
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.laa.2010.12.015

http://hdl.handle.net/10251/49137

Elsevier

Defez Candel, E.; Tung, MM.; Sastre, J. (2011). Improvement on the bound of Hermite
matrix polynomials. Linear algebra and its applications. 434(8):1910-1919.
doi:10.1016/j.laa.2010.12.015.



Improvement on the Bound of Hermite Matrix
Polynomials✩

Emilio Defeza, Michael M. Tunga,�, Jorge Sastreb
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Abstract

In this paper, we introduce an improved bound on the2-norm of Hermite matrix
polynomials. As a consequence, this estimate enables us to present and prove a
matrix version of the Riemann-Lebesgue lemma for Fourier transforms. Finally,
our theoretical results are used to develop a novel procedure for the computation of
matrix exponentials witha priori bounds. A numerical example for a test matrix
is provided.
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1. Introduction

Orthogonal matrix polynomials emerge in various important areas of applied
mathematics. In previous work, an extension of the classical family of Hermite
polynomials to the matrix framework has been proposed [8]. Later on some es-
sential properties of series expansions of Hermite matrix polynomials and their
bounds were shown [2, 3]. Only very recently, new extensions of Hermite matrix
polynomials have been given in the literature, seee.g.[1, 14].
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The principal aim of this paper is to provide some answers to problems aris-
ing in the study of the expansions of matrix functions in terms of Hermite ma-
trix polynomialsHn.x; A/. In particular, a new bound on their Euclidean norm
kHn.x; A/k2 is derived. This new bound not only improves considerably upon
previously established estimates of Ref. [2], but also permits to prove that the
Fourier coefficients corresponding to the Hermite matrix polynomialsHn.x; A/

vanish whenn!1, which previously was not possible.
Subsequently a matrix analogue of the Riemann-Lebesgue lemma for a se-

quence of Hermite matrix polynomials is proven. Then, this new bound is used to
compute matrix exponential approximations with a predetermined accuracy.

The organization of the paper is as follows: In Section 2, the matrix functional
associated to Hermite matrix polynomials is defined in an appropriate Banach
space, whose norm is related to the matrix functional. Unlike the scalar case, the
norm in the Banach space of matrix functions does not require a Hilbert structure.
Section 3 contains the explicit derivation of the new bound onkHn.x; A/k2 and
demonstrates how this bound is used to obtain a matrix version of the Riemann-
Lebesgue lemma. Finally, a numerical example follows to illustrate a new method
to compute the matrix exponential, which is based on this lemma.

Throughout this paper, a matrix polynomial of degreen in Cr�r is denoted by
P.x/ D Anx

n C An�1xn�1 C : : : C A1x C A0, wherex 2 R, andAj 2 Cr�r
represents a complex square matrix for0 � j � n. Also, the set of all matrix
polynomials inCr�r , for all n � 0, will be given byPŒx�. Further, letf .z/ and
g.z/ be holomorphic functions of the complex variablez, which are defined in an
open set� of the complex plane. IfC is a matrix inCr�r so that the set of all
its eigenvalues,�.C /, lies in�, then, from the properties of the matrix functional
calculus [5, p. 558], it follows that

f .C /g.C / D g.C /f .C /: (1)

As usual, the2-norm of a matrixC 2 Cr�r is defined by (see [7, p. 56]):

kCk2 D sup
x¤0

kCxk2
kxk2

;

where for a vectory in Cr , kyk2 denotes the ordinary Euclidean norm. Using the
matrix componentsC D .cij /1�i;j�r , by [7, p. 57] one obtains

max
1�i;j�r

jcij j � kCk2 � r max
1�i;j�r

jcij j: (2)
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For an estimation on the bound of the exponential matrix, we introduce the
real valueˇ.A/ D minfRe.z/I z 2 �.A/g. Then, by [6, p. 336, 556] it follows
that e�A t2


2
� e�ˇ.A/t

2

MA
r�1.t

2/; with t � 0; (3)

whereMA
r�1.t

2/ is defined by the following expansion

MA
r�1.t

2/ D
r�1X

kD0

�kAk2
p
rt2
�k

kŠ
:

If D0 is the complex plane cut along the negative real axis, and Log.z/ denotes
the principal logarithm ofz, [11, p. 72], thenz

1
2 represents exp

�
1
2

Log.z/
�
.

If B is a matrix with�.B/ � D0, thenB
1
2 D pB denotes the image ofz

1
2

of the matrix functional calculus acting on the matrixB. We say that matrixA
in Cr�r is a positive stable matrix if Re.z/ > 0 for all z 2 �.A/. For a positive
stable matrixA in Cr�r , then-th Hermite matrix polynomial is defined by [8]

Hn.x; A/ D nŠ
bn2cX

kD0

.�1/k
�p

2A
�n�2k

kŠ.n � 2k/Š xn�2k; (4)

wherebxc is the standard floor function which maps a real numberx to its next
smallest integer. Furthermore, we will also use the analogous ceiling function
dxe, producing the next largest integer tox 2 R.

Note also that ifA.k; n/ is a matrix inCr�r for n � 0; k � 0, one may use the
following identity [3]:

X

n�0

X

k�0
A.k; n/ D

X

n�0

bn2cX

kD0
A.k; n � 2k/: (5)

In what follows,integrablewill always imply integrable in the Lebesgue sense.

2. Some preliminaries on Hermite matrix polynomials and Hermite matrix
functionals

Let A be a positive stable matrix inCr�r . Then,L2A .R;Cr�r/ is the vector
space for allCr�r valued functionsf W R! Cr�r such that

Z C1
�1
kf .x/k22 e�

ˇ.A/x2

2 dx <1;
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and is endowed with the norm

kf k D
�Z C1
�1
kf .x/k22 e�

ˇ.A/x2

2 dx

� 1
2

: (6)

Notice that the scalar functionsh.x/, having an appropriately normed space, may
be defined to possess the following Banach structure

L2A .R;C/ D
�
h W R! CI

Z C1
�1
jh.x/j2 e�ˇ.A/x

2

2 dx <1
�
;

with the norm [6]

khk2 D
�Z C1
�1
jh.x/j2 e�ˇ.A/x

2

2 dx <1
� 1
2

:

Taking also into account the limits given in Eq. (2), it is straightforward to see
that the spaceL2A .R;Cr�r/ is likewise a Banach space. The Banach structure of
scalar functions essentially induces the Banach structure of the matrix case with
the2-norm of Eq. (6).

We are now in the position to introduce the Hermite matrix functionalL W
L2A .R;Cr�r/ � L2A .R;Cr�r/! Cr�r defined by

L.f; g/ D
Z C1
�1

f .x/ e�
Ax2

2 g.x/ dx: (7)

Thus, the following properties ofL are obvious:

(i) L.Pf; g/ D PL.f; g/; L.f; gP / D L.f; g/P; for P 2 Cr�r I
(ii) L.f C g; h/ D L.f; h/C L.g; h/; L.f; g C h/ D L.f; g/C L.f; h/;

for f; g; h 2 L2A .R;Cr�r/ :
By applying the commutation property Eq. (1) to the Hermite matrix polyno-

mials sequencefHn.�; A/gn�0, one readily obtains

L .Hn.�; A/;Hm.�; A// D L .Hm.�; A/;Hn.�; A// ;
and by Ref. [8, Eqs. (4.4) and (4.9)], it follows that

L .Hn.�; A/;Hm.�; A// D 0; for n ¤ m;
and also

L .Hn.�; A/;Hn.�; A// D 2nnŠ
�
2�A�1

� 1
2 ; for n � 0:

Therefore, the sequencefHn.�; A/gn�0 specifies a sequence of orthogonal matrix
polynomials inL2A .R;Cr�r/ with respect toL [4].
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3. A new bound for Hermite matrix polynomials

The primary purpose of this paper is to develop an upper bound onkHn.x; A/k2.
The bound will be given in Theorem 1. As an immediate application, we can de-
duce a matrix version of the Riemann-Lebesgue lemma, which would be impos-
sible to prove with previously published bounds, ase.g. Ref. [2]. Another direct
application is the design of a novel algorithm for computingeA, whereA is any
r � r matrix. This computational scheme, in fact, has the advantage of complying
with an arbitrary approximation error condition which may be prescribeda priori.

Theorem 1. If A 2 Cr�r is a positive stable matrix, then

kHn.x; A/k2 � nŠ e.jxjk
p
2Ak

2
C1/;8x 2 R; n � 0: (8)

PROOF. Taking the norm of Eq. (4), one finds

kHn.x; A/k2 � nŠ
bn
2
cX

kD0

�
jxj

p
2A

2

�n�2k

kŠ.n � 2k/Š : (9)

On the other hand, applying the summation rule (5), it follows that

ejxjk
p
2Ak

2
C1 D

X

n�0

�
jxj

p
2A

2

�n

nŠ

X

k�0

1

kŠ
D
X

n�0

X

k�0

�
jxj

p
2A

2

�n

kŠnŠ

D
X

n�0

bn
2
cX

kD0

�
jxj

p
2A

2

�n�2k

kŠ.n � 2k/Š : (10)

And consequently it is

bn
2
cX

kD0

�
jxj

p
2A

2

�n�2k

kŠ.n � 2k/Š � ejxjk
p
2Ak

2
C1; (11)

which by Eqs. (9)–(11) proves Eq. (8).

It is noteworthy to mention that our matrix bound Eq. (8) forr D 1 andA D 2
reduces to the following expression

jHn.x/j � nŠ e2jxjC1;8x 2 R; n � 0;
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because in this case the Hermite matrix polynomials Eq. (4) coincide with the
standard Hermite polynomials. This formula is similar to the scalar expression
derived by Cramer who found the bound:

jHn.x/j � k
p
nŠ 2n=2ex

2=2;8x 2 R; n � 0;

with constantk D 1:086435, see [12, p. 324].

3.1. A theoretical application: Proof of a Riemann-Lebesgue matrix lemma

Following the procedure presented in Ref. [13], thek-th left matrix Fourier
coefficient off 2 L2A .R;Cr�r/ with respect tofHn.�; A/gn�0 is introduced by

Ck.f / D
1p

2�2kkŠ
L.f;Hk.�; A//A 1

2

D 1p
2�2kkŠ

�Z C1
�1

f .t/ e�
At2

2 Hk.t; A/ dt

�
A
1
2 ; (12)

and the corresponding left Fourier series off 2 L2A .R;Cr�r/ with respect to
fHn.�; A/gn�0 is then defined by

S.f /.x/ D
X

n�0
Cn.f /Hn.x; A/:

Our aim is to show that lim
n!1

Cn.f / D 0. First, we can observe that by using

Eq. (12), it follows that

kCn.f /k2 �

A 1
2


2p

2�2nnŠ

Z C1
�1
kf .t/k2

e�A2 t2

2
kHn.t; A/k2 dt: (13)

Taking into account the estimate Eq. (3) and substituting Eq. (8) into Eq. (13),
one finds by using the Cauchy-Schwarz inequality:

kCn.f /k2 �

A 1
2


2
e

p
2�2n

r�1X

kD0

�kAk2
p
r
�k

kŠ

Z C1
�1
kf .t/k2 e�

ˇ.A/
2
t2t2kejt jk

p
2Ak

2dt

D

A 1
2


2
e

p
2�2n

r�1X

kD0

�kAk2
p
r
�k

kŠ

�Z C1
�1
kf .t/k22 e�

ˇ.A/
2
t2dt

� 1
2
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�
�Z C1
�1

e�
ˇ.A/
2
t2e2jt jk

p
2Ak

2t4kdt

� 1
2

D

A 1
2


2
e kf k

p
2�2n

r�1X

kD0

�kAk2
p
r
�k

kŠ

�Z C1
�1

e�
ˇ.A/
2
t2e2jt jk

p
2Ak

2t4kdt

� 1
2

;

since

�Z C1
�1
kf .t/k22 e�

ˇ.A/
2
t2dt

� 1
2

D kf k by Eq. (6). Furthermore, we can

simplify

kCn.f /k2 �
2
A 1

2

 ekf k2
p
2�2n

r�1X

kD0

�kAk2
p
r
�k

kŠ

�Z C1
0

e�
ˇ.A/
2
t2e2tk

p
2Ak

2t4kdt

� 1
2

�

A 1
2


2
ekf kR

p
2�2n�1

r�1X

kD0

�kAk2
p
r
�k

kŠ
;

whereR D max

8
<
:
�Z C1

0

e�
ˇ.A/
2
t2e2tk

p
2Ak

2t4kdt

� 1
2

I k D 0; 1; : : : ; r � 1
9
=
; ; and

hence it follows that lim
n!1

Cn.f / D 0.
In conclusion, the following result has been demonstrated:

Theorem 2 (Matrix Riemann-Lebesgue Property).Let L be the Hermite ma-
trix functional onL2A .R;Cr�r/ defined by Eq. (7). Iff 2 L2A .R;Cr�r/, then it
follows that lim

n!1
Cn.f / D 0.

Remark 1. Following again Ref. [13], thek-th right matrix Fourier coefficient of
f 2 L2A .R;Cr�r/ with respect tofHn.�; A/gn�0, is denoted by

Ck.f / D
A
1
2p

2�2kkŠ
L.Hk.�; A/; f / D

A
1
2p

2�2kkŠ

�Z C1
�1

Hk.t; A/ e
�At2

2 f .t/ dt

�
;

and the right Fourier series off 2 L2A .R;Cr�r/ with respect tofHn.�; A/gn�0 is
defined by

S.f /.x/ D
X

n�0
Hn.x; A/Cn.f /:

With these definitions, a similar version of Theorem 2 for the right case can easily
be derived by adapting the previously outlined case.
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3.2. A numerical application: Matrix Exponential computation

Let A be a matrix inCr�r . The problem of computingeA has attracted con-
siderable attention both, in the past [9] and in recent years [10]. According to
Ref. [8], one has

extA�t
2I D

X

n�0

1

nŠ
Hn

�
x;
1

2
A2
�
tn; jt j <1: (14)

It is important to pay attention to the fact that the matrixA which defines the
Hermite matrix polynomial sequence must bepositive definite, see [3, p. 196],
i.e. Re.z/ > 0 for all z 2 �.A/. This positive stable condition was imposed on
the matrixA to guarantee the existence of

p
A and some integral properties of

Hermite polynomials [8]. Note, however, that this condition is not required for
expansion Eq. (14). In an analogous manner to the demonstration of Theorem 1,
one finds the following bound:

Hn

�
x;
1

2
A2
�

2

� nŠ e.jxjkAk2C1/; 8x 2 R; n � 0; 8A 2 Cr�r : (15)

Using Eq. (15) in the form

Hn

�
x; 1

2
A2
�

nŠ
tn


2

� jt jne.jxjkAk2C1/; n � 0;

and taking into account that
1X

nD0
jt jn is convergent forjt j < 1, we conclude that

convergence of Eq. (14) is uniform forx in any compact interval ofR, provided
thatjt j < 1.

Assuming thatx D � andt D 1
�

for � > 1, one finds for Eq. (14):

eA D e 1

�2

X

n�0

1

nŠ�n
Hn

�
�;
1

2
A2
�
:

Observe that the particular case� D 1 is in full agreement with the matrix expo-
nential approximationE.AI 1IN/ previously derived in Ref. [3].

We may now define the approximation of the matrix exponentialeA as

hN .�; A/ D e
1

�2

NX

nD0

1

nŠ�n
Hn

�
�;
1

2
A2
�
� eA: (16)
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Taking the approximate valuehN .�; A/ given by (16) and considering the bound
(8), it follows that

eA � hN .�; A/

2
� e

1

�2

X

k�NC1

1

�kkŠ

Hk

�
�;
1

2
A2
�

2

� e
1

�2

X

k�NC1

e�kAk2C1

�k

D e

�
1

�2
C�kAk2C1

�
2
4X

k�0

1

�k
�

NX

kD0

1

�k

3
5 : (17)

Simplifying the geometric series in Eq. (17), one finally obtains the error
bound for approximation (16):

eA � hN .�; A/

2
� e

�
1

�2
C�kAk2C1

�

.� � 1/�N : (18)

For numerical estimates of the bound, let" > 0 be some fixeda priori error.
Also, choosen0 to be the first positive integer such that

n0 >

log

 
e

�
1

�2
C�kAk2C1

�

".��1/

!

log�
: (19)

The, by combining Eqs. (18) and (19), we conclude
eA � hn0.�; A/


2
� ":

In summary, the following result, similar to Theorem 3.1 of Ref. [3], has been
proven:

Theorem 3. LetA be a matrix inCr�r and let� > 1. Let" > 0. If n0 is the first
positive integer such that

n0 >

log

 
e

�
1

�2
C�kAk2C1

�

".��1/

!

log�
; (20)

then eA � hn0.�; A/

2
� ": (21)
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Example 1. For a numerical illustration of Theorem 3 let us consider the follow-
ing matrix

A D
0
@
3 �1 1

2 0 1

1 �1 2

1
A

with �.A/ D f1; 2g. Matrix A is non-diagonalizable, and with the help of the
minimal theorem the exact value ofexp.A/ is shown to be (see Refs. [5, p. 571]
and [3]):

eA D
0
@

2e2 �e2 e2

e.2e � 1/ e.1 � e/ e2

e.e � 1/ e.1 � e/ e2

1
A :

As already pointed out in Ref. [3], for an admissible error of" D 10�5 we
need at leastn0 D 30 to provide the required accuracy. Of course, in practice
the number of terms to obtain a prefixed accuracy uses to be smaller than the one
provided by Theorem 3.1 of Ref. [3], which always supplies a safe estimate. So
for instance, takingn0 D 19 and omitting irrelevant digits, one calculates

E .A; 1; 19/ D
0
@
14:778109507 �7:389054626 7:389054626

12:059826871 �4:670771990 7:389054626

4:670772244 �4:670772244 7:389054881

1
A ;

and therefore eA �E .A; 1; 19/

2
D 6:36 � 10�6:

We will compare these results obtained for� D 1 in Theorem 3.1 of Ref. [3] with
the results from the new Theorem 3.

It is kAk2 D 4:41302, which we will use for the evaluation of Eq. (19). It is
also convenient to introduce the auxiliary function

f .�/ WD
log

 
e

�
1

�2
C4:41302�C1

�

10�5.��1/

!

log�
with � > 1: (22)

As Figure 1 illustrates, this function possesses a minimum in the intervalŒ4; 7�. By
using numerical standard routines, we can compute that this minimum is reached
at

�0 � 4:980662706:

10



�0

f .�0/

4 5 6 7

20

21

22

�

f .�/

Figure 1: Graph of the functionf .�/ defined by Eq. (22) with minimum at�0 � 4:98 and
df .�0/e D 21.

Hence, one gets for the minimum

f .�0/ � 20:6479:
As a consequence, Theorem 3 with our choice for�0 precisely indicates that we
requiren0 D df .�0/e D 21 approximation steps to reach the prefixed accuracy.
In fact, an exact computation yields

eA � h21.�0; A/

2
D 4:626 � 10�15:

Again, it becomes clear that the number of terms required to obtain a prefixed ac-
curacy usually is smaller than the one provided by the more conservative estimate
Eq. (21). For instance, takingn0 D 12 yields

h12.�0; A/ D
0
@
14:778110374 �7:389054440 7:389054440

12:059828545 �4:670772611 7:389054440

4:670774106 �4:670774106 7:389055935

1
A ;

with a corresponding error
eA � h12.�0; A/


2
D 4:212 � 10�6:
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4. Conclusions

As a continuation and substantial improvement of Ref. [2], this work provides
a new upper bound on the2-norm of the family of Hermite matrix polynomials
Hn.x; A/, whereA is a parameter matrix with all its eigenvalues in the open right-
half plane. As indicated in some illustrative examples, this bound is not merely
of analytic interest and for use in a general theory of orthogonal matrices, but has
potential for several other interesting practical applications.

As a first application a matrix version of the Riemann-Lebesgue lemma for a
sequence of Hermite matrix polynomials was introduced. This derivation opens
up new avenues to obtain further theorems for matrix function expansions in terms
of Hermite matrix polynomials, similar to the analysis already carried out in the
existing literature for another class of matrix polynomials [13].

The second application considered an approximation of the matrix exponential
as a weighted sum of certainHn.x; A/, to within an error tolerance which may
be prescribeda priori. The algorithmic steps of the computational process was
explained in one specific example.

It is hoped that in future work our proposed matrix expansion for the Hermite
case might inspire other interesting applications for matrix calculus.
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