Document downloaded from:
http://hdl.handle.net/10251/49136
This paper must be cited as:
Cantó Colomina, R.; Ricarte Benedito, B.; Urbano Salvador, AM. (2013). Quasi-LDU factorization of nonsingular totally nonpositive matrices. Linear Algebra and its Applications. 439(4):836-851. doi:10.1016/j.laa.2012.06.010.

The final publication is available at
http://dx.doi.org/10.1016/j.laa.2012.06.010

Copyright
Elsevier

Quasi- $L D U$ factorization of nonsingular totally nonpositive matrices **

Rafael Cantóa,*, Beatriz Ricarte ${ }^{\text {a }}$, Ana M. Urbano ${ }^{\text {a }}$
${ }^{a}$ Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, 46071 València, Spain.

Abstract

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a nonsingular totally nonpositive matrix. In this paper we describe some properties of these matrices when $a_{11}=0$ and obtain a characterization in terms of the quasi- $L D U$ factorization of A, where L is a block lower triangular matrix, D is a diagonal matrix and U is a unit upper triangular matrix.

Keywords: $L D U$ factorization, triangular matrix, totally nonpositive matrix AMS classification: 65F40, 15A15, 15A23

1. Introduction

A matrix is called totally positive (strictly totally positive) if all its minors are nonnegative (positive). This class of matrices has a wide variety of applications in statistics, economics, computer aided geometric design and others fields, see [10, 16], and is abbreviated as TP (STP). Nevertheless, a new class of matrices that satisfy the opposite property has recently become of interest due to its applications in social and economic problems [2, 17, 19]. If all minors of a matrix are nonpositive (negative) the matrix is called totally nonpositive (totally negative) and is abbreviated as t.n.p. (t.n.). They are included in the class of sign regular matrices, which are widely used because of their variation diminishing property (see $[1,6]$).

Several authors have studied square and rectangular TP and STP matrices, see $[1,5,7,8,10,11,12,13,14,16]$, obtaining properties, the Jordan structure and characterizations by applying the Gaussian or Neville elimination that allow one to significantly reduce the number of minors to be checked in order to decide if a matrix is TP or STP.

For t.n. matrices, a characterization in terms of the parameters computed from the Neville elimination is obtained in [12] and spectral properties and $L D U$ factorizations are studied in [9].

[^0]The nonsingular t.n.p. matrices with a negative $(1,1)$ entry have been characterized in terms of the factors of their $L D U$ factorization in [3]. This factorization provides a criteria to determine if a matrix is t.n.p. and allows us to reduce the numbers of minors to be checked to decide the total nonpositivity of a nonsingular matrix with a negative $(1,1)$ entry. On the other hand, some properties of nonsingular t.n.p. matrices analogous to those satisfied by nonsingular TP matrices have also been studied $[1,10]$. When the $(1,1)$ entry is equal to zero but the (n, n) entry is negative we can obtain a $U D L$ factorization of this nonsingular t.n.p. matrix by permutation similarity.

The rectangular t.n.p. matrices have been studied in [4], obtaining a full rank $L D U$ factorization in echelon form of this class of matrices and other characterization by means of its thin $Q R$ factorization. This $Q R$ characterization is similar to the one obtained in [5] for rectangular TP matrices and it is an extension of the result for square TP matrices given in [11].

When the nonsingular t.n.p. matrix has the $(1,1)$ and (n, n) entries equal to zero a characterization, in terms of the sign of its minors containing contiguous rows or columns and including the first row or column, respectively, is obtained in [15].

In this paper we characterize the nonsingular t.n.p. matrices with the $(1,1)$ entry equal to zero in terms of a quasi- $\tilde{L} D U$ factorization, where \tilde{L} is a lower block triangular matrix, D is a diagonal matrix and U is a unit upper triangular TP matrix. This result holds when the (n, n) entry is equal to zero or when it is negative but we do not use permutation similarity. We study this characterization for $n \geq 3$, since the case $n=2$ is trivial. Finally, we prove some properties of this kind of matrices analogous to those satisfied by nonsingular t.n.p. matrices with negative $(1,1)$ entry described in [3].

We follow the notation given in [1]. For $k, n \in \mathbb{N}, 1 \leq k \leq n, \mathcal{Q}_{k, n}$ denotes the set of all increasing sequences of k natural numbers less than or equal to n. If A is an $n \times n$ matrix and $\alpha, \beta \in \mathcal{Q}_{k, n}, A[\alpha \mid \beta]$ denotes the $k \times k$ submatrix of A lying in rows α and columns β. The principal submatrix $A[\alpha \mid \alpha]$ is abbreviated as $A[\alpha]$. Note that, an $n \times n$ matrix A is a t.n.p. matrix if $\operatorname{det} A[\alpha \mid \beta] \leq 0$, $\forall \alpha, \beta \in \mathcal{Q}_{k, n}, k=1,2, \ldots, n$.

Throughout the paper an $L D U$ factorization means the corresponding factorization resulting from Gauss or Neville elimination with no pivoting, where L and U are unit lower- and upper-triangular matrices, respectively, and D is a diagonal matrix.
2. Characterization of nonsingular t.n.p. matrices with the $(1,1)$ entry equal to zero by the quasi-LDU factorization

In this section we derive a characterization of nonsingular t.n.p matrices with the $(1,1)$ entry equal to zero in terms of their quasi- $L D U$ factorization.

Given an $n \times n$, nonsingular t.n.p. matrix $A=\left(a_{i j}\right)$ it is known that $a_{i j}<0$ whenever $(i, j) \notin\{(1,1),(n, n)\},[18$, Theorem 2.1 (i)] and $\operatorname{det} A[1,2, \ldots, k]<0$, for all $k=2,3, \ldots, n,[15$, Theorem 5].

Since A is a nonsingular t.n.p. matrix with $a_{11}=0$, it is not possible to obtain a $L D U$ factorization with no pivoting. Therefore, we work with a matrix $B=P A$, where P is the permutation matrix $P=[2,1,3, \ldots, n]$, that is

$$
B=P A=\left[\begin{array}{ccccc}
a_{21} & a_{22} & \cdots & a_{2 n-1} & a_{2 n} \\
0 & a_{12} & \cdots & a_{1 n-1} & a_{1 n} \\
a_{31} & a_{32} & \cdots & a_{3 n-1} & a_{3 n} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n-11} & a_{n-12} & \cdots & a_{n-1 n-1} & a_{n-1 n} \\
a_{n 1} & a_{n 2} & \cdots & a_{n n-1} & a_{n n}
\end{array}\right] .
$$

Let $n \geq 3$, as $\operatorname{det} B[1,2, \ldots, k]=-\operatorname{det} A[1,2, \ldots, k]>0$, for all $k=2,3, \ldots, n$, we can obtain the factorization $B=L_{B} D_{B} U_{B}$ by applying the Gauss elimination process with no pivoting, where

$$
\begin{aligned}
L_{B} & =\left[\begin{array}{cc|cccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\hline l_{31} & l_{32} & 1 & \cdots & 0 & 0 \\
l_{41} & l_{42} & l_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
l_{n-11} & l_{n-12} & l_{n-13} & \cdots & 1 & 0 \\
l_{n 1} & l_{n 2} & l_{n 3} & \cdots & l_{n n-1} & 1
\end{array}\right], \\
D_{B} & =\left[\begin{array}{ccccc}
-d_{1} & 0 & 0 & \cdots & 0 \\
0 & -d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right], \\
U_{B} & =\left[\begin{array}{ccccc}
1 & u_{12} & \cdots & u_{1 n-1} & u_{1 n} \\
0 & 1 & \cdots & u_{2 n-1} & u_{2 n} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & u_{n-1 n} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right] .
\end{aligned}
$$

The matrices U_{B}, D_{B} and L_{B} satisfy the following properties.
Proposition 1. The upper triangular matrix U_{B} is a TP matrix, with positive entries above the main diagonal.

Proof. Since the entries of the first row of B are negative, we have that $u_{1 j}>0$, for $j=1,2, \ldots, n$. From Binet-Cauchy [1], we have for all $\beta \in \mathcal{Q}_{k, n}, k=$
$2,3, \ldots, n$, that

$$
\begin{aligned}
& \operatorname{det} B[1,2, \ldots, k \mid \beta]=\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}[1,2, \ldots, k \mid \gamma] \operatorname{det} D_{B}[\gamma] \operatorname{det} U_{B}[\gamma \mid \beta] \\
& \quad=\operatorname{det} L_{B}[1,2, \ldots, k \mid 1,2, \ldots, k] \operatorname{det} D_{B}[1,2, \ldots, k] \operatorname{det} U_{B}[1,2, \ldots, k \mid \beta] \\
& \quad=\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} U_{B}[1,2, \ldots, k \mid \beta] \geq 0
\end{aligned}
$$

which implies that $\operatorname{det} U_{B}[1,2, \ldots, k \mid \beta] \geq 0$ for all $\beta \in \mathcal{Q}_{k, n}, k=1,2, \ldots, n$. Then, U_{B} is a unit upper triangular TP matrix. As a consequence, for $i=$ $2,3, \ldots, n-1$, and $j=i+1, \ldots, n$,

$$
\operatorname{det} U_{B}[1, i \mid i, j]=u_{1 i} u_{i j}-u_{1 j} \geq 0 \quad \longrightarrow \quad u_{i j}>0
$$

that is, U_{B} has positive entries above the main diagonal.
Proposition 2. The diagonal matrix D_{B} has all its diagonal entries positive except for the $(1,1)$ and $(2,2)$ entries, which are negative.

Proof. The $(1,1)$ and $(2,2)$ entries of D_{B} are $-d_{1}=a_{21}<0$ and $-d_{2}=a_{12}<0$, respectively. The remaining diagonal entries are

$$
d_{i}=\frac{\operatorname{det} B[1,2, \ldots, i]}{\operatorname{det} B[1,2, \ldots, i-1]}>0, \quad i=3,4, \ldots, n
$$

Proposition 3. The unit lower triangular matrix L_{B} satisfies,

1) The entries of the first column $l_{i 1}$, with $i=3,4, \ldots, n$, are positive.
2) For all $\alpha \in \mathcal{Q}_{k, n}, k=2,3, \ldots, n$,

$$
\operatorname{det} L_{B}[\alpha \mid 1,2, \ldots, k]=\left\{\begin{array}{lll}
\geq 0 & \text { if } & \alpha_{1}=1, \alpha_{2}=2 \\
\leq 0 & \text { if } & 1 \text { or } 2 \notin \alpha
\end{array}\right.
$$

Proof.

1) From Binet-Cauchy, for $i=3,4, \ldots, n$, we have

$$
\operatorname{det} B[i \mid 1]=-d_{1} \operatorname{det} L_{B}[i \mid 1]=-d_{i} l_{i 1}<0,
$$

then, it follows that the entries in the first column of L are positive except for $l_{21}=0$.
2) Again, from Binet-Cauchy, for all $\alpha \in \mathcal{Q}_{k, n}, k=2,3, \ldots, n$, we have

$$
\begin{aligned}
& \operatorname{det} B[\alpha \mid 1,2, \ldots, k]=\left(-d_{1}\right)\left(-d_{2}\right) \prod_{i=3}^{k} d_{i} \operatorname{det} L_{B}[\alpha \mid 1,2, \ldots, k] \\
& \quad=\prod_{i=1}^{k} d_{i} \operatorname{det} L_{B}[\alpha \mid 1,2, \ldots, k]=\left\{\begin{array}{lll}
\geq 0 & \text { if } & \alpha_{1}=1, \alpha_{2}=2 \\
\leq 0 & \text { if } & 1 \text { or } 2 \notin \alpha
\end{array}\right.
\end{aligned}
$$

which implies that

$$
\operatorname{det} L_{B}[\alpha \mid 1,2, \ldots, k]=\left\{\begin{array}{lll}
\geq 0 & \text { if } & \alpha_{1}=1, \alpha_{2}=2 \\
\leq 0 & \text { if } & 1 \text { or } 2 \notin \alpha
\end{array}\right.
$$

¿From Proposition 3 the following properties of the matrix L_{B} can be deduced.

Lemma 1. The entries of the second column $l_{i 2}$, for $i=3,4, \ldots, n$, are nonpositive. Moreover, if $l_{32}=0$ then $l_{i 2}=0$ for $i=4,5, \ldots, n$, whereas if $l_{32}<0$ then $l_{i 2}<0$ for $i=4,5, \ldots, n$.

Proof. Since

$$
\operatorname{det} L_{B}[1, i \mid 1,2]=l_{i 2} \leq 0, \text { for } i=3,4, \ldots, n \text {, }
$$

the entries in the second column of L_{B} under the main diagonal are nonpositive. Moreover, since

$$
\operatorname{det} L_{B}[1,3, i \mid 1,2,3]=l_{32} l_{i 3}-l_{i 2} \leq 0, \quad i=4,5, \ldots, n,
$$

if $l_{32}=0$ then $l_{i 2}=0$ for $i=4,5, \ldots, n$. In addition, as

$$
\operatorname{det} L_{B}[3, i \mid 1,2]=l_{31} l_{i 2}-l_{i 1} l_{32} \leq 0 \quad i=4,5, \ldots, n
$$

we deduce that if $l_{32}<0$ then $l_{i 2}<0$ for $i=4,5, \ldots, n$.
Lemma 2. The submatrix $S=L_{B}[1,3,4, \ldots, n]$ is a TP matrix with all its entries under the main diagonal positive.

Proof. Since S is a unit lower triangular matrix to assure that it is t.n.p. we need to prove that

$$
\operatorname{det} S[\alpha \mid 1,2, \ldots, k] \geq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n-1}, \quad k=1,2, \ldots, n-1
$$

- For all $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\} \in \mathcal{Q}_{k, n-1}$, with $\alpha_{1}=1$, we have

$$
\begin{aligned}
& \operatorname{det} S\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\operatorname{det} L_{B}\left[1, \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,3, \ldots, k+1\right] \\
& \quad=\operatorname{det} L_{B}\left[1,2, \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,2,3, \ldots, k+1\right] \\
& \quad=\frac{1}{\prod_{i=1}^{k+1} d_{i}} \operatorname{det} B\left[1,2, \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,2,3, \ldots, k+1\right] \geq 0 .
\end{aligned}
$$

- For all $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\} \in \mathcal{Q}_{k, n-1}$, with $\alpha_{1}>1$, we have

$$
\begin{aligned}
& \operatorname{det} S\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\operatorname{det} L_{B}\left[\alpha_{1}+1, \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,3, \ldots, k+1\right] \\
& \quad=-\operatorname{det} L_{B}\left[2, \alpha_{1}+1 \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,2,3, \ldots, k+1\right] \\
& \quad=-\frac{1}{\prod_{i=1}^{k+1} d_{i}} \operatorname{det} B\left[2, \alpha_{1}+1 \alpha_{2}+1, \ldots, \alpha_{k}+1 \mid 1,2,3, \ldots, k+1\right] \geq 0
\end{aligned}
$$

Therefore S is a TP matrix. Moreover, since the entries of the first column of S are positive and $\operatorname{det} S[j, i \mid 1, j] \geq 0$, for $i>j, i, j=2,3, \ldots, n-1$, it follows that all its entries under the main diagonal are positive.

Taking into account that $A=P B=P L_{B} D_{B} U_{D}=\tilde{L} D U$ and the previous results, the following theorem gives the quasi- $L D U$ factorization of A.

Theorem 1. Let A be an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=0$. Then, A has a factorization $\tilde{L} D U$, where U is a unit upper triangular TP matrix with positive entries above the main diagonal, $D=\operatorname{diag}\left(-d_{1},-d_{2}, d_{3}, \ldots, d_{n}\right)$ with $d_{i}>0$, for $i=1,2, \ldots, n$, and \tilde{L} is the block lower triangular matrix

$$
\tilde{L}=\left[\begin{array}{cc}
\tilde{L}_{11} & O \\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right], \quad \text { with } \quad \tilde{L}_{11}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first column of \tilde{L}_{21} are positive, in the second one are nonpositive, \tilde{L}_{22} is unit lower triangular TP matrix with positive entries under the main diagonal, and such that

$$
\operatorname{det} \tilde{L}[\alpha \mid 1,2, \ldots, k] \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, \quad k=2,3, \ldots, n
$$

Example 1. The nonsingular t.n.p. matrix

$$
A=\left[\begin{array}{rrrr}
0 & -1 & -2 & -3 \\
-14 & -14 & -14 & -14 \\
-14 & -13 & -11 & -7 \\
-28 & -25 & -18 & 0
\end{array}\right]
$$

admits the following factorization,

$$
A=\tilde{L} D U=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 \\
2 & -3 & 4 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-14 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Remark 1. Other properties that verifies the matrix L_{B} are,

1. From Binet-Cauchy, it is easy to see that

- The $k \times k$ column initial minors of $L_{B}[3,4, \ldots, n \mid 1,2,3, \ldots, n-2]$ are nonpositive, for $k \geq 2$.
- The column initial minors of $L_{B}[3,4, \ldots, n \mid 2,3, \ldots, n-1]$ are nonpositive.

2. The matrix $L_{B}=P \tilde{L}$ admits the following decomposition,

$$
L_{B}=T Q=\left[\begin{array}{cc}
I_{2 \times 2} & O \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{cc}
I_{2 \times 2} & O \\
Q_{21} & Q_{22}
\end{array}\right]
$$

with

$$
\begin{aligned}
T & =\left[\begin{array}{cc|cccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\hline t_{31} & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
t_{n-1,1} & 0 & t_{n-1,3} & \cdots & 1 & 0 \\
t_{n, 1} & 0 & t_{n, 3} & \cdots & t_{n, n-1} & 1
\end{array}\right], \\
Q & =\left[\begin{array}{cc|cccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\hline 0 & -q_{32} & 1 & \cdots & 0 & 0 \\
0 & 0 & q_{43} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & q_{n-1,3} & \cdots & 1 & 0 \\
0 & 0 & q_{n, 3} & \cdots & q_{n, n-1} & 1
\end{array}\right],
\end{aligned}
$$

where $t_{i j}>0$, for $i=3,4, \ldots, n$, and $j=1,3, \ldots, i-1, q_{32} \geq 0, q_{i j}>0$ for $i=4,5, \ldots, n$, and $j=3,4, \ldots, i-1$, and the submatrices $T[1,3,4, \ldots, n]$ and $Q[3,4, \ldots, n]$ are TP.

Example 2. If $L_{B}=P \tilde{L}$, where \tilde{L} is given in the Example 1, then L_{B} admits the following factorization,

$$
\begin{aligned}
L_{B} & =P \tilde{L}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
2 & -3 & 4 & 1
\end{array}\right]=T Q \text { where } \\
T & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 3 & 1
\end{array}\right], \\
Q & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

The converse of Theorem 1 is not true in general, as the next example shows.

Example 3. The matrix

$$
\begin{aligned}
A=\tilde{L} D U & =\underbrace{\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 \\
2 & -3 & 4 & 1
\end{array}\right]}_{\tilde{L}} \underbrace{\left[\begin{array}{rrrr}
-15 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]}_{D} \\
& =\left[\begin{array}{rrrr}
0 & -2 & -4 & -6 \\
-15 & -15 & -15 & -15 \\
-15 & -13 & -10 & -5 \\
-30 & -24 & -14 & 6
\end{array}\right],
\end{aligned}
$$

is not t.n.p. although the matrices \tilde{L}, D and U satisfy the conditions of Theorem 1.

The following theorem gives a necessary condition for a product $\tilde{L} D U$ to be a t.n.p. matrix with the $(1,1)$ entry equal to zero.

Theorem 2. Let $A=\tilde{L} D U$ be an $n \times n$ matrix where $a_{n n} \leq 0, U$ is a unit upper triangular TP matrix with positive entries above the diagonal, $D=$ $\operatorname{diag}\left(-d_{1},-d_{2}, d_{3}, \ldots, d_{n}\right)$ with $d_{i}>0, \quad i=1,2, \ldots, n$, and \tilde{L} is the block lower triangular matrix

$$
\tilde{L}=\left[\begin{array}{cc}
\tilde{L}_{11} & O \\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right], \quad \text { with } \quad \tilde{L}_{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first column of \tilde{L}_{21} are positive, in the second one are nonpositive, \tilde{L}_{22} is unit lower triangular TP matrix with positive entries under the main diagonal, and such that

$$
\operatorname{det} \tilde{L}[\alpha \mid 1,2, \ldots, k] \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, \quad k=2,3, \ldots, n .
$$

Then, A is a nonsingular t.n.p. matrix.
Proof. From the structure of the matrices \tilde{L}, D and U, and the product $\tilde{L} D U$, we obtain easily that $a_{11}=0, a_{1 n}<0$ and $a_{n 1}<0$. Then, by [15, Theorem 5] we know that A is a nonsingular t.n.p. matrix if the following inequalities hold,

$$
\begin{aligned}
\operatorname{det} A[\alpha \mid 1,2, \ldots, k] & \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, \quad k=1,2, \ldots, n \\
\operatorname{det} A[1,2, \ldots, k \mid \beta] & \leq 0, \quad \forall \beta \in \mathcal{Q}_{k, n}, \quad k=1,2, \ldots, n \\
\operatorname{det} A[1,2, \ldots, k] & <0, \quad k=2,3, \ldots, n .
\end{aligned}
$$

In order to verify that A satisfies these inequalities we consider the matrix $B=P A$ and its factorization $B=L_{B} D_{B} U_{B}$, where $L_{B}=P \tilde{L}, D_{B}=D$ and $U_{B}=U$.
(a) The principal minors are negative for all $k=2,3, \ldots, n$, that is,

$$
\begin{aligned}
\operatorname{det} A[1,2, \ldots, k] & =-\operatorname{det} B[1,2, \ldots, k] \\
& =-\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}[1,2, \ldots, k \mid \gamma] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid 1,2, \ldots, k] \\
& =-\left(-d_{1}\right)\left(-d_{2}\right) d_{3} \ldots d_{k}<0
\end{aligned}
$$

(b) The row initial minors are nonpositive for all $\beta \in \mathcal{Q}_{k, n}, k=1,2, \ldots, n$.

$$
\begin{aligned}
\operatorname{det} A[1,2, \ldots, k \mid \beta] & =-\operatorname{det} B[1,2, \ldots, k \mid \beta] \\
& =-\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}[1,2, \ldots, k \mid \gamma] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid \beta] \\
& =-\left(-d_{1}\right)\left(-d_{2}\right) d_{3} \ldots d_{k} \operatorname{det} U_{B}[1,2, \ldots, k \mid \beta] \\
& =-\left(-d_{1}\right)\left(-d_{2}\right) d_{3} \ldots d_{k} \operatorname{det} U[1,2, \ldots, k \mid \beta] \leq 0 .
\end{aligned}
$$

(c) The column initial minors are nonpositive for all $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\} \in$ $\mathcal{Q}_{k, n}, k=1,2, \ldots, n$. We distinguish the following cases,
(c1) $\alpha_{1}=1, \alpha_{2}=2$ and $\alpha_{3} \geq 3$,

$$
\begin{aligned}
& \operatorname{det} A\left[1,2, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=-\operatorname{det} B\left[1,2, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=-\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}\left[1,2, \alpha_{3}, \ldots, \alpha_{k} \mid \gamma\right] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid 1,2, \ldots, k] \\
& \quad=-\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} L_{B}\left[\alpha_{3}, \ldots, \alpha_{k} \mid 3, \ldots, k\right] \\
& \quad=-\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[\alpha_{3}, \ldots, \alpha_{k} \mid 3, \ldots, k\right] \leq 0
\end{aligned}
$$

(c2) $\alpha_{1}=1, \alpha_{2} \geq 3$,

$$
\begin{aligned}
& \operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=\operatorname{det} B\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid \gamma\right] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid 1,2, \ldots, k] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} L_{B}\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[2, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \leq 0
\end{aligned}
$$

(c3) $\alpha_{1}=2$ and $\alpha_{2} \geq 3$,

$$
\begin{aligned}
& \operatorname{det} A\left[2, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=\operatorname{det} B\left[2, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}\left[2, \alpha_{2}, \ldots, \alpha_{k} \mid \gamma\right] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid 1,2, \ldots, k] \\
& \quad=\operatorname{det} L_{B}\left[2, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]\left(-d_{1}\right)\left(-d_{2}\right) d_{3} \ldots d_{k} \\
& =-\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} L_{B}\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,3, \ldots, k\right] \\
& =-\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,3, \ldots, k\right] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2,3, \ldots, k\right] \leq 0 .
\end{aligned}
$$

(c4) $\alpha_{1} \geq 3$,

$$
\begin{aligned}
& \operatorname{det} A\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=\operatorname{det} B\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\sum_{\gamma \in \mathcal{Q}_{k, n}} \operatorname{det} L_{B}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid \gamma\right] \operatorname{det}\left(D_{B} U_{B}\right)[\gamma \mid 1,2, \ldots, k] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} L_{B}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& =\left(\prod_{i=1}^{k} d_{i}\right) \operatorname{det} \tilde{L}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \leq 0
\end{aligned}
$$

which concludes the prove.
Combining Theorems 1 and 2 we obtain the following result.
Theorem 3. Let A be an $n \times n$ nonsingular matrix with $a_{11}=0, a_{n n} \leq 0$. Then, A is t.n.p. if and only if A has a factorization $\tilde{L} D U$, where U is a unit upper triangular TP matrix with positive entries above the main diagonal, $D=\operatorname{diag}\left(-d_{1},-d_{2}, d_{3}, \ldots, d_{n}\right)$ with $d_{i}>0$, for $i=1,2, \ldots, n$, and \tilde{L} is the block lower triangular matrix

$$
\tilde{L}=\left[\begin{array}{cc}
\tilde{L}_{11} & O \\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right], \quad \text { with } \quad \tilde{L}_{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first column of \tilde{L}_{21} are positive, in the second one are nonpositive, \tilde{L}_{22} is unit lower triangular TP matrix with positive entries under the main diagonal, and such that

$$
\operatorname{det} \tilde{L}[\alpha \mid 1,2, \ldots, k] \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, \quad k=2,3, \ldots, n .
$$

Remark 2. The quasi- $L D U$ factorization obtained in Theorem 3 provides a criteria to determine if a matrix with a zero $(1,1)$ entry is t.n.p. The number of minors to be computed to decide the total nonpositivity is equal to the ones to be checked in [15] but their computation is easier because the matrices are triangular, block triangular and diagonal.

Otherwise, this factorization allows us to directly obtain nonsingular t.n.p. matrices of any size.

Remark 3. (1) Let C be an $n \times n$ matrix with $c_{n n} \neq 0$ and let A be the matrix

$$
A=C-c_{n n} E_{n n} \longrightarrow C=A+c_{n n} E_{n n}
$$

where $E_{n n}$ is the $n \times n$ matrix whose only nonzero element is 1 in position (n, n). We know that

$$
\begin{aligned}
\operatorname{det} C[\alpha \mid \beta] & =\operatorname{det} A[\alpha \mid \beta], \forall \alpha, \beta \in \mathcal{Q}_{k, n}, k=1, \ldots, n, \quad n \notin \alpha \cap \beta \\
\operatorname{det} C[\alpha, n \mid \beta, n] & =\operatorname{det} A[\alpha, n \mid \beta, n]+c_{n n} \operatorname{det} C[\alpha \mid \beta] .
\end{aligned}
$$

If C is a nonsingular t.n.p. matrix, then the nonsingular matrix A with $a_{n n}=0$ is t.n.p. Moreover, if $C=\tilde{L} D U$, where $D=\operatorname{diag}\left(-d_{1},-d_{2}, d_{3}, \ldots\right.$, $\left.d_{n}\right)$ with $d_{i}>0$, for $i=1,2, \ldots, n$, then $A=\tilde{L} \bar{D} U$, where $\bar{D}=\operatorname{diag}\left(-d_{1}\right.$, $\left.-d_{2}, d_{3}, \ldots, d_{n}-c_{n n}\right)$ with $d_{i}>0$, for $i=1,2, \ldots, n-1$, and $d_{n}-c_{n n}>0$.
(2) Let A be an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=a_{n n}=0$. Then, there exists an $x>0$ such that the matrix $A_{x}=A-x E_{n n}$ is also a nonsingular t.n.p. matrix.
¿From matrix $B=P A$ we construct for all $x>0$ the matrix

$$
B_{x}=B-x E_{n n} .
$$

Using the factorization $B=L_{B} D_{B} U_{B}$ we have

$$
\begin{aligned}
B_{x} & =B-x E_{n n}=L_{B} D_{B} U_{B}-x E_{n n} \\
& =\left[\begin{array}{cc}
L_{1} & 0 \\
l_{1} & 1
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & d_{n}
\end{array}\right]\left[\begin{array}{cc}
U_{1} & u_{1} \\
0 & 1
\end{array}\right]-x\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
L_{1} & 0 \\
l_{1} & 1
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & d_{n}-x
\end{array}\right]\left[\begin{array}{cc}
U_{1} & u_{1} \\
0 & 1
\end{array}\right] \\
& =L_{B} D_{B}^{\prime} U_{B}=L_{B_{x}} D_{B_{x}} U_{B_{x}} .
\end{aligned}
$$

It is not difficult to prove that $b_{x_{n n}}=b_{n n}-x$, so if $b_{n n}=0, B_{x}$ has negative (n, n) entry. Since $L_{B_{x}}=L_{B}$ and $U_{B_{x}}=U_{B}$, if we take $0<x<d_{n}, D_{B_{x}}$ is a positive diagonal matrix except for the two first negative entries. Therefore, by Theorem 2 the matrix $A_{x}=P B_{x}$ is a nonsingular t.n.p. matrix with the $(1,1)$ entry equal to zero and the remainder negative.

3. Some properties of nonsingular t.n.p. matrices

All nonsingular t.n.p. matrices verify the following two properties.
Proposition 4. Let A be an $n \times n$ nonsingular t.n.p. matrix. Then, for $k=$ $2,3, \ldots, n$, one of the following conditions holds,
(i) $\operatorname{det} A\left[1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]<0$,
(ii) If $\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=0$ then $\operatorname{det} A\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]=$ 0.

Proof. If $\operatorname{det} A\left[1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]<0$ the result holds. Now, suppose that $\operatorname{det} A\left[1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=0$ and $\operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]<0$. Since A is nonsingular there exists $t, k<t \leq n$, such that

$$
\operatorname{det} A\left[1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2, \ldots, k, t\right]<0 .
$$

Since

$$
\begin{aligned}
& \operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k, t\right] \\
& =\operatorname{det}\left[\begin{array}{ccccc}
a_{12} & a_{13} & \cdots & a_{1 k} & a_{1 t} \\
a_{\alpha_{2} 2} & a_{\alpha_{2} 3} & \cdots & a_{\alpha_{2} k} & a_{\alpha_{2} t} \\
a_{\alpha_{3} 2} & a_{\alpha_{3} 3} & \cdots & a_{\alpha_{3} k} & a_{\alpha_{3} t} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{\alpha_{k} 2} & a_{\alpha_{k} 3} & \cdots & a_{\alpha_{k} k} & a_{\alpha_{k} t}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & \tilde{a}_{1 t} \\
a_{\alpha_{2} 2} & a_{\alpha_{2} 3} & \cdots & a_{\alpha_{2} k} & a_{\alpha_{2} t} \\
a_{\alpha_{3} 2} & a_{\alpha_{3} 3} & \cdots & a_{\alpha_{3} k} & a_{\alpha_{3} t} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{\alpha_{k} 2} & a_{\alpha_{k} 3} & \cdots & a_{\alpha_{k} k} & a_{\alpha_{k} t}
\end{array}\right] \\
& =(-1)^{1+k}\left(\tilde{a}_{1 t}\right) \operatorname{det} A\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2,3, \ldots, k\right]<0,
\end{aligned}
$$

we obtain that $(-1)^{1+k}\left(\tilde{a}_{1 t}\right)>0$.
Again, since A is nonsingular there exists l, such that $\alpha_{i}<l<\alpha_{i+1}, \quad i=1$, $2, \ldots, k$, with $\alpha_{1}=1, \alpha_{k+1}=n$, so that

$$
\operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{i}, l, \alpha_{i+1}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]<0
$$

From

$$
\begin{aligned}
& \operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{i}, l, \alpha_{i+1}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=\left[\begin{array}{ccccc}
a_{\alpha_{2} 1} & a_{\alpha_{2} 2} & \cdots & a_{\alpha_{2} k-1} & a_{\alpha_{2} k} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{\alpha_{i} 1} & a_{\alpha_{i} 2} & \cdots & a_{\alpha_{i} k-1} & a_{\alpha_{i} k} \\
a_{l 1} & a_{l 2} & \cdots & a_{l k-1} & a_{l t} \\
a_{\alpha_{i+1} 1} & a_{\alpha_{i+1} 2} & \cdots & a_{\alpha_{i+1} k-1} & a_{\alpha_{i+1} k} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{\alpha_{k} 1} & a_{\alpha_{k} 2} & \cdots & a_{\alpha_{k} k-1} & a_{\alpha_{k} t}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
0 & a_{\alpha_{2} 2} & \cdots & a_{\alpha_{2} k-1} & a_{\alpha_{2} k} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & a_{\alpha_{i} 2} & \cdots & a_{\alpha_{i} k-1} & a_{\alpha_{i} k} \\
\tilde{a}_{l 1} & a_{l 2} & \cdots & a_{l k-1} & a_{l t} \\
0 & a_{\alpha_{i+1} 2} & \cdots & a_{\alpha_{i+1} k-1} & a_{\alpha_{i+1} k} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & a_{\alpha_{k} 2} & \cdots & a_{\alpha_{k} k-1} & a_{\alpha_{k} t}
\end{array}\right] \\
& =(-1)^{i+1}\left(\tilde{a}_{l 1}\right) \operatorname{det} A\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2,3, \ldots, k\right]<0
\end{aligned}
$$

we have that $(-1)^{i+1}\left(\tilde{a}_{l 1}\right)>0$. Therefore

$$
\begin{aligned}
\operatorname{det} & A\left[1, \alpha_{2}, \ldots, \alpha_{i}, l, \alpha_{i+1}, \ldots, \alpha_{k} \mid 1,2, \ldots, k, t\right] \\
= & (-1)^{1+k+1}\left(\tilde{a}_{1 t}\right) \operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{i}, l, \alpha_{i+1}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
= & (-1)^{1+k+1}\left(\tilde{a}_{1 t}\right)(-1)^{i+1}\left(\tilde{a}_{l 1}\right) \operatorname{det} A\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2, \ldots, k\right] \\
= & -\{\underbrace{(-1)^{1+k}\left(\tilde{a}_{1 t}\right)}_{>0} \underbrace{(-1)^{i+1}\left(\tilde{a}_{l 1}\right)}_{>0} \underbrace{\operatorname{det} A\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]}_{<0}\}>0,
\end{aligned}
$$

which is absurdum because A is t.n.p.
Proposition 5. Let A be an $n \times n$ nonsingular t.n.p. matrix. Then, for $k=$ $2,3, \ldots, n$, one of the following conditions holds,
(i) $\operatorname{det} A\left[1,2, \ldots, k \mid 1, \beta_{2}, \beta_{3}, \ldots, \beta_{k}\right]<0$,
(ii) If $\operatorname{det} A\left[1,2, \ldots, k \mid 1, \beta_{2}, \beta_{3}, \ldots, \beta_{k}\right]=0$ then $A\left[2, \ldots, k \mid \beta_{2}, \beta_{3}, \ldots, \beta_{k}\right]=0$.

Proof. The proof is similar to that of Proposition 4.
From Propositions 4 and 5 we obtain the relationship between the nonsingular t.n.p. matrices with the $(1,1)$ entry equal to zero and the nonsingular t.n.p. matrices with negative $(1,1)$ entry.

Proposition 6. Let A be an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=0$. Then, there exists $\epsilon_{0}>0$ such that $\forall \epsilon<\epsilon_{0}$ the matrix $A_{\epsilon}=-\epsilon E_{11}+A$, where E_{11} is the $n \times n$ matrix whose only nonzero entry is 1 in position (1,1), is a nonsingular t.n.p. matrix.

Proof. The matrix A_{ϵ} verifies

$$
\operatorname{det} A_{\epsilon}[\alpha \mid \beta]=\operatorname{det} A[\alpha \mid \beta] \leq 0, \quad \text { if } \quad 1 \notin \alpha \cap \beta
$$

therefore for all $\alpha \in \mathcal{Q}_{k, n}$, with $\alpha_{1} \geq 2$, and for all $\beta \in \mathcal{Q}_{k, n}$, with $\beta_{1} \geq 2$, we have

$$
\begin{aligned}
\operatorname{det} A_{\epsilon}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] & =\operatorname{det} A\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \leq 0 \\
\operatorname{det} A_{\epsilon}\left[1,2, \ldots, k \mid \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right] & =\operatorname{det} A\left[1,2, \ldots, k \mid \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right] \leq 0
\end{aligned}
$$

If $1 \in \alpha \cap \beta$, for $k=2,3, \ldots, n$, we have

$$
\begin{aligned}
\operatorname{det} A_{\epsilon}[1,2, \ldots, k] & =-\epsilon \operatorname{det} A_{\epsilon}[2, \ldots, k]+\operatorname{det} A[1,2, \ldots, k] \\
& =-\epsilon \operatorname{det} A[2, \ldots, k]+\operatorname{det} A[1,2, \ldots, k]
\end{aligned}
$$

since $\operatorname{det} A[1,2, \ldots, k]<0$ and $\operatorname{det} A[2, \ldots, k]<0$, if $\epsilon_{k}=\frac{\operatorname{det} A[1,2, \ldots, k]}{\operatorname{det} A[2, \ldots, k]}$, for all positive $\epsilon<\min \left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right\}$ we have that $\operatorname{det} A_{\epsilon}[1,2, \ldots, k]<0$.

Moreover

$$
\begin{aligned}
& \operatorname{det} A_{\epsilon}\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& \quad=-\epsilon \operatorname{det} A_{\epsilon}\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]+\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \\
& =-\epsilon \operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]+\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] .
\end{aligned}
$$

If $\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=0$, then $\operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]=0$ applying Proposition 4. Then, $\operatorname{det} A_{\epsilon}\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]=0$ for all $\epsilon>0$.

If $\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]<0$ and $\operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]<0$, provided that

$$
\epsilon<\epsilon_{\alpha, k}=\frac{\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]}{\operatorname{det} A\left[\alpha_{2}, \ldots, \alpha_{k} \mid 2, \ldots, k\right]}
$$

we have $\operatorname{det} A_{\epsilon}\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right]<0$.
Therefore, for all $\epsilon<\min \left\{\epsilon_{\alpha, k}, \alpha \subset\{2,3, \ldots, n\}, k=2,3, \ldots, n\right\}$ it is satisfied that

$$
\operatorname{det} A_{\epsilon}\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1,2, \ldots, k\right] \leq 0
$$

Similarly, we have for all $\epsilon<\min \left\{\epsilon_{\beta, k}, \beta \subset\{2,3, \ldots, n\}, k=2,3, \ldots, n\right\}$

$$
\operatorname{det} A_{\epsilon}\left[1,2, \ldots, k \mid 1, \beta_{2}, \ldots, \beta_{k}\right] \leq 0
$$

If $\epsilon_{0}<\min \left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}, \epsilon_{\alpha, k}, \epsilon_{\beta, k}, \alpha \subset\{2,3, \ldots, n\}, \beta \subset\{2,3, \ldots, n\}, k=\right.$ $2,3, \ldots, n\}$ we have for all $\epsilon \leq \epsilon_{0}$ that A_{ϵ} is a nonsingular t.n.p. matrix.

Proposition 7. Let C be an $n \times n$ nonsingular t.n.p. matrix with $c_{11}<0$. Then, $A=C-c_{11} E_{11}$, is a nonsingular t.n.p. matrix with the $(1,1)$ entry equal to zero.

Proof. Since C is a nonsingular t.n.p. matrix, for $k=1,2, \ldots, n$, the following inequalities hold

$$
\begin{aligned}
\operatorname{det} C[\alpha \mid 1,2, \ldots, k] \leq 0, & \forall \alpha \in \mathcal{Q}_{k, n} \\
\operatorname{det} C[1,2, \ldots, k \mid \beta] \leq 0, & \forall \beta \in \mathcal{Q}_{k, n} \\
\operatorname{det} C[1,2, \ldots, k]<0 . &
\end{aligned}
$$

Matrix A is also a nonsingular t.n.p. matrix because it verifies,

- $\operatorname{det} A=\underbrace{\operatorname{det} C}_{<0}-\underbrace{c_{11} \operatorname{det} C[2,3, \ldots, n]}_{<0}<0 \quad \Longrightarrow \quad \operatorname{det} A<0$,
- if $1 \notin \alpha \cap \beta$ we have that $\operatorname{det} A[\alpha \mid \beta]=\operatorname{det} C[\alpha \mid \beta] \leq 0$,
- if $1 \in \alpha \cap \beta$, $\operatorname{det} A\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1, \beta_{2}, \ldots, \beta_{k}\right]=$ $\operatorname{det} C\left[1, \alpha_{2}, \ldots, \alpha_{k} \mid 1, \beta_{2}, \ldots, \beta_{k}\right]-c_{11} \operatorname{det} C\left[\alpha_{2}, \ldots, \alpha_{k} \mid \beta_{2}, \ldots, \beta_{k}\right] \leq 0$.

As a consequence of Propositions 6 and 7 we deduced the following results. The analogous ones for nonsingular t.n.p. matrices with $a_{11}<0$ can be found in [3].
Proposition 8. If A is an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=0$, then $\operatorname{det} A[1, \alpha]<0$ for all $\alpha \subset\{2,3, \ldots, n\}$.
Proposition 9. Let A be an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=0$. Then, $\operatorname{det} A[\alpha]<0$, for all $\alpha \in \mathcal{Q}_{k, n}, k=1,2, \ldots, n$, except for $k=1$ and $\alpha=1$ or $\alpha=n$.

4. Another quasi-LDU factorization of nonsingular t.n.p. matrices with the $(1,1)$ entry equal to zero using the transpose

In Section 2, given the nonsingular t.n.p. matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ with $a_{11}=0$, from the factorization $L_{B} D_{B} U_{B}$ of $B=P A$, where P is the permutation matrix $P=[2,1,3, \ldots, n]$, we have obtained the factorization $A=\tilde{L} D U$, where U is a unit upper triangular TP matrix with positive entries above the main diagonal, $D=\operatorname{diag}\left(-d_{1},-d_{2}, d_{3}, \ldots, d_{n}\right)$ with $d_{i}>0$, for $i=1,2, \ldots, n$, and \tilde{L} is the block lower triangular matrix

$$
\tilde{L}=\left[\begin{array}{cc}
\tilde{L}_{11} & O \\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right], \quad \text { with } \quad \tilde{L}_{11}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first column of \tilde{L}_{21} are positive, in the second one are nonpositive, \tilde{L}_{22} is unit lower triangular TP matrix with positive entries under the main diagonal, and such that

$$
\operatorname{det} \tilde{L}[\alpha \mid 1,2, \ldots, k] \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, \quad k=2,3, \ldots, n
$$

Now, consider the matrix $C=P A^{T}$. Since A^{T} is nonsingular t.n.p. matrix with $A^{T}(1,1)=0$, by applying Theorem 1 to A^{T} we obtain a factorization $A^{T}=$ $\tilde{L}_{A^{T}} D_{A^{T}} U_{A^{T}}$, where $U_{A^{T}}$ is a unit upper triangular TP matrix with positive entries above the main diagonal, $D_{A^{T}}=\operatorname{diag}\left(-d_{A_{1}^{T}},-d_{A_{2}^{T}}, d_{A_{3}^{T}}, \ldots, d_{A_{n}^{T}}\right)$ with $d_{A_{i}^{T}}>0$, for $i=1,2, \ldots, n$, and $\tilde{L}_{A^{T}}$ is the block lower triangular matrix

$$
\tilde{L}_{A^{T}}=\left[\begin{array}{cc}
\tilde{L}_{A_{11}^{T}} & O \\
\tilde{L}_{A_{21}^{T}} & \tilde{L}_{A_{22}^{T}}
\end{array}\right], \quad \text { with } \quad \tilde{L}_{A_{11}^{T}}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first column of $\tilde{L}_{A_{21}^{T}}$ are positive, in the second one are nonpositive, $\tilde{L}_{A_{22}^{T}}$ is unit lower triangular TP matrix with positive entries under the main diagonal, and such that

$$
\operatorname{det} \tilde{L}_{A^{T}}[\alpha \mid 1,2, \ldots, k] \leq 0, \quad \forall \alpha \in \mathcal{Q}_{k, n}, k=2,3, \ldots, n
$$

From this factorization we obtain that

$$
A=\left(\tilde{L}_{A^{T}} D_{A^{T}} U_{A^{T}}\right)^{T}=U_{A^{T}}^{T} D_{A^{T}}^{T} \tilde{L}_{A^{T}}^{T}=L \bar{D} \tilde{U}
$$

where $L=U_{A^{T}}^{T}, \tilde{U}=\tilde{L}_{A^{T}}^{T}$ and $\bar{D}=D_{A^{T}}^{T}$ (note that $\left.\bar{D}=P D P\right)$. Then, we can give the following result.

Theorem 4. Let A be an $n \times n$ nonsingular t.n.p. matrix with $a_{11}=0, a_{n n} \leq 0$. Then, A is t.n.p. if and only if A has a factorization $L \bar{D} \tilde{U}$, where L is a unit lower triangular TP matrix with positive entries under the main diagonal, $\bar{D}=\operatorname{diag}\left(-\bar{d}_{1},-\bar{d}_{2}, \bar{d}_{3}, \ldots, \bar{d}_{n}\right)$ with $\bar{d}_{i}>0$, for $i=1,2, \ldots, n$, and \tilde{U} is the block upper triangular matrix

$$
\tilde{U}=\left[\begin{array}{cc}
\tilde{U}_{11} & \tilde{U}_{12} \\
O & \tilde{U}_{22}
\end{array}\right], \quad \text { with } \quad \tilde{U}_{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where the entries in the first row of \tilde{U}_{12} are positive, in the second one are nonpositive, \tilde{U}_{22} is unit upper triangular TP matrix with positive entries above the main diagonal, and such that

$$
\operatorname{det} \tilde{U}[1,2, \ldots, k \mid \beta] \leq 0, \quad \forall \beta \in \mathcal{Q}_{k, n}, \quad k=2,3, \ldots, n .
$$

Example 4. The nonsingular t.n.p. matrix

$$
A=\left[\begin{array}{cccc}
0 & -1 & -2 & -3 \\
-15 & -15 & -15 & -15 \\
-15 & -14 & -12 & -8 \\
-30 & -27 & -20 & -3
\end{array}\right]
$$

admits the following factorizations.

$$
\begin{aligned}
& A=\tilde{L} D U=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 \\
2 & -3 & 4 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-15 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& A=L \bar{D} \tilde{U}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
15 & 1 & 0 & 0 \\
14 & 1 & 1 & 0 \\
27 & 2 & 4 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -15 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{rrrr}
0 & 1 & 2 & 3 \\
1 & 0 & -1 & -2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

5. Conclusions

Nonsingular t.n.p. matrices with a negative $(1,1)$ entry have been characterized in terms of the factors of their $L D U$ factorization. This factorization provides a criteria to determine if a matrix is t.n.p. and moreover, it is a useful
tool to easily obtain nonsingular t.n.p. matrices of any size. Nevertheless, when the $(1,1)$ entry is equal to zero the $L D U$ factorization resulting from Gauss or Neville elimination with no pivoting does not exist. In this case, we have obtained a quasi- $L D U$ factorization which allows us to determine if a given matrix with the $(1,1)$ entry equal to zero is t.n.p. and to construct this kind of matrices of any size.

Consequently, with this factorization we have completely characterized the nonsingular t.n.p. matrices.

6. Acknowledgments

The authors are very grateful to the referees for their helpful suggestions. This research was supported by the Spanish DGI grant MTM2010-18228 and the Programa de Apoyo a la Investigación y Desarrollo (PAID-06-10) of the Universitat Politècnica de València.
[1] T. Ando. Totally positive matrices. Linear Algebra and its Applications, 90:165-219, 1987.
[2] R. B. Bapat and T. E. S. Raghavan. Nonnegative matrices and applications. Cambridge University Press, New York, 1997.
[3] R. Cantó, P. Koev, B. Ricarte and A. M. Urbano. LDU-factorization of Nonsingular Totally Nonpositive Matrices. SIAM J. Matrix Anal. Appl., 30(2):777-782, 2008.
[4] R. Cantó, B. Ricarte and A. M. Urbano. Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra and its Applications, 431:2213-2227, 2009.
[5] R. Cantó, B. Ricarte and A. M. Urbano. Characterizations of rectangular totally and strictly totally positive matrices. Linear Algebra and its Applications, 432:2623-2633, 2010.
[6] V. Cortés and J. M. Peña. Factorizations of totally negative matrices. Operators Theory: Advances and Applications, 199:221-227, 2010.
[7] C. W. Cryer. The LU-factorization of Totally Positive Matrices. Linear Algebra and its Applications, 7:83-92, 1973.
[8] S. M. Fallat, A. Herman, M.I. Gekhtman and C.R. Johnson. Comprension of totally positive matrices. SIAM J. Matrix Anal. Appl., 28:68-80, 2006
[9] S. M. Fallat and P. Van Den Driessche. On matrices with all minors negative. Electronic Journal of Linear Algebra, 7:92-99, 2000.
[10] M. Gasca and C.A. Micchelli. Total Positivity and Applications. Math. Appl. vol. 359, Kluwer Academic Publishers., Dordrecht, The Netherlands, 1996.
[11] M. Gasca and J. M. Peña. Total positivity, QR factorization and Neville elimination. SIAM J. Matrix Anal. Appl., 4:1132-1140, 1993.
[12] M. Gasca and J. M. Peña. A test for strict sign-regularity. Linear Algebra and its Applications, 197/198:133-142, 1994.
[13] M. Gasca and J. M. Peña. On factorization of totally positive matrices. Math. Appl. vol. 359, Kluwer Academic Publishers., Dordrecht, The Netherlands, pp. 109-130, 1996.
[14] M. Gassó and J.R. Torregrosa. A totally positive factorization of rectangular matrices by the Neville elimination. SIAM J. Matrix Anal. Appl., 25:986-994, 2004.
[15] R. Huang and D. Chu. Total nonpositivity of nonsingular matrices. Linear Algebra and its Applications, 432:2931-2941, 2010.
[16] S. Karlin. Total nonpositivity. Vol. I, Stanford University Press, Stanford, CA,1968.
[17] T. Parthasarathy and G. Ravindran. N-matrices. Linear Algebra and its Applications, 139:89-102, 1990.
[18] J. M. Peña. On nonsingular sign regular matrices. Linear Algebra and its Applications, 359:91-100, 2003.
[19] R. Saigal. On the class of complementary cones and Lemke's algorithm. SIAM J. Appl. Math., 23:46-60, 1972.

[^0]: e-mail: \{rcanto,bearibe,amurbano\}@mat.upv.es
 *Corresponding author

