

Structural typology • Isolated element with pinned ends. 

Axial load 
• 10 values for equivalent steps, starting from a 

zero axial load to the ultimate capacity for 
pure compression. 

Compressive concrete strength (fc) • fc =  30 MPa, 80 MPa and 100 MPa 
Steel strength (fy) • fy =  400 MPa and 500 MPa 
Mechanical reinforcement ratio (ω ) • ω = 0.06, 0.25, 0.50, 0.75 
Creep coefficient (ϕ) • ϕ = 1, 2, 3 
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Table 6 .  Verification of the proposed EI equation with respect to the numerical 
simulation. Analysis in terms of the cross-section type and the type of load.  
 
 

 
 

 Short-term loads Sustained loads Total 

Section Number ξNS,

m 
V.
C P5 P95 

Numbe
r 

ξNS,

m V.C P5 P95 
Numbe

r 
ξNS,

m 
V.
C P5 P95 

Rectangular 834 1.10 0.14 0.97 1.37 1583 1.11 0.20 0.90 1.44 2417 1.10 0.19 0.93 1.41 

Circular 294 1.02 0.07 0.92 1.15 261 1.04 0.09 0.90 1.18 555 1.03 0.16 0.88 1.26 
Cross-
shape 242 1.00 0.07 0.88 1.14 218 1.01 0.12 0.82 1.22 460 1.01 0.10 0.84 1.17 

Hexagonal 200 1.09 0.11 0.99 1.30 216 1.03 0.07 0.92 1.18 416 1.06 0.10 0.93 1.26 
Hollow 
Rectangular  749 1.09 0.17 0.92 1.33 707 1.14 0.15 0.95 1.43 1456 1.10 0.19 0.91 1.39 

Ovoidal 798 1.09 0.12 0.94 1.37 397 1.13 0.15 0.92 1.46 1195 1.10 0.18 0.91 1.40 

L-section 522 1.09 0.13 0.95 1.35 346 1.10 0.16 0.91 1.43 868 1.09 0.17 0.92 1.38 

All 3639 1.08 0.13 0.94 1.33 3728 1.10 0.14 0.91 1.40 7367 1.09 0.14 0.92 1.36 
ξNS,m:: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
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Table 7 .  Verification of the proposed EI equation with respect to the numerical 
simulation. Analysis in terms of the type of load and type of curvature.  
 

 
Type of curvature Type of load Number ξNS,m V.C P5 P95 

Uniaxial 
Short-term 2105 1.05 0.12 0.92 1.25 
Sustained 2347 1.08 0.16 0.90 1.36 

Biaxial 
Short-term 1534 1.11 0.12 0.98 1.37 
Sustained 1381 1.13 0.15 0.90 1.45 

All 7367 1.09 0.14 0.92 1.36 
ξNS,m:: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
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Table 8 .  Authors and accuracy of the experimental tests. 
 

  Short-term loads Sustained load Total 
Author Section Ner ξm V.C P5 P95 Ner ξm V.C P5 P95 Ner ξm V.C P5 P95 

Galano et al (2008) [20] S 60 1.00 0.13 0.85 1.21 - - - - - 60 1.00 0.13 0.85 1.21 
Pallarés et al (2006) [21] R 56 1.16 0.19 0.82 1.52 - - - - - 56 1.16 0.19 0.82 1.52 
Germain (2005) [22] S 12 1.15 0.06 1.07 1.24 - - - - - 12 1.15 0.06 1.07 1.24 
Sarker et al (2000) [23] S 12 1.23 0.11 1.04 1.38 - - - - - 12 1.23 0.11 1.04 1.38 
Kim et al (2000) [24] S 30 1.03 0.14 0.81 1.27 - - - - - 30 1.03 0.14 0.81 1.27 
Claeson et al (2000) [25] S 4 1.02 0.07 0.93 1.06 2 1.1 0 (*) (*) 6 1.06 0.08 0.94 1.14 
Claeson et al (1998) [26] S 12 1.03 0.12 0.85 1.25 - - - - - 12 1.03 0.12 0.85 1.25 
Foster et al (1997) [27] S 54 1.18 0.09 1.03 1.34 - - - - - 54 1.18 0.09 1.03 1.34 
Lloyd et al (1996) [28] S / R 36 1.15 0.12 0.95 1.43 - - - - - 36 1.15 0.12 0.95 1.43 
Taylor et al (1995) [29] Box 30 1.03 0.14 0.81 1.27 - - - - - 30 1.03 0.14 0.81 1.27 
Kim et al (1995) [30] S 14 1.31 0.07 1.18 1.45 - - - - - 14 1.31 0.07 1.18 1.45 
Hsu et al (1995) [31] S 3 1.02 0.08 (*) (*) - - - - - 3 1.02 0.08 (*) (*) 
Tsao et al (1994) [32] S 6 1.04 0.11 0.91 1.18 - - - - - 6 1.04 0.11 0.91 1.18 

Tsao et al (1994) [32]  L-
section 7 1.14 0.07 1.05 1.22 - - - - - 7 1.14 0.07 1.05 1.22 

Wang et al (1992) [33] S 8 1.12 0.10 1.04 1.25 - - - - - 8 1.12 0.10 1.04 1.25 

Hsu (1987) [34]  C-
section 11 1.05 0.07 0.94 1.15 - - - - - 11 1.05 0.07 0.94 1.15 

Iwai et al (1986) [35] S / R 36 1.03 0.09 0.92 1.16 - - - - - 36 1.03 0.09 0.92 1.16 

Hsu (1985) [36] L-
section 9 1.28 0.23 1.00 1.62 - - - - - 9 1.28 0.23 1.00 1.62 

Poston et al (1985) [37] Box 4 1.30 0.06 1.20 1.36 - - - - - 4 1.30 0.06 1.20 1.36 
Wu et al (1977) [38] S 11 1.02 0.06 0.93 1.09 17 1.3 0.1 1.2 1.3 28 1.16 0.12 0.97 1.30 
Mavichak et al (1976) [3] R 9 1.07 0.13 0.90 1.25 - - - - - 9 1.07 0.13 0.90 1.25 
Mavichak et al (1976) [3] 0 15 1.07 0.13 0.85 1.23 - - - - - 15 1.07 0.13 0.85 1.23 
Drysdale et al (1971)[39] S 27 1.09 0.06 0.98 1.17 30 1.07 0.11 0.92 1.23 57 1.08 0.09 0.92 1.22 
Goyal et al (1971) [40] S 26 0.94 0.04 0.89 1.00 20 1.1 0.1 1 1.2 46 1.05 0.10 0.91 1.19 
Breen et al (1969) [41] R 10 1.12 0.10 1.04 1.25 - - - - - 10 1.12 0.10 1.04 1.25 
Viest et al (1956) [42] S 15 1.1 0.1 0.9 1.2 27 1.1 0.1 0.9 1.2 42 1.07 0.11 0.9 1.21 

                 

Total 
R / S 415 1.10 0.14 0.85 1.36 96 1.11 0.12 0.94 1.29 434 1.10 0.15 0.87 1.35 
NR 102 1.13 0.15 0.90 1.42 - - - - - 179 1.13 0.15 0.90 1.42 
All 517 1.10 0.14 0.86 1.37 96 1.11 0.12 0.94 1.29 613 1.10 0.15 0.87 1.37 

 

Type of section: S = square; R =Rectangular; O = Ovoid; NR= Non-rectangular 
ξm: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
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Table 9 .  Comparative study between the proposed method and the methods suggested 
by the ACI-318 (08) code [1] and the EC-2 (2004) code [2], with respect to the 
experimental tests. Analysis in terms of the cross-section type and the type of load. 
 

 
 Section Short- term loads Sustained loads Total 
 Ner ξm V.C P5 P95 Ner ξm V.C P5 P95 Ner ξm V.C P5 P95 

Proposed 
EI 

R 468 1.10 0.14 0.85 1.36 96 1.11 0.12 0.94 1.29 564 1.10 0.15 0.87 1.35 
NR 49 1.13 0.15 0.90 1.42 - - - - - 49 1.13 0.15 0.90 1.42 
All 517 1.10 0.14 0.86 1.37 96 1.11 0.12 0.94 1.29 613 1.10 0.15 0.87 1.37 

EC2 
(2004) 

[2] 

R 468 1.17 0.25 0.74 1.63 96 1.26 0.21 0.97 1.57 564 1.19 0.28 0.79 1.59 
NR 49 1.22 0.24 0.83 1.78 - - - - - 49 1.22 0.24 0.83 1.78 
All 517 1.17 0.25 0.76 1.66 96 1.26 0.21 0.97 1.57 613 1.19 0.28 0.80 1.64 

ACI-318 
(08) [1]  

R 468 1.21 0.29 0.78 2.00 96 1.32 0.25 0.98 1.69 564 1.24 0.34 0.83 1.93 
NR 49 1.08 0.23 0.73 1.64 - - - - - 49 1.08 0.23 0.73 1.64 
All 517 1.20 0.29 0.77 1.97 96 1.32 0.25 0.98 1.69 613 1.22 0.34 0.79 1.87 

 

R =Rectangular or Square; NR= Non- Rectangular 
ξm: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
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Table 10 .  Comparative study between the proposed method and the methods suggested 
by the ACI-318 (08) code [1] and the EC-2 (2004) code [2], with respect to the 
experimental tests. Analysis in terms of the type of load and type of curvature. 

 
 

 Type of 
Curvature Type of load Ner ξm V.C P5 P95 

Proposed  EI 

Uniaxial 
Short-term 313 1.09 0.14 0.86 1.33 
Sustained 60 1.13 0.10 0.98 1.30 

Biaxial 
Short-term 202 1.11 0.15 0.85 1.40 
Sustained 38 1.17 0.12 0.92 1.30 

EC2 (2004) 
[2] 

Uniaxial 
Short-term 313 1.18 0.28 0.73 1.79 

Sustained 60 1.26 0.15 1.00 1.56 

Biaxial 
Short-term 202 1.17 0.17 0.89 1.48 

Sustained 38 1.40 0.12 1.08 1.59 

ACI-318 (08) 
[1] 

Uniaxial 
Short-term 313 1.12 0.25 0.73 1.64 

Sustained 60 1.27 0.17 1.00 1.61 

Biaxial 
Short-term 202 1.34 0.30 0.92 2.20 

Sustained 38 1.49 0.09 1.26 1.69 
 

ξm: Average ratio; V.C.: variation coefficient;  P5: Percentile 5%; P95:Percentile 95%; 
 

 

 

 
 


