

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1109/TR.2014.2299711

http://hdl.handle.net/10251/49071

Institute of Electrical and Electronics Engineers (IEEE)

Gracia-Morán, J.; Baraza Calvo, JC.; Gil Tomás, DA.; Saiz-Adalid, L.; Gil, P. (2014).
Effects of intermittent faults on the reliability of a Reduced Instruction Set Computing
(RISC) microprocessor. IEEE Transactions on Reliability. 63(1):144-153.
doi:10.1109/TR.2014.2299711.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—With the scaling of CMOS technology to the

submicron range, designers have to deal with a growing number
and variety of fault types. In this way, intermittent faults are
gaining importance in modern VLSI circuits. The presence of
these faults is increasing due to the complexity of manufacturing
processes (which produce residues and parameter variations),
together with special aging mechanisms. This work presents a
case study of the impact of intermittent faults on the behavior of
a RISC microprocessor. We have carried out an exhaustive
reliability assessment by using VHDL-based fault injection. In
this way, we have been able to modify different intermittent fault
parameters, to select various targets, and even, to compare the
impact of intermittent faults with those induced by transient and
permanent faults.

Index Terms—Fault injection, Hardware description
languages, Integrated circuit reliability, Intermittent faults, RISC
microprocessor

I. INTRODUCTION
N RECENT years, the reduction of transistors size has
allowed the increase of microprocessors speed and the

decrease of their size and supply voltage, but at the cost of
augmenting the incidence of faults [1], [2]. This reduction
causes a higher rate of transient faults, commonly provoked by
temporary environmental conditions (i.e. electromagnetic
interferences, cosmic or internal radiation, etc.). Even,
radiation may now affect to multiple locations. Also, the
changes in the manufacturing processes have increased the
rate of permanent faults. This type of faults is produced by
irreversible physical changes in a chip. Recently, intermittent
faults have emerged as a new source of trouble in deep
submicron integrated circuits [3], [4].

Habitually, intermittent faults were considered as a prelude
to permanent faults. Wearout processes of an IC usually
provoke permanent faults which initially manifest
intermittently. Nevertheless, the introduction of new deep

Manuscript received November 9, 2012. This work has been funded by the
Spanish Government under the research project TIN2009-13825 and by the
Universitat Politècnica de València under the project SP20120806.

All authors are with the Instituto ITACA, Universitat Politècnica de
València, Spain.

J. Gracia-Morán mail: Escuela Técnica Superior de Ingeniería Informática
(ETSInf), Universitat Politècnica de València, Camino de Vera s\n, 46022
Valencia. E-mail: jgracia@disca.upv.es. Work phone: +34963870000 Ext.
75722. Fax: +34963877579.

E-mail authors: {jgracia, jcbaraza, dgil, ljsaiz, pgil}@disca.upv.es.

submicron technologies makes necessary to study new causes
and mechanisms of intermittent faults.

In this way, during last years the effects of such faults in
real systems have been analyzed. The failures produced were
monitored to determine the most frequent sources of errors
and their manifestation [5], [6], [7], [8], [9], [10]. However,
the long observation time necessary to perform this type of
studies suggests the use of new techniques in order to
accelerate the fault occurrence.

Fault injection is a common method to assess the reliability
of computer systems [11], [12], [13], [14], [15]. This
technique allows a controlled introduction of faults in the
system, not being necessary to wait for a long time to log for
the apparition of real faults. Fault injection techniques can be
classified in three main categories [16]: physical (or Hardware
Implemented Fault Injection, HWIFI), software implemented
(SWIFI) and simulation-based (SBFI).

Simulation-based Fault Injection has proven to be a good
technique to study the impact of intermittent faults [17], [18],
[19], [20]. It is a useful experimental way to evaluate the
dependability of a system during the design phase. An early
diagnosis allows saving costs in the design process, avoiding
redesigning in case of error, and thus reducing time-to-market.

Two important issues when using Simulation-based Fault
Injection are the accuracy of the system model and the
representativeness of the fault models. Regarding this last
question, in previous works we have studied some
representative causes and mechanisms related to intermittent
faults. From this study, we have generated a set of intermittent
fault models at logic and register transfer (RT) abstraction
levels which can be injected into VHDL models [21].

The objective of this work is to study the impact of
intermittent faults in a RISC microprocessor, as well as to
compare their consequences with those provoked by
permanent and transient faults. To carry out the fault injection
experiments, we have used VHDL-based Fault Injection due
to its flexibility, as well as the high observability and
controllability of the model components [16]. This paper
complements previous works published by the authors [18],
[21], where the impact of intermittent faults on a commercial
CISC microcontroller was analyzed.

The paper is organized as follows. Section II describes the
fault injection environment, including a summary of the
intermittent fault models applied, a brief description of the
intermittent fault parameters, and an outline of the VHDL-

Effects of Intermittent Faults on the Reliability
of a RISC Microprocessor

Joaquín Gracia-Morán, J. Carlos Baraza-Calvo, Daniel Gil-Tomás, Luis J. Saiz-Adalid and Pedro J.
Gil-Vicente, Member, IEEE

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

based fault injection techniques. Section III depicts the fault
injection experiments. Section IV includes a selection of the
results. Finally, Section V provides some conclusions.

II. FAULT INJECTION ENVIRONMENT

A. Intermittent fault models
Transient and permanent fault models have been

traditionally well established, whereas modeling intermittent
faults is a pending issue [3]. The most popular fault models for
permanent and transient faults are stuck-at and bit-flip,
respectively [16].

Intermittent faults occur due to unstable or marginal
hardware. They can be activated by an environmental change
such as temperature or voltage alterations. Manufacturing
residues, process variations and special wearout processes can
also lead to such faults. The introduction of new deep
submicron technologies makes necessary to study new fault
causes and mechanisms of intermittent faults. Table I
summarizes some representative physical causes and fault
mechanisms of intermittent faults, as well as the fault models
proposed in every case [21]. The table tries to unify, classify
and relate the different fault sources. It shows intermittent
fault models for buses, storage elements, input/output
connections and combinational logic. These fault models are
defined at logic and register transfer (RT) abstraction levels.
More information can be found in [18], [21].

B. Intermittent fault parameters
Intermittent faults manifest as occasional bursts that

typically repeat themselves from time to time, and whose
effects are not continuous. Also, intermittent faults occur
repeatedly in the same places [8]. The duration of intermittent
faults is not constant. Instead, it depends on some variable
aspects like manufacturing process, environment, wearout
process, etc. In this way, the number of times that the fault is
active during a burst, as well as the duration of each activation
and the separation between activations, have been defined as
parameters of the intermittent fault models [22]. Fig. 1
explains the burst parameters.

Fig. 1. Main elements of an intermittent fault burst.

C. Fault injection techniques
Fig. 2 shows the classification of the different VHDL-based

fault injection techniques [16].

With simulator commands, it is possible to change, at
simulation time, the value or the timing of the signals and
variables of the system. Saboteurs and mutants modify the
VHDL code of the system by inserting injection components
(saboteurs) or activating “mutated” versions of the existing
components (mutants). Although these two techniques are
more complex to apply, and introduce more spatial and
temporal overhead than simulator commands, they allow
injecting more complex fault models. Other techniques extend
the syntax and semantics of the VHDL language.

Fig. 2. VHDL-based fault injection techniques.

We have injected the faults by using a tool developed by

our research group called VFIT (VHDL-based Fault Injection
Tool) [16]. VFIT is able to inject faults automatically applying
simulator commands, saboteurs and mutants techniques. The
different injection experiments presented in this paper have
been carried out with simulator commands, as all fault models
selected can be injected by this technique and their application
implies lower temporal and spatial overheads.

III. EXPERIMENTS DESCRIPTIONS
The main purpose of the study presented in this work is to

analyze the influence of intermittent faults in the behavior of a
RISC microprocessor. The system target is the Plasma
microprocessor [23]. It has a 32-bit MIPS architecture with
four-stage pipeline. The VHDL model of Plasma is described
at RT and logic abstraction levels.

As workload, Bubblesort sorting algorithm has been used,
as it exercises the main elements of the microprocessor:
memory, registers, buses, ALU and CU. In this way, we have
injected intermittent faults in the storage elements (the register
bank and the RAM memory), the buses and the combinational
logic of the ALU and CU. Fig. 3 shows the structure of the
Plasma core and the injection targets.

Fig. 3. Block diagram of the Plasma core and injection targets.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

TABLE I.
SOME INTERMITTENT FAULT MECHANISMS AND MODELS

Causes Targets Fault mechanisms Type of fault Fault models
Residues in cells Memory and registers Intermittent contacts Manufacturing defect Intermittent stuck-at
Solder joints Buses Intermittent contacts Manufacturing defect Intermittent pulse

Intermittent short
Intermittent open

Electromigration
Delamination

Buses
I/O connections

Variation of metal resistance
Voids

Wearout-Timing Intermittent delay
Intermittent short
Intermittent open

Crosstalk I/O connections
Buses

Electromagnetic interference Internal noise
Timing

Intermittent pulse
Intermittent delay
Intermittent speed-up

Gate oxide soft breakdown NMOS transistors in SRAM cells Leakage current fluctuation Wearout-Timing Intermittent delay
Intermittent indetermination

Negative bias-temperature
instability (NBTI)

PMOS transistors in combinational
logic

Increase of transistor threshold
voltage VTH
Reduction of carrier mobility

Wearout-Timing Intermittent delay

Negative bias-temperature
instability (NBTI)

PMOS transistors in SRAM cells Local mismatches among cell
transistors, degradation of static
noise margin

Wearout Intermittent bit-flip

Hot-carrier injection (HCI) NMOS transistors in combinational
logic

Increase of transistor threshold
voltage VTH

Wearout-Timing Intermittent delay

Low-k dielectric breakdown Buses
I/O connections

Leakage current fluctuation
Temperature variations
Capacity degradation

Wearout-Timing Intermittent delay
Intermittent short

Doping profile and gate
length deviations

MOS transistors in combinational
logic and memory

Deviations in VTH
Deviations in operation speed

Manufacturing
variations

Intermittent delay

The main injection parameters are:

1) Fault multiplicity
Due to technology scaling, intermittent faults will likely

affect multiple locations [7]. These multiple locations may be
adjacent (i.e. neighbor cells in register and memory, neighbor
wires in a bus, etc.) or non-adjacent. Thus, we have injected
both single and multiple faults.

During the configuration phase of each experiment, we have
considered two aspects:

• The number of faults in non-adjacent locations. We
have generated the number of non-adjacent targets
using a Uniform distribution function in the range [2,
NNA], where NNA is the total number of non-adjacent
locations.

• In multiple-bit targets, the number of adjacent locations.
In this case, we have applied a Uniform distribution
function in the range [2, NA/2], where NA is the target
width, that is, the number of adjacent locations.

2) Fault types
Intermittent, transient and permanent faults have been

injected.
3) Fault models

According to Section II.A, the following intermittent fault
models have been injected:

• Intermittent stuck-at, in storage elements.
• Intermittent pulse, in buses.
• Intermittent {pulse, open, stuck-at, indetermination}, in

combinational logic.
The transient fault models injected have been pulse (to

emulate Single Event Transients, or SETs) in combinational
logic and buses; and bit-flip (to emulate Single Event Upset, or
SEUs) in storage elements. Also, indetermination (that is,
undefined logic value provoked by voltage and current
variations) [16], [24] has been injected in combinational

targets.
For permanent faults, the fault models injected have been

stuck-at(0,1), open and indetermination [16], [24].
We have not injected time-related faults (such as the

Intermittent Delay fault model, see Table I) due to the lack of
temporal specifications in the VHDL model. This is usual in
core models, as delays are introduced in the implementation
phase, after place and route.
4) Burst parameters (for intermittent faults)

As mentioned in Section II.B, intermittent faults manifest in
bursts. So, the following parameters must be configured to
inject them (see Fig. 1):

• The burst length (LBurst).
• The activity time (tA).
• The inactivity time (tI).
We have generated all the three parameters according to

random Uniform distribution functions. For tA and tI, three
time ranges have been used: [0.01T–0.1T], [0.1T–1.0T], and
[1.0T–10.0T], where T is the clock cycle (in our experiments
T = 100 ns). LBurst follows a discrete Uniform distribution in
the range [1, 10].
5) Fault duration (for transient faults)

We have generated the duration of transient faults by using
random Uniform distribution functions in three time ranges:
[0.01T–0.1T], [0.1T–1.0T], and [1.0T–10.0T].
6) Injection instant

We have generated it by using a Uniform distribution
function along the workload duration.
7) Number of faults injected

In order to obtain a reliable statistic sample, we have
injected 1,000 faults per experiment, so that more than
125,000 faults have been injected in total.
8) Measures obtained

In order to measure the impact of intermittent faults, we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

have calculated in every experiment the following
percentages:

• Percentage of failures:

100
N
NP

Injected

Failures
Failures ×= (1)

• Percentage of latent errors:

100
N
NP

Injected

Latent
Latent ×= (2)

• Percentage of non-effective errors:

100
N

NP
Injected

veNonEffecti
veNonEffecti ×= (3)

where:
• NInjected is the number of faults injected.
• NFailures is the number of failures. A failure is produced

when the result obtained after the execution of the
workload is erroneous.

• NLatent is the number of latent errors. A latent error is
produced when the injected fault propagates to the
storage elements but it does not provoke a failure.

• NNonEffective is the number of non-effective errors. An
error is non-effective if it does provoke neither failures
nor latent errors.

Latent errors and failures are detected by comparing the
trace of every fault-injected simulation with a golden run. Fig.
4 summarizes the fault syndrome and the calculated data.

Fig. 4. Fault syndrome.

IV. RESULTS
This section is divided in four parts. Section IV.A analyzes

the influence of burst parameters. Section IV.B studies the
influence of the injection target. Section IV.C compares the
impact of intermittent faults to that of transient and permanent
faults. Finally, Section IV.D compares other works where
intermittent faults are injected in different microprocessors.

A. Influence of burst parameters
a) Influence of the activity and inactivity times

Fig. 5 represents the impact of intermittent faults in the
storage elements. Regarding single faults (see Fig. 5-a), the
percentage of failures is very low (~2%), while the percentage
of latent errors is high (~53%). This is due to two reasons: i)
faults in critical registers mainly provoke failures,
independently of the number of activations, and ii) faults in
memory mostly cause latent errors because faults are injected
randomly in all the memory space, and the workload occupies
a very small portion of the memory. On the other hand, as the
memory is much bigger than the register bank, the overall
behavior tends to that of the memory.

The same trend is observed in multiple faults (see Fig. 5-b).

In this case, and as expected, both percentages (failures and
latent errors) are higher, with values about 8% and 75%
respectively. This is a predictable behavior, as multiple faults
affect simultaneously various physical locations of the system.

It is important to emphasize that, in both cases (single and
multiple faults), no significant changes are observed when
varying tA and tI. That is, neither the duration of the
activations nor their separation seem to affect PFailures and
PLatent in storage elements.

Fig. 6 shows the effects of intermittent faults in buses. As
the activity time (tA) grows:

• The percentage of failures grows appreciably.
• The percentage of latent errors decreases, because faults

with longer tA provoke failures rather than latent errors.
• In general, the system is more affected as the

percentage of non-effective errors decreases.
Regarding fault multiplicity, almost all multiple faults affect

the system, provoking failures or latent errors (the percentage
of non-effective errors is under 2%). A noticeable increment
of failures is observed. For the largest tA, Fig. 6-b shows
values of PFailures over 90%.

a)

b)

Fig. 5. Influence of intermittent faults in storage elements. a) Single faults. b)
Multiple faults.

Lastly, Fig. 7 illustrates the effects of intermittent faults in
the combinational logic. As in buses, augmenting tA provokes
a clear rise in the percentage of failures.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
tA

=[
0.

01
T-

0.
1T

]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of single intermittent faults in storage elements

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of multiple intermittent faults in storage elements

Non Effective

Latent errors

Failures

Injected

Non effective

Propagated

Failure

Latent Errors

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

In single faults, values of PFailures and PLatent are smaller than
in buses. This is due to the masking mechanisms existing in
combinational logic. As a consequence, PNonEffective is quite
bigger. Regarding multiple faults, PFailures is similar to buses,
whereas PLatent is smaller, except for the longest values of tA.
Also, like in buses and storage elements, the inactivity time
does not have any influence on the results.

In general, we can observe that buses are the most sensitive
targets to intermittent faults. Nevertheless, intermittent faults
in combinational logic present a non-negligible impact. In
multiple faults and for large activity times, their impact can be
similar to that in buses.

a)

b)

Fig. 6. Influence of intermittent faults in buses. a) Single faults. b) Multiple
faults.

On the other hand, intermittent faults in the storage

elements provoke mainly latent errors, with a very low
percentage of failures. Unexpectedly, the activity time has no
influence on the results. This is due to both the absence of
masking effects in the propagation, and the existence of a huge
quantity of cells, especially in memory, which while
perturbed, they are not accessed later by the workload.

Unexpectedly, tI does not present a significant influence. A
deeper analysis has shown that varying the separation between
activations does not change the total number of activations in
the bursts, because our particular workload is long enough to
fit all activations. Nevertheless, in a general case, this
parameter is expected to gain importance because: i) it may

affect the system behavior, as it can influence the number of
activations, and ii) in a Fault-Tolerant System, the separation
between activations can affect the detection and recovery
latencies.

As expected, multiple faults impact much more than single
faults. This is a predictable behavior, as multiple faults affect
simultaneously various physical locations of the system.
Percentages of failures over 90% can be seen for intermittent
multiple faults in buses and combinational logic. Also, in these
two targets, tA influences notably PFailures. Particularly, a
roughly logarithmic dependency (AFailure tP log≈) can be
appreciated (note that the scale of tA is logarithmic).

a)

b)

Fig. 7. Influence of intermittent faults in combinational logic. a) Single faults.
b) Multiple faults.

b) Influence of the burst length

Fig. 8 shows the results obtained when varying LBurst from 1
to 10, with tA and tI defined randomly in the intermediate
range [0.1T–1.0T]. The figure shows the results for single and
multiple faults and for the three targets: storage elements,
buses and combinational logic.

As expected, multiple faults provoke more failures and
latent errors than single faults for all targets.

Respect to the storage elements (see Fig. 8-a and Fig. 8-b),
PFailures presents a nearly constant behavior, with small
variations between 6% and 9%. This is due to:

• Faults affecting critical registers provoke a failure in the
very first activations (i.e., for lower values of LBurst), so

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of single intermittent faults in buses

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of multiple intermittent faults in buses

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of single intermittent faults in combinational logic

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T-
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tA
=[

0.
01

T -
0.

1T
]

tA
=[

0.
1T

-1
.0

T]

tA
=[

1.
0T

-1
0.

0T
]

tI=[0.01T-0.1T] tI=[0.1T-1.0T] tI=[1.0T-10.0T]

Influence of multiple intermittent faults in combinational logic

Non Effective

Latent errors

Failures

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

the total burst length does not matter.
• Faults affecting non-accessed memory cells only cause

latent errors, but not failures, even in the presence of
multiple activations.

About latent errors, results show that injecting intermittent
faults (single or multiple) provokes mainly latent errors. In
multiple faults, we can observe a uniform behavior, with
variations of PLatent between 70% and 77%. Regarding single
faults, we can observe a gap between the values of LBurst 4 and
5, with almost constant values in each interval. Anyway, the
values of PLatent are lower. Briefly, LBurst does not influence so
much PLatent in storage elements. As faults affect directly the
storage cells, errors occurred in the very first activations
remain latent.

In buses (see Fig. 8-c and Fig. 8-d), PFailures rises roughly
asymptotically. We can approximate PFailures with the
exponential dependency)1(BurstL

Failures ekP −−≈ . In single
faults, PFailures grows up to 39%, while in multiple faults, the
percentage of failures rises up to 75%. In this case, LBurst has a

clear influence on PFailures. As the number of activations in the
same bus wires increases, the probability of fault propagation
that provoke a failure augments. From a certain number of
activations, the growth is slower and PFailures tends to stabilize.

Concerning latent errors in buses, in multiple faults PLatent
decreases as LBurst increases, because longer values of LBurst
increase PFailures. In single faults, PLatent is almost constant.

On the other hand, combinational logic (see Fig. 8-e and
Fig. 8-f) presents the same behavior than buses, but with lower
values of PFailures. In single faults, PFailures grows up to about
28%, and in multiple faults, to 73%. In this type of target, the
masking mechanisms are stronger, and thus, as a general
trend, the values of PFailures are lower than in buses.

About latent errors, as LBurst increases, their percentage
grows slightly in single faults, and decreases in multiple faults.
In this last case and as it happened in buses, longer values of
LBurst cause higher values of PFailures, decreasing in this way
PLatent.

a) b)

c) d)

e) f)

Fig. 8. Influence of the burst length. a) Single faults in storage elements. b) Multiple faults in storage elements. c) Single faults in buses. d) Multiple faults in
buses. e) Single faults in combinational logic. f) Multiple faults in combinational logic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst lengthin storage elements (single faults)

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst length in storage elements (multiple faults)

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst length in buses (single faults)

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst length in buses (multiple faults)

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst length in combinational logic (single faults)

Non Effective

Latent errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Influence of burst length in combinational logic (multiple faults)

Non Effective

Latent errors

Failures

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Influence of the injection target
From the previous results, it can be inferred that:
• Intermittent faults in buses are very harmful, as buses

are used massively in the execution of microprocessor
instructions.

• Combinational logic is less sensitive, although the
impact of intermittent faults can be notable for high
values of tA and LBurst. The masking mechanisms of this
type of logic reduce PFailures.

• Intermittent faults in registers provoke a high
percentage of failures, because they store intermediate
results when executing an instruction. Instead, faults in
memory manifest mainly as latent errors.

C. Comparison to transient and permanent faults
In this section, we compare the effects of transient,

intermittent and permanent faults in all targets. In these
experiments, tI for intermittent faults has been generated in the
intermediate range [0.1T, 1.0T]. As indicated in Section III, tA
for intermittent faults, as well as the duration of transient
faults in buses and combinational logic have been generated in
three ranges: [0.01T, 0.1T], [0.1T, 1.0T] and [1.0T, 10.0T].
Due to their physical nature, fault duration of transient faults
in the storage elements (bit-flip) has no sense and thus has not
been specified.

Fig. 9 shows the results obtained in storage elements, where
an apparently unexpected trend can be noticed. Transient
faults provoke more failures and latent errors than intermittent
faults. The reason is that there is a low rate of overwrite
operations in the memory cells affected by transient faults (bit-
flips), due to both the memory size and the workload behavior.
In this way, these faults present a de facto infinite duration,
thus remaining stored permanently. Notice that the
intermittent fault model injected in storage elements is the
intermittent stuck-at (see Table I).

On the other hand, Fig. 10 introduces the results obtained in
buses, while Fig. 11 presents the results obtained in
combinational logic. In these graphs, the results are the
expected. That is, transient faults provoke fewer failures than
intermittent faults, as a burst of intermittent faults manifests
like a sequence of transient faults in spite of having different
origin. As commented before, a consequence of the masking
mechanisms of the combinational logic is the lower
percentage of latent errors respect to buses. In any case, buses
are more sensitive to all fault types, as PNonEffective is lower than
in the combinational logic.

In all targets, the greatest impact corresponds to permanent
faults because of their infinite duration, although similar
values are obtained for the longest values of tA in intermittent
faults.

Fig. 10 and Fig. 11 also show an important dependency on
the fault duration of transient faults, similar to that of
intermittent faults and the activity time.

Fig. 9. Comparison of the impact of transient, intermittent and permanent
faults in storage elements.

Fig. 10. Comparison of the impact of transient, intermittent and permanent
faults in buses.

Fig. 11. Comparison of the impact of transient, intermittent and permanent
faults in combinational logic.

D. Related work
Present work completes the results presented in [18], [21],

where the behavior of an 8051 microcontroller under the
influence of intermittent faults is analyzed. Comparing these
works with the results presented in this paper, both cores show

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Transient Intermittent
[0.01T, 0.1T]

Intermittent
[0.1T,1.0T]

Intermittent
[1.0T, 10.0T]

Permanent

Impact of all types of faults in the storage elements

Non-Effective

Latent Errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Transient
[0.01T, 0.1T]

Transient
[0.1T, 1.0T]

Transient
[1.0T, 10.0T]

Intermittent
[0.01T, 0.1T]

Intermittent
[0.1T,1.0T]

Intermittent
[1.0T, 10.0T]

Permanent

Impact of all types of faults in the buses

Non-Effective

Latent Errors

Failures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Si
ng

le

M
ul

tip
le

Transient
[0.01T, 0.1T]

Transient [0.1T,
1.0T]

Transient [1.0T,
10.0T]

Intermittent
[0.01T, 0.1T]

Intermittent
[0.1T,1.0T]

Intermittent
[1.0T, 10.0T]

Permanent

Impact of all types of faults in the combinational logic

Non-Effective

Latent Errors

Failures

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

similar general trends, although some differences have been
observed. The Plasma microprocessor is more sensitive to
intermittent faults in combinational logic. This is due to the
higher complexity of the Plasma in terms of combinational
logic (multiplexers, multiplier/divider and the memory
controller). Also, more latent errors have been detected in the
Plasma, specially caused by faults in the storage modules,
mainly because the memory of the Plasma is bigger.

Table II compares the effects of intermittent faults in the
Plasma and 8051 cores, summarizing the impact of the
different parameters studied in the previous sections. More
results about the 8051 core can be seen in [22], [25].

In [26], the impact of transient and intermittent faults on
application programs executed in a model of a simple five-
stage pipeline RISC processor is compared. The study shows
that transient and intermittent faults present substantial
differences in the percentage of crashes (failures) caused in
programs. Also, it is verified the important influence of the
length of the intermittent fault (equivalent to tA) and its origin
(the injection target). That is, the results are similar to those
obtained in this paper.

On the other hand, [27] defines a new metric, called IVF
(Intermittent Vulnerability Factor), in order to study the
impact of intermittent faults in the internal blocks of
microprocessors. For the injection experiments, they use a
model of the Alpha 21260, a DEC RISC microprocessor. The
authors arrive to similar conclusions to those presented in this
paper: longer activity times or longer bursts provoke more
failures; also, faults in special registers cause a great impact on
the system; and finally, intermittent faults provoke more
failures in the system than transient faults.

TABLE II.

COMPARISON OF THE EFFECTS OF FAULTS IN THE PLASMA AND 8051 CORES
Parameter influence Comparison Plasma vs 8051
Influence of tA Similar trend:

• Buses and combinational logic: roughly
logarithmic

AFailures tP log≈

• Storage: negligible
Influence of tI Similar trend: negligible (depends on the

workload duration)
Influence of LBurst Similar trend:

• Buses and combinational logic:
asymptotic rise)1(burstL

Failures ekP −−≈

• Storage: negligible
Influence of the injection
target

• Plasma: buses > combinational logic >
storage (except in PLatent)

• 8051: buses > storage > combinational
logic

Comparison to transient
and permanent faults

Similar trend:
• Buses and combinational logic:

Permanent > intermittent > transient
• Storage:

Permanent > transient* > intermittent
(*) There is a low rate of overwritten cells

Impact of faults in buses PFailures similar for both cores
PLatent similar for both cores

Impact of faults in
combinational logic

PFailures higher in Plasma
PLatent higher in Plasma

Impact of faults in storage
(registers+memory)

PFailures higher in 8051
PLatent higher in Plasma

V. CONCLUSIONS
In this work, we have presented a case study of the effects

of intermittent faults on the behavior of a RISC
microprocessor. The impact of intermittent faults has been
also compared with those provoked by transient and
permanent faults. The methodology used lies in VHDL-based
fault injection technique, which allows a systematic and
exhaustive analysis of the influence of different fault
parameters. From the study, some general trends can be
extracted:

• The activity time is a quite important factor, as
increasing the duration of the activations provokes a
significant rise of the percentage of failures, especially
in buses and combinational logic. A roughly
logarithmic growth has been observed. The increase of
the activity time is a trend in the intermittent faults
caused by aging mechanisms. On the other hand, the
inactivity time has not shown any significant effect
because the duration of the workload was long enough
to fit all activations.

• The burst length has also a notable influence. The
percentage of failures grows asymptotically when
increasing this parameter. The increase of the burst
length is also an expected behavior in the intermittent
faults provoked by aging mechanisms.

• Another important factor is the fault spatial multiplicity.
Multiple faults provoke a much greater percentage of
failures than single faults. This is an important issue
because it is expected that, as the feature size of the
manufacturing process reduces in deep submicron
technologies, the presence of multiple intermittent
faults will grow.

• With respect to the injection target, we have found
significant differences. Buses are the most sensitive
targets to intermittent faults. On the other hand, the
impact of faults in combinational logic is also
important, even similar to that in buses when injecting
multiple intermittent faults with higher activity times
and burst lengths. It is foreseen that this impact will
grow as the effect of masking mechanisms gets reduced
in deep submicron technologies, provoking an increase
in their sensitiveness to intermittent faults. Lastly, faults
in memory provoke mainly latent errors, while faults in
registers cause failures, even in the first activations of
the intermittent fault.

• In buses and combinational logic, intermittent faults
cause a quite greater percentage of failures than
transient faults. Intermittent faults with the long
activation times present a similar impact to that of
permanent faults, which are the most damaging faults.
On the other hand, transient faults in storage elements
(bit-flips) have shown a greater impact than intermittent
faults, because this kind of faults presents a de facto
infinite duration if not overwritten.

From the results obtained in this work, it can be inferred the
necessity of adding mitigation techniques to deliver fast error

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

detection and correction of intermittent faults, mainly in buses
and critical registers. On the other hand, mitigation techniques
in combinational logic may be increasingly required.

REFERENCES
[1] International Technology Roadmap for Semiconductors (ITRS). 2011.
[2] S.L. Jen, J.C. Lu and K. Wang, “A review of reliability research on

nanotechnology”, IEEE Transactions on Reliability, Vol. 56, Issue 3, pp.
401-410, 2007.

[3] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability”,
IEEE Micro, Vol. 23, Issue 4, pp.14-19, 2003.

[4] C. Constantinescu, “Intermittent Faults and Effects on Reliability of
Integrated Circuits”, in Procs. Annual Reliability and Maintainability
Symposium, Las Vegas, USA, 2008, pp. 370 – 374.

[5] T.Y. Lin and D.P. Siewiorek, “Error Log Analysis: Statistical Modeling
and Heuristic Trend Analysis”, IEEE Transactions on Reliability, Vol.
39, Issue 4, pp. 419-432, 1990.

[6] D.P. Siewiorek and R.S. Schwarz, “Reliable computer systems: Design
and evaluation” Ed. Digital Press, 3rd Edition, 1998.

[7] C. Constantinescu, “Dependability Benchmarking using Environmental
Test Tools”, in Procs. Reliability and Maintainability Symposium,
Alexandria, USA, 2005, pp. 567–571.

[8] C. Constantinescu, “Impact of Intermittent Faults on Nanocomputing
Devices”, in Procs. DSN 2007 Workshop on Dependable and Secure
Nanocomputing, Edinburgh, UK, 2007, pp. 238–241.

[9] J. Guilhemsang, O. Héron, N. Ventroux, O. Goncalves and A. Giulieri,
“Impact of the Application Activity on Intermittent Faults in Embedded
Systems”, in Procs. 2011 29th IEEE VLSI Test Symposium, Dana Point,
California, USA, 2011, pp. 191-196.

[10] E.B. Nightingale, J.R. Douceur and V. Orgovan, “Cycles, Cells and
Platters: An Empirical Analysis of Hardware Failures on a Million
Consumer PCs”, in Procs. EuroSys 2011, Salzburg, Austria, 2011, pp.
343-356.

[11] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E.
Martins and D. Powell, “Fault Injection for Dependability Validation: A
Methodology and Some Applications”, IEEE Transactions on Software
Engineering, Vol. 16, Issue 2, pp. 166–182, February 1990.

[12] G.S. Choi, R.K. Iyer, V.A. Carreno, “Simulated Fault injection: A
Methodology to Evaluate Fault Tolerant Microprocessor Architectures”,
IEEE Transactions on Reliability, Vol. 39, Issue 4, pp. 486-491, 1990.

[13] J. Arlat, M. Aguera, Y. Crouzet, J.C. Fabre, E. Martins, D. Powell,
“Experimental Evaluation of the Fault Tolerance of an Atomic Multicast
System”, IEEE Transactions on Reliability, Vol. 39, Issue 4, pp. 455-
467, 1990.

[14] G. Miremandi and J. Torin, “Evaluating Processor-Behavior and Three
Error-Detection Mechanisms Using Physical Fault-Injection”, IEEE
Transactions on Reliability, Vol. 44, Issue 3, pp. 441-454, 1995.

[15] D. Avresky, J. Arlat, J.C. Laprie, Y Crouzet, “Fault Injection for Formal
Testing of Fault Tolerance”, IEEE Transactions on Reliability, Vol. 45,
Issue 3, pp. 443-455, 1996.

[16] A. Benso and P. Prinetto, eds., Fault Injection Techniques and Tools for
VLSI reliability evaluation, Kluwer Academic Publishers, 2003.

[17] J. Gracia-Moran, D. Gil-Tomas, L.J. Saiz-Adalid, J.C. Baraza and P.J.
Gil-Vicente, “Experimental Validation of a Fault Tolerant
Microcomputer System against Intermittent Faults”, in Procs. 40th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Chicago, USA, 2010, pp. 413-418.

[18] D. Gil-Tomás, J. Gracia-Morán, J.C. Baraza-Calvo, L.J. Saiz-Adalid and
P.J. Gil-Vicente, "Analyzing the impact of Intermittent Faults on
Microprocessors applying Fault Injection", IEEE Design & Test of
Computers, Volume 29, Issue 6, pp. 66–73, 2012.

[19] L. Rashid, K. Pattabiraman and S. Gopalakrishnan, “Modeling the
Propagation of Intermittent Hardware Faults in Programs”, in Procs.
16th IEEE Pacific Rim International Symposium on Dependable
Computing, Tokyo, Japan, 2010, pp. 19-26.

[20] P.M. Wells, K. Chakraborty and G.S. Sohi, “Adapting to Intermittent
Faults in Multicore Systems”, in Procs. 13th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Seattle, USA, 2008, pp. 255-264.

[21] D. Gil-Tomás, J. Gracia-Morán, J.C. Baraza-Calvo, L.J. Saiz-Adalid and
P.J. Gil-Vicente, “Studying the effects of intermittent faults on a

microcontroller”, Microelectronics Reliability, Vol. 52, Issue 11, pp.
2387-2846, 2012.

[22] J. Gracia, L.J. Saiz, J.C. Baraza, D. Gil and P.J. Gil, “Analysis of the
influence of intermittent faults in a microcontroller”, in Procs. 14th
IEEE Design and Diagnostics of Electronic Circuits and Systems,
Bratislava, Slovakia, 2008, pp. 80–85.

[23] Plasma CPU model. http://www.opencores.org/projects.mips.
[24] P.J. Gil et al., “Fault Representativeness”, Deliverable ETIE2 of

Dependability Benchmarking Project, IST-2000-25245, 2002. Available
at: http://www2.laas.fr/TSF/DBench/Deliverables/ETIE2.pdf.

[25] D. Gil, L.J. Saiz, J. Gracia, J.C. Baraza and P.J. Gil, “Injecting
Intermittent Faults for the Dependability Validation of Commercial
Microcontrollers”, in Procs. IEEE International High Level Design
Validation and Test Workshop, Nevada, USA, 2008, pp. 177–184.

[26] J. Wei, L. Rashid, K. Pattabiraman and S. Gopalakrishnan, “Comparing
the effects of intermittent and transient hardware faults on programs”, in
Procs. 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops, Hong Kong, China, 2011, pp. 53-58.

[27] S. Pan, Y. Hu and X. Li, “IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults”, in Procs. Design,
Automation and Test in Europe, Dresden, Germany, 2010, pp. 238-243.

Joaquín Gracia-Morán is B.Sc. (1995), M.Sc. (1997) and Ph.D. (2004) in
Computer Engineering from the Universitat Politècnica de València (UPV).
He is currently an associate professor at the UPV, Spain, where he teaches in
the Department of Computer Engineering (DISCA). He is member with the
Fault-Tolerant Systems (STF) research line within the Institute for the
Applications of Advanced Information and Communication Technologies
(ITACA). His research interests include design and implementation of digital
systems, design and validation of Fault-Tolerant Systems and VHDL-based
Fault Injection.

J.Carlos Baraza-Calvo is B.Sc. (1993) and Ph.D. (2003) from the Universitat
Politècnica de València, (UPV). Now, he is an associate professor at the UPV,
Spain, in the DISCA. He is a member with the STF-ITACA. His research
interests include design and implementation of digital systems, design and
validation of Fault-Tolerant Systems and Fault Injection.

Daniel Gil-Tomás is an associate professor at the Universitat Politècnica de
València, Spain, in the DISCA. He received his B.Sc. degree in Electrical and
Electronic Physics from the Universitat de València in 1985. He obtained his
Ph.D. degree on Computer Engineering from the UPV in 1999. He is a
member with the STF-ITACA. His research interests include design and
validation of Fault-Tolerant Systems, Reliability Physics and Reliability of
Emerging Nanotechnologies.

Luis J. Saiz-Adalid is M.Sc. (1995) in Computer Engineering from the
Universitat Politècnica de València (UPV), and he is currently doing his Ph.D.
degree. After 15 years in the industry (IBM, 1995-Celestica, 1998), he is
currently a full time lecturer professor at the UPV, Spain. He is also a student
member with the STF-ITACA. His research interests include design and
implementation of digital systems, design and validation of Fault-Tolerant
Systems and VHDL-based Fault Injection.

Pedro J. Gil-Vicente is professor at the Universitat Politècnica de València
(UPV), where he has been head of the Department of Computer Engineering
(DISCA). Professor Gil has taught courses on Computer Technology, Digital
Design, Computer Networks and Fault Tolerant Systems. He is the head of the
Fault-Tolerant Systems (STF) research line, within ITACA. His research
focuses on the design and validation of real-time fault-tolerant distributed
systems, the dependability validation using fault injection, the design and
verification of embedded systems, and the dependability and security
benchmarking. He has authored more than 90 research papers on these
subjects. He has also served as Program Committee member in the IEEE
International Conference on Dependable Systems and Networks (DSN), the
European Dependable Computing Conference (EDCC) and the Latin
American Symposium on Dependable Computing (LADC), and as reviewer in
international magazines and congresses related to dependability and security.
He was general chair of the EDCC-8 conference, held in Valencia on April
2010.

http://www.opencores.org/projects.mips
http://www2.laas.fr/TSF/DBench/Deliverables/ETIE2.pdf

