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ABSOLUTELY CONTINUOUS MULTILINEAR OPERATORS

E. DAHIA, D. ACHOUR AND E. A. SÁNCHEZ PÉREZ∗

Abstract. We introduce the new class of the absolutely (p; p1, ..., pm;σ)-continuous
multilinear operators, that is defined using a summability property that provides the
multilinear version of the absolutely (p, σ)-continuous operators. We give an analogue of
Pietsch’s Domination Theorem and a multilinear version of the associated Factorization
Theorem that holds for absolutely (p, σ)-continuous operators, obtaining in this way a
rich factorization theory. We present also a tensor norm which represents this multi-
ideal by trace duality. As an application, we show that absolutely (p; p1, ..., pm;σ)-
continuous multilinear operators are compact under some requirements. Applications to
factorization of linear maps on Banach function spaces through interpolation spaces are
also given.

1. Introduction and Notation

In 1987 Matter defined the ideal of absolutely (p, σ)-continuous linear operators in order
to analyze super-reflexive Banach spaces, establishing many of his fundamental properties
in [16]. In the nineties, López Molina and Sánchez Pérez studied the factorization prop-
erties and the trace duality for these operators in a series of papers, introducing the class
of tensor norms that represent these operator ideals (see [13, 14, 25]). Roughly speaking,
the class of absolutely (p, σ)-continuous operators can be considered as an “interpolated”
ideal between the p-summing operators and the continuous operators, preserving some of
the characteristic properties of the first class. Let 1 ≤ p < ∞ and 0 ≤ σ < 1. A linear
operator T between Banach spaces X and Y is absolutely (p, σ)-continuous if there is a
positive constant C such that for all n ∈ N, (xi)ni=1

⊂ X, we have(
n∑
i=1

‖T (xi)‖
p

1−σ

) 1−σ
p

≤ C sup
ξ∈BX∗

(
n∑
i=1

(
|〈xi, ξ〉|1−σ ‖xi‖σ

) p
1−σ

) 1−σ
p

. (1)

The smallest constant C such that the inequality (1) holds is called the absolutely (p, σ)-
continuous norm of T , and is denoted by πp,σ(T ). It is in fact a norm on the space Pp,σ
of all absolutely (p, σ)-continuous linear operators from X into Y , that becomes a Banach
space. In particular, we have that Pp,0 (X,Y ) coincides with Πp (X,Y ), the well known
operator ideal of absolutely p-summing operators introduced by Pietsch in [19] (see also
[9, 20]).

The aim of this paper is to study the multilinear version of this class of operators
and its tensor product representation, and to provide some applications in the setting of
the factorization theory of bilinear maps. Regarding compactness, we show that as in
the case of the p-summing operators the absolutely (p, σ)-continuous operators are always
completely continuous, allowing some direct applications for giving sufficient conditions for
compactness of multilinear maps on reflexive Banach spaces under weaker summability re-
quirements. Other application is given by proving that absolutely (p; p1, p2;σ)-continuous
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2 E. DAHIA, D. ACHOUR AND E. A. SÁNCHEZ PÉREZ

bilinear maps defined on products of Banach function spaces satisfy also a concavity type
property. This allows to prove a factorization theorem for operators between Banach
function spaces through interpolation spaces.

The paper is divided in five sections. After the introductory one, in Section 2 we extend
to multilinear mappings the concept of absolutely (p, σ)-continuous linear operators, for
which the resulting vector space Lσas,(p;p1,...,pm) of the absolutely (p; p1, ..., pm;σ)-continuous
multilinear operators is a normed (Banach) multi-ideal. In the third section we establish
a domination theorem for such operators and we give the Factorization Theorem for the
absolutely (p, σ)-continuous linear operators and its multilinear version.

In Section 4, we present a reasonable crossnorm βp,σ on X1⊗ ... ⊗Xm⊗Y that satisfies
that the topological dual of the corresponding normed tensor product is isometric to the
space of Y ∗-valued absolutely (p; p1, ..., pm;σ)-continuous multilinear operators on X1× ...
×Xm . We generalize in this way the result for the linear case that can be found in [13].

Finally, Section 5 is devoted to show some applications. Under adequate requirements
we show that the summability property for multilinear operators that is considered in
the definition of Lσas,(p;p1,...,pm) implies compactness, providing in this way sufficient con-
ditions for assuring such property for multilinear maps. We finish the paper by showing
the factorization theorem for linear operators between Banach function spaces mentioned
above.

The notation used in the paper is in general standard. Let m ∈ N and Xj , (j =
1, ...,m), Y be Banach spaces over K, ( either R or C) we will denote by L (X1, ..., Xm;Y )
the Banach space of all continuous m-linear mappings from X1 × ...×Xm into Y , under
the norm ‖T‖ = sup

xm∈BXj ,1≤j≤m

∥∥T (x1, ..., xm)
∥∥ , where BXj denotes the closed unit ball of

Xj(1 ≤ j ≤ m). If Y = K, we write L (X1, ..., Xm) . In the case X1 = ... = Xm = X, we
will simply write L (mX;Y ) .

Let now X be a Banach space and 1 ≤ p ≤ ∞. We write p∗ for the real number
satisfying 1/p + 1/p∗ = 1. We denote by `np (X) the space of all sequences (xi)

n
i=1

in

X with the norm ‖(xi)ni=1‖p = (
n∑
i=1
‖xi‖p)

1
p , and by `np,ω (X) the space of all sequences

(xi)
n
i=1 in X with the norm ‖(xi)ni=1‖p,ω = sup

‖ξ‖X∗≤1
(
n∑
i=1
|〈xi, ξ〉|p)

1
p , where X∗ denotes the

topological dual of X.
Let `p (X) be the Banach space of all absolutely p-summable sequences (xi)

∞
i=1 in X with

the norm ‖(xi)∞i=1‖p = (
∞∑
i=1
‖xi‖p)

1
p . We denote by `ωp (X) the Banach space of all weakly

p-summable sequences (xi)
∞
i=1 in X with the norm ‖(xi)∞i=1‖p,ω = sup

‖ξ‖X∗≤1
‖(ξ(xi))∞i=1‖p . If

p = ∞ we are restricted to the case of bounded sequences and in `∞ (X) we use the sup
norm.

We denote by Lf (X1, ..., Xm;Y ), the space of all m-linear mappings of finite type, which
is generated by the mappings of the special form

x∗1 ⊗ ...⊗ x∗my :
(
x1, ..., xm

)
→ x∗1

(
x1
)
...x∗m (xm) y

for some non-zero x∗j ∈ X∗j (1 ≤ j ≤ m) and y ∈ Y .

Definition 1.1. An ideal of multilinear mappings (or multi-ideal) is a subclass M of
all continuous multilinear mappings between Banach spaces such that for all m ∈ N and
Banach spaces X1, ..., Xm and Y , the components M(X1, ..., Xm;Y ) := L(X1, ..., Xm;Y )∩
M satisfy:
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(i) M(X1, ..., Xm;Y ) is a linear subspace of L(X1, ..., Xm;Y ) which contains the m-
linear mappings of finite type.

(ii) The ideal property: If T ∈M(G1, ..., Gm;F ), uj ∈ L(Xj ;Gj) for j = 1, ...,m and
v ∈ L(F ;Y ), then v ◦ T ◦ (u1, ..., um) is in M(X1, ..., Xm;Y ).

If ‖.‖M :M→ R+ satisfies

(i’) (M(X1, ..., Xm;Y ), ‖.‖M) is a normed ( Banach) space for all Banach spaces
X1, ..., Xm and Y and all m,

(i”)
∥∥Tm : Km → K : Tm

(
x1, ..., xm

)
= x1...xm

∥∥
M = 1 for all m,

(iii’) If T ∈M(G1, ..., Gm;F ), uj ∈ L(Xj , Gj) for j = 1, ...,m and v ∈ L(F, Y ), then

‖v ◦ T ◦ (u1, ..., um)‖M ≤ ‖v‖ ‖T‖M ‖u1‖ ... ‖um‖ ,
then (M, ‖.‖M) is called a normed (Banach) multi-ideal.

Definition 1.2. Let M be a multi-ideal and operator ideals A1, ...,Am, an m-linear
mapping A ∈ L(X1, ..., Xm;Y ) is said to be of type M ◦ (A1, ...,Am), in symbols A ∈
M ◦ (A1, ...,Am)(X1, ..., Xm;Y ), if there are Banach spaces G1, ..., Gm, linear operators
uj ∈ Aj(Xj ;Gj), 1 ≤ j ≤ m, and a continuous m-linear mapping M ∈ M(G1, ..., Gm;Y )
such that A = M ◦ (u1, , ..., um). The proof that M◦ (A1, ...,Am) is an ideal of m-linear
mappings can be found in [10, Th. 2.2.2].

The definition of absolutely summing m-linear functional is due to Pietsch [21]. In [15],
Matos presented a definition for vector-valued mappings.

Definition 1.3. Let 1 ≤ p, p1, ..., pm <∞, with 1
p ≤

1
p1

+ ...+ 1
pm
. An m-linear operator

T ∈ L(X1, ..., Xm;Y ) is said to be absolutely (p; p1, ..., pm)-summing if there is a constant
C > 0 such that for any xj1, ..., x

j
n ∈ Xj we have∥∥(T (x1

i , ..., x
m
i

))n
i=1

∥∥
p
≤ C

∏m
j=1 ‖(xi)

n
i=1‖pj ,ω ,

for every n,m ∈ N, j = 1, ...,m and i = 1, ..., n. The vector space of these mappings
is indicated by Las,(p;p1,...,pm) (X1, ..., Xm;Y ) and the smallest C satisfying the inequality
above, by ‖T‖Las,(p;p1,...,pm)

. This defines a norm on Las,(p;p1,...,pm) (X1, ..., Xm;Y ) .

This definition is equivalent to say that
(
T (x1

i , ..., x
m
i )
)∞
i=1

belongs to `p(Y ) for every
(xji )

∞
i=1 ∈ `ωpj (Xj).

The next results can be found in [10] and [15], and will be used in the sequel.

Proposition 1.4. Let 1 ≤ p, p1, ..., pm <∞, with 1
p = 1

p1
+...+ 1

pm
and T ∈ L (X1, ..., Xm;Y ).

The following statements are equivalent:

(a) T is absolutely (p; p1, ..., pm)-summing.
(b) There is a constant C > 0 and regular Borel probability measures µj on BX∗j (with

the weak star topology) so that for all
(
x1, ..., xm

)
∈ X1 × ....×Xm the inequality

∥∥T (x1, ..., xm
)∥∥ ≤ C m∏

j=1

∫
BX∗

j

∣∣φj(xj)∣∣pj dµ(φj)

 1
pj

, (1.2)

is valid.
(c) (Factorization Theorem) There exist Banach spaces Z1, ..., Zm, a map S ∈ L (Z1, ..., Zm;Y )

and for each j = 1, ...,m and operators uj ∈ Πpj (Xj , Zj) such that T = S ◦
(u1, ..., um).
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Moreover, we have

‖T‖Las,(p;p1,...,pm)
= inf {C > 0 : for all C verifying the inequality (1.2)}

= inf

‖S‖
m∏
j=1

πpj (uj) : T = So(u1, ..., um)

 .

Proposition 1.5. Let 1 ≤ p ≤ q < ∞ and 1 ≤ pj ≤ qj < ∞, j = 1, ...,m be such that∑m
j=1

1
pj
−1
p ≤

∑m
j=1

1
qj
−1
q , then Las,(p;p1,...,pm) (X1, ..., Xm;Y ) ⊂ Las,(q;q1,...,qm) (X1, ..., Xm;Y ) .

2. Absolutely (p; p1, ..., pm;σ)-Continuous Multilinear Operators

In this section we extend the definition of class of (p, σ)-absolutely continuous linear
operators to the case of multilinear operators and we show that the inclusion between a
couple of multi-ideals of the class with different parameters works as one would expect.

Let 1 ≤ p, p1, ..., pm < ∞ with 1
p ≤

1
p1

+ ... + 1
pm

and 0 ≤ σ < 1. For all (xji )
n
i=1 ⊂

Xj , (1 ≤ j ≤ m) we put

δpjσ((xji )
n
i=1) = sup

φj∈BX∗
j

(
n∑
i=1

(∣∣∣φj(xji )∣∣∣1−σ ∥∥∥xji∥∥∥σ)
pj

1−σ
) 1−σ

pj

It is clear that∥∥∥(xji )
n
i=1

∥∥∥ pj
1−σ ,ω

≤ δpjσ((xji )
n
i=1), for all (xji )

n
i=1 ⊂ Xj , (1 ≤ j ≤ m) (2.1)

Definition 2.1. A mapping T ∈ L(X1, ..., Xm;Y ) is absolutely (p; p1, ..., pm;σ)-continuous
if there is a constant C > 0 such that for any xj1, ..., x

j
n ∈ Xj , (1 ≤ j ≤ m) we have

∥∥(T (x1
i , ..., x

m
i

))n
i=1

∥∥
p

1−σ
≤ C

m∏
j=1

δpjσ((xji )
n
i=1) (2.2)

We denote this class of mappings by Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ) which is a Banach space
with the norm

‖T‖Lσ
as,(p;p1,...,pm)

= inf {C > 0 : for all C verifying the inequality (2.2)}

It is obvious that ‖T‖ ≤ ‖T‖Lσ
as,(p;p1,...,pm)

for all T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ) .

For σ = 0, we have L0
as,(p;p1,...,pm) (X1, ..., Xm;Y ) = Las,(p;p1,...,pm) (X1, ..., Xm;Y ).

Proposition 2.2. (Inclusion Theorem).
Let p ≤ q, pj ≤ qj(1 ≤ j ≤ m). If 1

p1
+ ...+ 1

pm
− 1

p ≤
1
q1

+ ...+ 1
qm
− 1

q , then

Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ) ⊂ Lσas,(q;q1,...,qm) (X1, ..., Xm;Y ) .

Proof. By [5, Prop. 3.2] we may assume 1
p1

+ ...+ 1
pm
− 1

p = 1
q1

+ ...+ 1
qm
− 1

q .

Considering 1 ≤ r, rj < ∞ with 1
r + 1

q = 1
p ,

1
rj

+ 1
qj

= 1
pj

(1 ≤ j ≤ m) it follows that
1
r1

+ ...+ 1
rm

= 1
r .

Now select a multilinear mapping T in Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ) and xj1, ..., x
j
n ∈ Xj ,

for j = 1, ..,m. Then, with λji =
∥∥T (x1

i , ..., x
m
i

)∥∥ q
rj , we have

∥∥T (λ1
ix

1
i , ..., λ

m
i x

m
i )
∥∥ p

1−σ =∥∥T (x1
i , ..., x

m
i

)∥∥ q
1−σ . An application of Hölder’s inequality reveals that(

n∑
i=1

∥∥T (x1
i , ..., x

m
i

)∥∥ q
1−σ

) 1−σ
p
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=
(

n∑
i=1

∥∥T (λ1
ix

1
i , ..., λ

m
i x

m
i )
∥∥ p

1−σ

) 1−σ
p

≤ ‖T‖Lσ
as,(p;p1,...,pm)

∏m
j=1 δpjσ

((
λjix

j
i

)n
i=1

)
= ‖T‖Lσ

as,(p;p1,...,pm)

∏m
j=1 sup

φj∈BX∗
j

(∑n
i=1

(
λji

∣∣∣φj(xji )∣∣∣1−σ ∥∥∥xji∥∥∥σ)
pj

1−σ
) 1−σ

pj

≤ ‖T‖Lσ
as,(p;p1,...,pm)

∏m
j=1

∥∥∥(λji)n
i=1

∥∥∥
rj

1−σ

δqjσ

((
xji

)n
i=1

)
= ‖T‖Lσ

as,(p;p1,...,pm)

(
n∑
i=1

∥∥T (x1
i , ..., x

m
i

)∥∥ q
1−σ

) 1−σ
r ∏m

j=1 δqjσ

((
xji

)n
i=1

)
Since 1−σ

p −
1−σ
r = 1−σ

q , we end up with∥∥(T (x1
i , ..., x

m
i

))n
i=1

∥∥
q

1−σ
≤ ‖T‖Lσ

as,(p;p1,...,pm)

m∏
j=1

δqjσ

((
xji

)n
i=1

)
.

Hence T ∈ Lσas,(q;q1,...,qm) (X1, ..., Xm;Y ) and ‖T‖Lσ
as,(q;q1,...,qm)

≤ ‖T‖Lσ
as,(p;p1,...,pm)

.

�

The proof of the following proposition is straightforward.

Proposition 2.3. Let T ∈ L (X1, ..., Xm;Y ) , R ∈ L (Y,Z) and uj ∈ L (Ej , Xj) , 1 ≤ j ≤
m.

(i) If T is absolutely (p; p1, ..., pm;σ)-continuous, then R◦T is absolutely (p; p1, ..., pm;σ)-
continuous and ‖R ◦ T‖Lσ

as,(p;p1,...,pm)
≤ ‖R‖ ‖T‖Lσ

as,(p;p1,...,pm)
.

(ii) If T is absolutely (p; p1, ..., pm;σ)-continuous, then T ◦ (u1, ..., um) is absolutely
(p; p1, ..., pm;σ)-continuous and

‖T ◦ (u1, ..., um)‖Lσ
as,(p;p1,...,pm)

≤ ‖T‖Lσ
as,(p;p1,...,pm)

m∏
j=1

‖uj‖ .

We can establish the following comparison between the classes of absolutely (p; p1, ..., pm;σ)-
continuous and absolutely (p; p1, ..., pm)-summing m-linear operators.

Proposition 2.4. Let 1 ≤ pj , p < ∞, j = 1, ...,m such that 1
p = 1

p1
+ ... + 1

pm
and

0 ≤ σ < 1. Then Las,( p
1−σ ;

p1
1−σ ,...,

pm
1−σ ) (X1, ..., Xm;Y ) ⊂ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y )

Consequently, Las,(p;p1,...,pm) (X1, ..., Xm;Y ) ⊂ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y )

Proof. It is immediate by the inequality (2.1) and Proposition 1.5.
�

3. Domination and Factorization Theorems

3.1. Pietsch Domination Theorem. In the case of absolutely (p, σ)-continuous linear
maps it is possible to obtain a Domination Theorem as the one that holds for p-summing
operators (see [16]). It can be also extended to the multilinear case. For the proof of
this Domination Theorem we use the full general Pietsch Domination Theorem recently
presented by Pellegrino et al in [18].

Let X1, ..., Xm, Y and E1, ..., Ek be (arbitrary) non-void sets, H be a family of mappings
from X1 × ... × Xm to Y . Let also K1, ..,Kt be compact Hausdorff topological spaces,
G1, ..., Gt be Banach spaces and suppose that the maps
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Rj : Kj × E1 × ...× Ek ×Gj → [0,+∞) , j = 1, ..., t
S : H× E1 × ...× Ek ×G1 × ...×Gt → [0,+∞)

satisfy
(1) For each xl ∈ El and b ∈ Gj , with (j, l) ∈ {1, ..., t} × {1, ..., k} the mapping

(Rj)x1,...,xk,b : Kj → [0,+∞) defined by (Rj)x1,...,xk,b(φ) = Rj(φ, x1, ..., xk, b)
is continuous.

(2) The following inequalities hold:{
Rj(φ, x1, ..., xk, ηjb

j) ≤ ηjRj(φ, x1, ..., xk, bj)
S(f, x1, ..., xk, α1b

1, ..., αtb
t) ≥ α1...αtS(f, x1, ..., xk, b1, ..., bt),

for every φj ∈ Kj , x
l ∈ El(with l ∈ {1, ..., k}), 0 ≤ ηj , αj ≤ 1, bj ∈ Gj with

j = 1, ..., t and f ∈ H.

Definition 3.1. If 0 < q1, ..., qt, q < ∞, with 1
q = 1

q1
+ ... + 1

qt
, a mapping f : X1 ×

... × Xm −→ Y in H is said to be R1, ..., Rt-S-abstract ( q1, ..., qt)-summing if there is a
constant C > 0 so that

(
n∑
i=1

S(f, x1
i , ..., x

k
i , b

1
i , ..., b

t
i)
q

) 1
q

≤ C
t∏

j=1

sup
φ∈Kj

(
n∑
i=1

Rj(φ, x1
i , ..., x

k
i , b

j
i )
qj

) 1
qj

,

for all xs1, ..., x
s
n ∈ Es, b

j
1, ..., b

j
n ∈ Gj , n ∈ N and (s, j) ∈ {1, ..., k} × {1, ..., t} .

Theorem 3.2. [18] A map f ∈ H is R1, ..., Rt-S-abstract (q1, ..., qt)-summing if and only
if there is a constant C > 0 and Borel probability measures µj on Kj such that

S(f, x1, ..., xk, b1, ..., bt) ≤ C
t∏

j=1

(∫
Kj

Rj(φ, x1, ..., xk, bj)qjdµj(φ)

) 1
qj

,

for all xl ∈ El, l ∈ {1, ..., k}) and bj ∈ Gj with j = 1, ..., t.

Theorem 3.3. Let 1 ≤ p, p1, ..., pm < ∞ with 1
p = 1

p1
+ ... + 1

pm
and 0 ≤ σ < 1. An

m-linear operator T ∈ L (X1, ..., Xm;Y ) is absolutely (p; p1, ..., pm;σ)-continuous if and
only if there is a constant C > 0 and Borel probability measures µj on BX∗j , 1 ≤ j ≤ m,

(with the weak star topology) so that for all
(
b1, ..., bm

)
∈ X1 × ....×Xm the inequality

∥∥T (b1, ..., bm)
∥∥ ≤ C m∏

j=1

∫
BX∗

j

(
∣∣φ(bj)

∣∣1−σ ∥∥bj∥∥σ)
pj

1−σ dµj(φ)

 1−σ
pj

(3.1)

is valid.
The infimum of all these possible C is equal to ‖T‖Lσ

as,(p;p1,...,pm)
.

Proof. Note that by choosing the parameters

t = m
Ej = K, j = 1, ..., k
Gj = Xj , j = 1, ...,m
Kj = BX∗j , j = 1, ...,m
H = L (X1, ..., Xm;Y )
q = p

1−σ , qj =
pj

1−σ , j = 1, ...,m
S(T, x1, ..., xk, b1, ..., bm) =

∥∥T (b1, ..., bm)∥∥
Rj(φ, x1, ..., xk, bj) =

∣∣φ(bj)
∣∣1−σ ∥∥bj∥∥σ , j = 1, ...,m
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we can easily conclude that T : X1 × ... × Xm −→ Y is absolutely (p; p1, ..., pm;σ)-
continuous if and only if T is R1, ..., Rm-S abstract ( p1

1−σ , ...,
pm
1−σ )-summing. Theorem 3.2

tells us that T is R1, ..., Rm-S abstract ( p1
1−σ , ...,

pm
1−σ )-summing if and only if there is a

C > 0 and there are probability measures µj on Kj , j = 1, ...,m, such that

S(T, x1, ..., xk, b1, ..., bt) ≤ C
t∏

j=1

∫
BX∗

j

Rj(φ, x1, ..., xk, bj)
pj

1−σ dµj(φ)

 1−σ
pj

i.e;
∥∥T (b1, ..., bm)

∥∥ ≤ C∏m
j=1

(∫
BX∗

j

(
∣∣φ(bj)

∣∣1−σ ∥∥bj∥∥σ)
pj

1−σ dµj(φ)
) 1−σ

pj

and we obtain the inequality in the statement of the theorem.
�

3.2. Pietsch Factorization Theorem. Now we give the Pietsch Factorization Theo-
rem for the absolutely (p, σ)-continuous linear operators and his multilinear version for
absolutely (p; p1, ..., pm;σ)-continuous multilinear operators.

Let X, Y be Banach spaces, p ≥ 1, 0 ≤ σ < 1 and a regular Borel probability measure
η on BX∗ , (with the weak star topology). We denote by iX the isometric embedding
X → C(BX∗) given by iX(x) = 〈x, .〉.

For f ∈ iX(X) ⊂ C(BX∗), we define the semi norm,

‖f‖p,σ = inf

{
n∑
k=1

‖fk‖σiX(X) .

(∫
BX∗
|fk|p dη

) 1−σ
p

, f =
n∑
k=1

fk, fk ∈ iX(X), ∀k, 1 ≤ k ≤ n

}

Let S the closed subspace of iX(X) given by S =
{
f ∈ iX(X), ‖f‖p,σ = 0

}
, we write

Lp,σ(η) the quotient space iX(X)/S with the norm

‖[f ]‖p,σ = inf
{
‖g‖p,σ , g ∈ iX(X), g ∈ [f ]

}
where [f ] is the equivalence class of f ∈ iX(X). We need the following lemma.

Lemma 3.4. The canonical map Jp,σ : C(BX∗)→ Lp,σ(η) is absolutely (p, σ)-continuous,
and πp,σ(Jp,σ) = ‖Jp,σ‖ = 1

Proof. Let δω : C(BX∗) → K : f 7→ f(ω) be the Dirac’s delta associated with ω ∈ BX∗ .
As ‖δω‖ = 1, we may write, for every (fk)nk=1 ⊂ C(BX∗)(∑n

k=1 ‖Jp,σ(fk)‖
p

1−σ
) 1−σ

p

≤
(∫

BX∗

∑n
k=1 ‖fk‖

σp
1−σ |fk|p dη

) 1−σ
p

≤ sup
λ∈C(BX∗ )∗,‖λ‖≤1

∣∣∣〈∑n
k=1 ‖fk‖

σp
1−σ |fk|p , λ

〉∣∣∣ 1−σp
≤
∥∥∥∑n

k=1 ‖fk‖
σp

1−σ |fk|p
∥∥∥ 1−σ

p

C(BX∗ )

= sup
ω∈BX∗

∣∣∣∑n
k=1 ‖fk‖

σp
1−σ . |fk(ω)|p

∣∣∣ 1−σp
= sup

δω

∣∣∣∫K∑n
k=1 ‖fk‖

σp
1−σ |fk|p dδω

∣∣∣ 1−σp
= sup

λ∈C(BX∗ )∗,‖λ‖≤1

∣∣∣∣∑n
k=1

(
‖fk‖σ |〈fk, λ〉|1−σ

) p
1−σ
∣∣∣∣ 1−σp

Then Jp,σ ∈ Pp,σ (C(BX∗), Lp,σ(η)) and πp,σ(Jp,σ) ≤ 1. Together with
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πp,σ(Jp,σ) ≥ ‖Jp,σ‖ = sup
f∈C(BX∗ ),‖f‖≤1

‖Jp,σ(f)‖ ≥ 1,

we get πp,σ(Jp,σ) = ‖Jp,σ‖ = 1.
�

Theorem 3.5. For every operator T : X → Y , the following are equivalent
(i) T is absolutely (p, σ)-continuous

(ii) There exist a regular Borel probability measure µ on BX∗, a (closed) subspace Xp,σ

of Lp,σ(µ) and an operator T̂ : Xp → Y such that the following diagram commutes

X
T−→ Y

iX ↓ ↑ T̃

iX(X)
Jp,σ−→ Xp,σ

∩ ∩
C (BX∗)

Jp,σ−→ Lp,σ(µ),

where Jp,σ is the map iX(X)→ Xp,σ induced by Jp,σ.

Proof. (i)=⇒(ii). If T absolutely (p, σ)-continuous, the Pietsch Domination (see [16, Th.
4.1]) provides a regular Borel probability measure µ on BX∗ for which

‖Tx‖ ≤ πp,σ(T ). ‖x‖σ .
(∫

BX∗
j

|〈x, x∗〉|p dµ
) 1−σ

pj

for all x ∈ X.

This informs us that if we denote the range of Jp,σ ◦ iX by S and consider it to be a
normed subspace of Lp,σ(µ), the map S → Y : Jp,σ ◦ iX(x) 7→ Tx is a well-defined
operator. It is continuous for the Lp,σ(µ)-topology with norm ≤ πp,σ(T ), since ‖Tx‖ ≤
πp,σ(T ). ‖〈x, .〉‖p,σ , ∀x ∈ X. Let Xp,σ be the closure of S in Lp,σ(µ). Then the natural
extension of our map to Xp,σ is the operator T̃ we are looking for.
(ii)=⇒(i) From T̃ ◦ Jp,σ ◦ iX = T and the previous lemma we get T is (p, σ)-absolutely

continuous and πp,σ(T ) ≤
∥∥∥T̃∥∥∥ .πp,σ(Jp,σ). ‖iX‖ =

∥∥∥T̃∥∥∥ , so that even
∥∥∥T̃∥∥∥ = πp,σ(T ) is

true.
�

Theorem 3.6. (Multilinear Version)
Let 1 ≤ p, p1, ..., pm <∞ with 1

p = 1
p1

+ ...+ 1
pm

and 0 ≤ σ < 1. Then

T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y )

if and only if there exist Banach spaces G1, ..., Gm, absolutely (pj , σ)-continuous linear
operators uj ∈ L(Xj , Gj) and m-linear mapping S ∈ L(G1, ..., Gm;Y ) so that T = S ◦
(u1, ..., um). Moreover,

‖T‖Lσ
as,(p;p1,...,pm)

= inf
{
‖S‖

∏m
j=1 πpj,σ (uj) : T = So(u1, ..., um)

}
i.e., Lσas,(p;p1,...,pm) = L ◦ (Pp1,σ, ...,Ppm,σ) holds isometrically.

Proof. First we prove the converse. Let (x1, ..., xm) ∈ X1 × .... × Xm. If T, has such a
factorization, we have∥∥T (x1, ..., xm)

∥∥ =
∥∥S (u1

(
x1
)
, ..., um (xm)

)∥∥ ≤ ‖S‖ m∏
j=1

‖uj (xj )‖ .

We know that (see [16, Th. 4.1]), for each j = 1, ...,m, there is µj ∈ C(BX∗j )∗, such that
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∥∥uj (xj)∥∥ ≤ πpj,σ (uj) (
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj .

Now we have∥∥T (x1, ..., xm)
∥∥ ≤ ‖S‖∏m

j=1 πpj,σ (uj)
∏m
j=1(

∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj .

Therefore T is absolutely (p; p1, ..., pm;σ)-continuous and

‖T‖Lσ
as,(p;p1,...,pm)

≤ ‖S‖
m∏
j=1

πpj,σ (uj) .

To prove the first implication, take T ∈ Lσas,(p;p1,...,pm) (X1, ...., Xm;Y ). Then, there exist
probability measures µj ∈ C(BX∗j )∗, (1 ≤ j ≤ m) such that for all

(
x1, ..., xm

)
∈ X1× ....×

Xm,∥∥T (x1, ..., xm)
∥∥ ≤ ‖T‖Lσ

as,(p;p1,...,pm)

m∏
j=1

(
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj(φ))
1−σ
pj .

We now consider the operator u0
j : Xj → Lpj ,σ(µj) which is given by u0

j (x
j) =

[〈
xj , .

〉]
and notice that we have

∥∥u0
j (x

j)
∥∥ =

∥∥xj∥∥
pj ,σ
≤
∥∥xj∥∥σ

Xj
.

(∫
BX∗

∣∣〈xj , φ〉∣∣pj dµj) 1−σ
pj

, for all xj ∈ Xj and 1 ≤ j ≤ m

with
∥∥xj∥∥

pj ,σ
= inf

{
n∑
k=1

∥∥∥xjk∥∥∥σ
Xj
.

(∫
BX∗

j

∣∣∣〈xjk, φ〉∣∣∣pj dµj) 1−σ
pj

, xj =
n∑
k=1

xjk, (xjk)
n
k=1 ⊂ Xj

}
Let Gj be the closure in Lpj ,σ(µj) of the range of u0

j and let uj : Xj → Gj be the induced
operator. uj is (pj , σ)-absolutely continuous with πpj ,σ

(uj) ≤ 1.

Let S0 be the operator defined on u0
1(X1)× ...× u0

m(Xm), by

S0(u0
1

(
x1
)
, ..., u0

m (xm)) := T (x1, ..., xm).

We prove that the mapping S0 is well defined and continuous, so we have

∥∥S0

(
u0

1

(
x1
)
, ..., u0

m (xm)
)∥∥ ≤ ‖T‖Lσ

as,(p;p1,...,pm)

m∏
j=1

(
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj .

Fix j = 1 and ε > 0. Then there exists
(
x1
k

)n
k=1
⊂ X1 such that x1 =

n∑
i=1

x1
k and

n∑
k=1

∥∥i1(x1
k)
∥∥σ
i1(X1)

.

(∫
BX∗

j

∣∣∣〈xjk, φ〉∣∣∣p1 dµj) 1−σ
p1 ≤ ε+

∥∥i1(x1)
∥∥
p1 ,σ

,
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where i1 the isometric embedding X1 → C(BX∗1 ) given by i1(x) = 〈x, .〉 . So we have∥∥S0

(
u0

1

(
x1
)
, ..., u0

m (xm)
)∥∥

=
∥∥∥∥S0

(
u0

1

(
n∑
k=1

x1
k

)
, ..., u0

m (xm)
)∥∥∥∥

≤
n∑
i=1

∥∥S0

(
u0

1

(
x1
k

)
, ..., u0

m (xm)
)∥∥

≤ ‖T‖Lσ
as,(p;p1,...,pm)

n∑
k=1

∥∥x1
k

∥∥σ .(∫BX∗1 ∣∣〈x1
k, φ
〉∣∣p1 dµ1

) 1−σ
p1

m∏
j=2

(
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj

≤ ‖T‖Lσ
as,(p;p1,...,pm)

(
ε+

∥∥x1
∥∥
p1 ,σ

) m∏
j=2

(
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj

We can write the same domination result for j = 2, with this new domination, to obtain∥∥S0

(
u0

1

(
x1
)
, ..., u0

m (xm)
)∥∥ ≤

≤ ‖T‖Lσ
as,(p;p1,...,pm)

(
ε+

∥∥x1
∥∥
p1 ,σ

)(
ε+

∥∥x2
∥∥
p2 ,σ

) m∏
j=3

(
∫
BX∗

j

(∣∣〈xj , φ〉∣∣1−σ ∥∥xj∥∥σ) pj
1−σ

dµj)
1−σ
pj .

By induction, we get∥∥S0

(
u0

1

(
x1
)
, ..., u0

m (xm)
)∥∥ ≤ ‖T‖Lσ

as,(p;p1,...,pm)

m∏
j=1

(
ε+

∥∥xj∥∥
pj ,σ

)
.

Since this is true for all ε > 0, we obtain∥∥S0

(
u0

1

(
x1
)
, ..., u0

m (xm)
)∥∥ ≤ ‖T‖Lσ

as,(p;p1,...,pm)

∥∥x1
∥∥
p1 ,σ

.... ‖xm‖pm ,σ .

It follows that S0 is continuous on u0
1(X1) × ... × u0

m(Xm) and has a unique extension S

to u0
1(X1)× ...× u0

m(Xm) = G1 × ...×Gm with ‖S‖ ≤ ‖T‖Lσ
as,(p;p1,...,pm)

.

Finally, note that T = S ◦ (u1, ..., um) where uj ∈ Ppj ,σ(Xj , Gj), (1 ≤ j ≤ m), S ∈
L(G1, ..., Gm;Y ) and

‖S‖
∏m
j=1 πpj,σ (uj) ≤ ‖T‖Lσ

as,(p;p1,...,pm)
.

This completes the proof.
�

Remark 3.7. Since Ppj ,σ is a Banach operator ideal (1 ≤ j ≤ m), (see [16]), the space
Lσas,(p;p1,...,pm) = L ◦ (Pp1,σ, ...,Ppm,σ) is a Banach multi-ideal [9, Theorem 2.2.2].

Example 3.8. Let p > 1, 0 < σ < 1 such that p∗ < p
1−σ . Let S ∈ L

(
` p

1−σ
, ..., ` p

1−σ
; ` p

1−σ

)
and u ∈ L(`p∗ , ` p

1−σ
) defined by u(ei) = (1

i )
1
p ei where (ei)∞i=1 be the vector unit basis of lp∗ .

The m-linear operator T ∈ L
(
`p∗ , ..., `p∗ ; ` p

1−σ

)
given by T = S ◦ (u, ..., u) is absolutely

( pm ; p, ..., p;σ)-continuous but it is not absolutely ( pm ; p, ..., p)-summing. In order to see

this, note that by [13, Ex. 1.9] we have u ∈ Pp,σ(`p∗ , ` p
1−σ

) and u /∈ Πp

(
`p∗ , ` p

1−σ

)
then by

the factorization theorems for the classes Lσas,(p;p1,...,pm) and Las,(p;p1,...,pm) (Theorem 3.6
and Proposition 1.4) we get the result.

4. Connection with tensor products

In this section we introduce a reasonable crossnorm (see [24, p. 127]) on X1 ⊗ ... ⊗
Xm ⊗ Y in such way that the topological dual of this normed space is isometric to
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(Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗), ‖.‖Lσ
as,(p;p1,...,pm)

). Our aim is to show that the represen-

tation of our multi-ideal by as a dual of a topological tensor product holds exactly for this
tensor norm. Let u ∈ X1 ⊗ ... ⊗ Xm ⊗ Y. For 1 ≤ p, p1, ..., pm, r < ∞, 0 ≤ σ < 1 with
1
p = 1

p1
+ ...+ 1

pm
and 1

r + 1−σ
p = 1, we consider

βp,σ(u) = inf
∏m
j=1 δpjσ((xji )

n
i=1) ‖(yi)ni=1‖r

where the infimum is taken over all representations of u of the form

u =
n∑
i=1

x1
i ⊗ ...⊗ xmi ⊗ yi

with xji ∈ Xj , yi ∈ Y, i = 1, ..., n, j = 1, ...,m and n,m ∈ N.

Proposition 4.1. βp,σ is a reasonable crossnorm and ε ≤ βp,σ, where ε, denotes the
injective norm on X1 ⊗ ...⊗Xm ⊗ Y.

Proof. Let u′, u′′ ∈ X1 ⊗ ...⊗Xm ⊗ Y, and let ε > 0. Choose representations of u′ and u′′

of the form

u′ =
n′∑
i=1
x′1i ⊗ ...⊗ x′mi ⊗ y′i, u′′ =

n′′∑
i=1
x′′1i ⊗ ...⊗ x′′mi ⊗ y′′i

such that

βp,σ(u′)+ε ≥
m∏
j=1

δpjσ((x′ji )n
′
i=1).

∥∥∥(y′i)
n′
i=1

∥∥∥
r

and βp,σ(u′′)+ε ≥
m∏
j=1

δpjσ((x′′ji )n
′′
i=1).

∥∥∥(y′′i )n
′′
i=1

∥∥∥
r

we can write u′, u′′ in the following way

u′ =
n′∑
i=1

z′1i ⊗ ...⊗ z′mi ⊗ t′i, u′′ =
n′′∑
i=1

z′′
1

i ⊗ ...⊗ z′′mi ⊗ t′′i

with

z′ji = (βp,σ(u′)+ε)
1−σ
pj

δpjσ((x′ji )n
′
i=1)

x′ji , j = 1, ...,m, i = 1, ..., n′,

t′i =
∏m
j=1 δpjσ

(
(x′ji )n

′
i=1

)
(βp,σ(u′)+ε)

1−σ
p

y′i, i = 1, ..., n′,

z′′
j

i = (βp,σ(u′′)+ε)
1−σ
pj

δpjσ((x′′ji )n
′′
i=1)

x′′ji , j = 1, ...,m, i = 1, ..., n′′,

t′′i =
∏m
j=1 δpjσ

(
(x′′ji )n

′′
i=1

)
(βp,σ(u′′)+ε)

1−σ
p

y′′i , i = 1, ..., n′′.

It follows that
δpjσ((z′ji )n

′
i=1) = (βp,σ(u′) + ε)

1−σ
pj and

∥∥∥(t′i)
n′
i=1

∥∥∥
r
≤ (βp,σ(u′) + ε)

1
r , j = 1, ...,m,

δpjσ((z′′ji )n
′′
i=1) = (βp,σ(u′′) + ε)

1−σ
pj and

∥∥∥(t′′i )
n′′
i=1

∥∥∥
r
≤ (βp,σ(u′′) + ε)

1
r , j = 1, ...,m.

Thus∏m
j=1 δpjσ((z′ji )n

′
i=1).

∥∥∥(t′i)
n′
i=1

∥∥∥
r
≤ βp,σ(u′) + ε ≤ βp,σ(u′) + βp,σ(u′′) + ε,∏m

j=1 δpjσ((z′′ji )n
′′
i=1).

∥∥∥(t′′i )
n′′
i=1

∥∥∥
r
≤ βp,σ(u′′) + ε ≤ βp,σ(u′) + βp,σ(u′′) + ε.

The two last inequalities implies that

βp,σ(u′ + u′′) ≤ βp,σ(u′) + βp,σ(u′′) + ε,∀ε > 0.

Hence the triangular inequality is proved for βp,σ. It is easy to see that βp,σ(λu) =
|λ|βp,σ(u) for all u ∈ X1 ⊗ ...⊗Xm ⊗ Y and λ ∈ K.
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Let u =
n∑
i=1

x1
i ⊗ ...⊗xmi ⊗ yi ∈ X1⊗ ...⊗Xm⊗Y. By Hölder’s inequality and (2.1) we get

ε(u) = sup
{∣∣∣∣ n∑

i=1
φ1(x1

i )...φm(xmi )ψ(yi)
∣∣∣∣ ;φj ∈ BX∗j , ψ ∈ BY ∗}

≤ sup
φj∈BX∗

j

∥∥∥(φ1(x1
i )...φm(xmi )

)n
i≤=1

∥∥∥
p

1−σ

‖(yi)ni=1‖r

≤
∏m
j=1

∥∥∥(xji )
n
i=1

∥∥∥ pj
1−σ ,ω

‖(yi)ni=1‖r
≤

∏m
j=1 δpjσ((xji )

n
i=1) ‖(yi)ni=1‖r

Since is holds for every representation of u, consequently ε(u) ≤ βp,σ(u). Thus βp,σ(u) = 0
imply u = 0. Hence βp,σ is a norm on X1 ⊗ ...⊗Xm ⊗ Y.
It is clear that βp,σ(x1 ⊗ ... ⊗ xm ⊗ y) ≤

∥∥x1
∥∥ ... ‖xm‖ ‖y‖ for every xj ∈ Xj , j = 1, ...,m

and y ∈ Y.
Let φj ∈ X∗j with φj 6= 0, j = 1, ...,m, let ψ ∈ Y ∗ and let u =

n∑
i=1

x1
i ⊗ ...⊗ xmi ⊗ yi.

Then an application of Hölder’s inequality yields

|φ1 ⊗ ...⊗ φm ⊗ ψ(u)| =

∣∣∣∣∣φ1 ⊗ ...⊗ φm ⊗ ψ(
n∑
i=1

x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣∣∣∣
≤

n∑
i=1

∣∣φ1(x1
i )...φm(xmi )ψ(yi)

∣∣ ≤ m∏
j=1

(
n∑
i=1

∣∣∣φj(xji )∣∣∣ pj1−σ

) 1−σ
pj

‖(ψ(yi))
n
i=1‖r

≤ ‖φ1‖ ... ‖φm‖ ‖ψ‖
m∏
j=1

(
n∑
i=1

∣∣∣∣ φj‖φj‖(xji )
∣∣∣∣
pj

1−σ
) 1−σ

pj

‖(yi)ni=1‖r

≤ ‖φ1‖ ... ‖φm‖ ‖ψ‖
m∏
j=1

δpjσ((xji )
n
i=1) ‖(yi)ni=1‖r .

From which it follows that |φ1 ⊗ ...⊗ φm ⊗ ψ(u)| ≤ ‖φ1‖ ... ‖φm‖ ‖ψ‖βp,σ(u). Therefore
φ1 ⊗ ...⊗ φm ⊗ψ is bounded and satisfies ‖φ1 ⊗ ...⊗ φm ⊗ ψ‖ ≤ ‖φ1‖ ... ‖φm‖ ‖ψ‖ and we
have shown that βp,σ is a reasonable crossnorm. �

In particular, note that when m = 1, the norm βp,σ is reduced to the norm dp,σ on X1⊗Y
was introduced by López Molina and Sánchez Pérez in [13]. In what follows we consider
the tensor product of linear operators in connection with the reasonable crossnorm βp,σ.
We show that the reasonable crossnorm βp,σ is actually a tensor norm [24, p. 127].

Proposition 4.2. Let Xj , Yj , X, Y be Banach spaces, and T ∈ L(X,Y ), Tj ∈ L(Xj , Yj),
(j = 1, ...,m) . Then there is a unique continuous linear operator
T1 ⊗βp,σ ... ⊗βp,σ Tm ⊗βp,σ T from

(
X1⊗̂...⊗̂Xm⊗̂X,βp,σ

)
into

(
Y1⊗̂...⊗̂Ym⊗̂Y, βp,σ

)
such that

T1 ⊗βp,σ ...⊗βp,σ Tm ⊗βp,σ T (x1 ⊗ ...⊗ xm ⊗ x) = (T1x
1)⊗ ...⊗ (Tmxm)⊗ (Tx)

for every xj ∈ Xj , (j = 1, ...,m) and x ∈ X. Moreover∥∥T1 ⊗βp,σ ...⊗βp,σ Tm ⊗βp,σ T
∥∥ = ‖T1 ⊗ ...⊗ Tm ⊗ T‖ = ‖T‖

m∏
j=1

‖Tj‖ .

Proof. By [24, p.7] there is a unique linear operator

T1 ⊗ ...⊗ Tm ⊗ T : (X1 ⊗ ...⊗Xm ⊗X)→ (Y1 ⊗ ...⊗ Ym ⊗ Y )
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such that T1 ⊗ ... ⊗ Tm ⊗ T (x1 ⊗ ... ⊗ xm ⊗ x) = (T1x
1) ⊗ ... ⊗ (Tmxm) ⊗ (Tx) for every

xj ∈ Xj , j = 1, ...,m and x ∈ X. We may suppose Tj 6= 0, j = 1, ...,m and T 6= 0. Let
u =

∑n
i=1 x

1
i ⊗ ... ⊗ xmi ⊗ xi ∈ X1 ⊗ ... ⊗ Xm ⊗ X, hence the sum

∑n
i=1

(
T1x

1
i

)
⊗ ... ⊗

(Tmxmi )⊗ (Txi) is a representation of T1 ⊗ ...⊗ Tm ⊗ T (u) in Y1 ⊗ ...⊗ Ym ⊗ Y. Then, for
every 1 ≤ p, p1, ..., pm, r <∞, 0 ≤ σ < 1 with 1

p = 1
p1

+ ...+ 1
pm

and 1
r + 1−σ

p = 1, we have

βp,σ (T1 ⊗ ...⊗ Tm ⊗ T (u)) ≤
m∏
j=1

δpjσ((Tjx
j
i )
n
i=1) ‖(Txi)ni=1‖r

≤ ‖T‖
m∏
j=1

‖Tj‖
m∏
j=1

δpjσ((xji )
n
i=1) ‖(xi)ni=1‖r .

Since this holds for every representation of u, we obtain

βp,σ (T1 ⊗ ...⊗ Tm ⊗ T (u)) ≤ ‖T‖
m∏
j=1

‖Tj‖βp,σ(u).

So that the linear operator

T1 ⊗ ...⊗ Tm ⊗ T : (X1 ⊗ ...⊗Xm ⊗X,βp,σ)→ (Y1 ⊗ ...⊗ Ym ⊗ Y, βp,σ)

is continuous and we have ‖T1 ⊗ ...⊗ Tm ⊗ T‖ ≤ ‖T‖
m∏
j=1
‖Tj‖ .

On the other hand, as βp,σ is an reasonable crossnorm we get that

‖Tx‖
∏m
j=1

∥∥Tjxj∥∥ = βp,σ
(
(T1x

1)⊗ ...⊗ (Tmxm)⊗ (Tx)
)

≤ ‖T1 ⊗ ...⊗ Tm ⊗ T‖βp,σ
(
x1 ⊗ ...⊗ xm ⊗ x

)
≤ ‖T1 ⊗ ...⊗ Tm ⊗ T‖ ‖x‖

∏m
j=1

∥∥xj∥∥ .
Thus ‖T1 ⊗ ...⊗ Tm ⊗ T‖ ≥ ‖T‖

∏m
j=1 ‖Tj‖ and therefore ‖T1 ⊗ ...⊗ Tm ⊗ T‖ = ‖T‖

m∏
j=1
‖Tj‖ .

Now taking the unique continuous extension of the operator T1 ⊗ ... ⊗ Tm ⊗ T to the
completions of X1 ⊗ ... ⊗ Xm ⊗ X and Y1 ⊗ ... ⊗ Ym ⊗ Y which we denote by T1 ⊗βp,σ
... ⊗βp,σ Tm ⊗βp,σ T we obtain a unique linear operator from

(
X1⊗̂...⊗̂Xm⊗̂X,βp,σ

)
into(

Y1⊗̂...⊗̂Ym⊗̂Y, βp,σ
)

with the norm
∥∥T1 ⊗βp,σ ...⊗βp,σ Tm ⊗βp,σ T

∥∥ = ‖T‖
∏m
j=1 ‖Tj‖ .

�

Following the idea of [15, Th. 3.7] we prove the following result.

Theorem 4.3. The space (Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗) , ‖.‖Lσ
as,(p;p1,...,pm)

) is isometri-

cally isomorphic to (X1 ⊗ ...⊗Xm ⊗ Y, βp,σ)∗ through the mapping Ψ defined by

Ψ(T )(x1 ⊗ ...⊗ xm ⊗ y) = T (x1, ..., xm)(y),

for every T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗) , xj ∈ Xj , j = 1, ...,m and y ∈ Y.

Proof. It is easy to see that the correspondence Ψ defined as above is linear. It rest to
shows the surjectivity and

‖Ψ(T )‖(X1⊗...⊗Xm⊗Y,βp,σ)∗ = ‖T‖Lσ
as,(p;p1,...,pm)

for all T in (Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗)).
Let φ ∈ (X1⊗ ...⊗Xm⊗Y, βp,σ)∗ define the m-linear mapping T ∈ L (X1, ..., Xm;Y ∗) , by

T (x1, ..., xm)(y) = φ(x1 ⊗ ...⊗ xm ⊗ y).



14 E. DAHIA, D. ACHOUR AND E. A. SÁNCHEZ PÉREZ

Let (x1
i , ..., x

m
i )ni=1 ⊂ X1×...×Xm. For each ε > 0, choose (yi)

n
i=1 ⊂ Y, ‖yi‖ = 1, j = 1, ...,m

such that

n∑
i=1

∥∥T (x1
i , ..., x

m
i )
∥∥ p

1−σ ≤ ε+
n∑
i=1

∣∣T (x1
i , ..., x

m
i )(yi)

∣∣ p
1−σ = (∗)

For a convenient choice of λi ∈ K, |λi| = 1, i = 1, ..., n we can write

(∗) = ε+
n∑
i=1

∣∣∣∣∣φ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣ p
1−σ−1

φ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣∣
= ε+

∣∣∣∣∣
n∑
i=1

∣∣φ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣ p
1−σ−1

λiφ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣∣∣∣
= ε+

∣∣∣∣∣φ
(

n∑
i=1

λi
∣∣φ(x1

i ⊗ ...⊗ xmi ⊗ yi)
∣∣ p
1−σ−1

x1
i ⊗ ...⊗ xmi ⊗ yi

)∣∣∣∣∣
≤ ε+ ‖φ‖βp,σ

(
n∑
i=1

λi
∣∣φ(x1

i ⊗ ...⊗ xmi ⊗ yi)
∣∣ p
1−σ−1

x1
i ⊗ ...⊗ xmi ⊗ yi

)

≤ ε+ ‖φ‖
m∏
j=1

δpjσ((xji )
n
i=1)

∥∥∥(λi ∣∣φ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣ p
1−σ−1

yi

)n
i=1

∥∥∥
r

= ε+ ‖φ‖
m∏
j=1

δpjσ((xji )
n
i=1)

(
n∑
i=1

∣∣φ(x1
i ⊗ ...⊗ xmi ⊗ yi)

∣∣( p
1−σ−1)r

) 1
r

≤ ε+ ‖φ‖
m∏
j=1

δpjσ((xji )
n
i=1)

(
n∑
i=1

∥∥T (x1
i , ..., x

m
i )
∥∥( p

1−σ−1)r
) 1

r

.

Since ε is arbitrary and ( p
1−σ − 1)r = p

1−σ , these inequalities imply(
n∑
i=1

∥∥T (x1
i , ..., x

m
i )
∥∥ p

1−σ

) 1−σ
p

≤ ‖φ‖
m∏
j=1

δpjσ((xji )
n
i=1)

showing that
T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗)

and
‖T‖Lσ

as,(p;p1,...,pm)
≤ ‖φ‖ = ‖Ψ(T )‖(X1⊗...⊗Xm⊗Y,βp,σ)∗ .

In order to establish the reverse inequality, we take T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ∗) ,
and let

u =
n∑
i=1

x1
i ⊗ ...⊗ xmi ⊗ yi ∈ X1 ⊗ ...⊗Xm ⊗ Y,

where m ∈ N, (xji )ni=1 ⊂ Xj , (yi)ni=1 ⊂ Y, j = 1, ...,m. Hence, by Hölder’s inequality it
follows that

|Ψ(T )(u)| =
∣∣∣∣ n∑
i=1
T (x1

i , ..., x
m
i )(yi)

∣∣∣∣
≤

∥∥(T (x1
i , ..., x

m
i )
)n
i=1

∥∥
p

1−σ
‖(yi)ni=1‖r

≤ ‖T‖Lσ
as,(p;p1,...,pm)

∏m
j=1 δpjσ((xji )

n
i=1) ‖(yi)ni=1‖r .
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So |Ψ(T )(u)| ≤ ‖T‖Lσ
as,(p;p1,...,pm)

· βp,σ(u). Since u is arbitrary it follows that

‖Ψ(T )‖(X1⊗...⊗Xm⊗Y,βp,σ)∗ ≤ ‖T‖Lσ
as,(p;p1,...,pm)

.

Now we are ready to introduce a new formula of the tensor norm βp,σ in such way
that we characterize the space of absolutely (p; p1, ..., pm;σ)-continuous multilinear forms.
Let u ∈ X1 ⊗ ...⊗Xm ⊗ Y. For 1 ≤ p, p1, ..., pm, r <∞, 0 ≤ σ < 1 with 1

p = 1
p1

+ ...+ 1
pm

and 1
r + 1−σ

p = 1, we consider

ν̃p,σ(u) = inf ‖(λi)ni=1‖r
∏m
j=1 δpjσ((xji )

n
i=1) ‖(yi)ni=1‖∞

taking the infimum over all representations of u of the form

u =
n∑
i=1

λix
1
i ⊗ ...⊗ xmi ⊗ yi

with (xji )
n
i=1 ⊂ Xj , (yi)ni=1 ⊂ Y, (λi)ni=1 ⊂ K, j = 1, ...,m and n,m ∈ N.

�

Proposition 4.4. We have ν̃p,σ(u) = βp,σ(u) for all u ∈ X1 ⊗ ...⊗Xm ⊗ Y.

Proof. We note first that every representation of u of the form
n∑
i=1

λix
1
i ⊗ ...⊗ xmi ⊗ yi can

be written as
n∑
i=1

x1
i ⊗ ...⊗ xmi ⊗ (λiyi) and hence

βp,σ(u) ≤
∏m
j=1 δpjσ((xji )

n
i=1) ‖(λiyi)ni=1‖r

≤
∏m
j=1 δpjσ((xji )

n
i=1) ‖(λi)ni=1‖r ‖(yi)

n
i=1‖∞

from which it follows that βp,σ(u) ≤ ν̃p,σ(u).

On the other hand, let
n∑
i=1

x1
i ⊗ ... ⊗ xmi ⊗ yi be a representation of u. We can write u

as
n∑
i=1

λix
1
i ⊗ ... ⊗ xmi ⊗ zi, where λi = ‖yi‖ and ‖zi‖ ≤ 1 for every i = 1, ..., n. Then

ν̃p,σ(u) ≤ ‖(yi)ni=1‖r
∏m
j=1 δpjσ((xji )

n
i=1) and hence ν̃p,σ(u) ≤ βp,σ(u).

�

Remark 4.5. Making F = K, in Theorem 4.3 we obtain that for every family of Banach
spaces X1, ..., Xm, the space of absolutely (p; p1, ..., pm;σ)-continuous multilinear forms

(Lσas,(p;p1,...,pm) (X1, ..., Xm) , ‖.‖Lσ
as,(p;p1,...,pm)

)

is isometric to (X1 ⊗ ...⊗Xm ⊗K, ν̃p,σ)∗.

We recall that by the universal property of tensor products [11, Th. 1.6.2], there is
an algebraic isomorphism between the m-linear mapping from X1 × ... ×Xm into Y and
the linear mapping from X1 ⊗ ...⊗Xm into Y . To each m-linear mapping T corresponds
the linear mapping T̃ such that

T̃ (x1 ⊗ ...⊗ xm) = T (x1, ..., xm)

for every xj ∈ Xj , j = 1, ...,m.
In Proposition 4.1 if we take Y = K, then we identify X1 ⊗ ... ⊗ Xm ⊗ K with

X1⊗ ...⊗Xm, and in this case the corresponding tensor norm will be denoted by νp,σ and
can be described as follows:

νp,σ(u) = inf ‖(λi)ni=1‖r
∏m
j=1 δpjσ((xji )

n
i=1)
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where the infimum is taken over all representations of u ∈ X1 ⊗ ... ⊗ Xm of the form

u =
n∑
i=1

λix
1
i ⊗ ...⊗ xmi with (λi)ni=1 ⊂ K, (xji )ni=1 ⊂ Xj , j = 1, ...,m.

The next theorem and its proof are similar to Theorem 4.3.

Theorem 4.6. (Lσas,(p;p1,...,pm) (X1, ..., Xm) , ‖.‖Lσ
as,(p;p1,...,pm)

) is isometrically isomorphic

to (X1 ⊗ ...⊗Xm, νp,σ)∗ through the mapping T 7→ T̃ .

A consequence of Remark 4.5 and Theorem 4.6 we see that (X1 ⊗ ...⊗Xm ⊗K, βp,σ)∗

is isometric to (X1 ⊗ ...⊗Xm, νp,σ)∗.

5. Some Applications

5.1. Compactness and absolutely (p; p1, ..., pm;σ)-continuous multilinear opera-
tors on reflexive Banach spaces. Compactness and weak compactness of multilinear
maps is in general a property that is not easy to characterize, and it is nowadays not
very well known. In what follows we prove that under certain summability conditions
we can assure that the multilinear map is compact, obtaining in this way some sufficient
automatic conditions for compactness of multilinear maps. We relax the requirements
that are necessary for the case of p-summing multilinear maps by using Theorem 3.5 and
the factorization theorem for the class of absolutely (p; p1, ..., pm;σ)-continuous multilinear
operators that we have proved (Theorem 3.6).

Proposition 5.1. Let 0 ≤ σ < 1, 1 ≤ p < ∞ and X be a Banach space. The inclu-
sion/quotient map i : X → Lp,σ(η) is completely continuous.

Proof. Clearly, the map i can be isometrically factorized through its identification with
the subspace M = iX(X) of C(BX∗), and so we have

X
i //� o

i0   @
@@

@@
@@

@ Lp,σ(η)

M

i1

;;wwwwwwwww

Take a sequence (xn) in X converging weakly to zero. Then for each x∗ ∈ X∗ we have that
(〈xn, x∗〉)n converges to 0. But this means that the sequence (〈xn, ·〉)n converges pointwise
to 0. Consider the functions |〈xn, ·〉|p‖xn‖

pσ
1−σ . Clearly, they converge to 0 too, and its

sequence is order bounded in L1(η) by the η-integrable function supn ‖xn‖
p

1−σχBX∗ . The
Dominated Convergence Theorem gives that limn

∫
BX∗
|〈xn, ·〉|p‖xn‖

pσ
1−σ = 0. Therefore,

since

‖ [〈xn, ·〉] ‖
p

1−σ
Lp,σ
≤
∫
BX∗
|〈xn, ·〉|p‖xn‖

pσ
1−σ

we obtain that ‖ [〈xn, ·〉] ‖Lp,σ →n 0. The result is proved. �

Corollary 5.2. Let Y a Banach space, 0 ≤ σ < 1 and 1 ≤ p, p1, ..., pm <∞ with 1
p = 1

p1
+

...+ 1
pm

and let X1, ..., Xm be reflexive Banach spaces. If T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ),
then T is compact.

Proof. It is a consequence of Theorem 3.6 and the previous proposition. �

As a consequence of the factorization properties of compact bilinear maps that can be
found in [22] and [23], we obtain the following
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Corollary 5.3. Let Z be a Banach space, 0 ≤ σ < 1 and 1 ≤ p, q, r <∞ with 1
p = 1

q + 1
r

and let X,Y be reflexive Banach spaces. If T ∈ Lσas,(p;q,r) (X,Y ;Z) , then T factorizes
through a (closed) subspace of c0 by means of a compact bilinear map and a compact
linear map.

For the proof, see Theorem 3, Theorem 5 and Corollary 6 in [23].

Corollary 5.4. Let X,Y be reflexive Banach spaces and T ∈ Lσas,(p;q,r) (X,Y ; c0). Then
T can be written as T (x, y) = (bn(x, y))n for a norm null sequence (bn)n of continuous
bilinear forms.

Proof. It is a consequence of Proposition 8 in [23]. �

The dependence of the fact that an m-linear map belongs to a multi-ideal if it factorizes
through m-linear maps that belong to the corresponding linear ideal can be found in [6].
It is said that this happens for the case of compact bilinear maps and for weakly compact
bilinear maps. So we can our results in the case of operators that are defined on reflexive
spaces. As a consequence of the main Theorem in [4] and Proposition 5.1, we obtain the
following result (see also [1, 3]).

Corollary 5.5. Let Y be a Banach space, 0 ≤ σ < 1, 1 ≤ p, p1, ..., pm <∞ with 1
p = 1

p1
+

...+ 1
pm

and let X1, ..., Xm be reflexive Banach spaces. If T ∈ Lσas,(p;p1,...,pm) (X1, ..., Xm;Y ),
then T is weak-to-norm continuous on bounded sets.

5.2. Absolutely continuous bilinear maps on Banach function spaces. Further
domination requirements for the transpose of the p-summing operators provide the well-
known class of the (p, q)-dominated operators. In the interpolated case of the absolutely
(p, σ)-continuous operators the same construction provides also the class of the (p, σ, q, ν)-
dominated operators, which is also well-known, specially regarding its domination and
factorization properties [13] as well as their tensor product representation (see [25]).

Consider a couple of indexes 1 ≤ p1, p2 < ∞ such that 1
p1

+ 1
p2
≤ 1. Define r by

(1−σ)
p1

+ (1−σ)
p2

= 1/r. An operator T : X → Y is said to be (p1, σ, p2, σ)-dominated if T
can be dominated as

〈T (x), y∗〉 ≤ C ‖x‖σ ‖S1(x)‖1−σ ‖y∗‖σ ‖S2(y∗)‖1−σ, C > 0

for every x ∈ E and y∗ ∈ Y ∗, where S1 : X → G1 and S2 : Y ∗ → G2 are p1-summing
and p2-summing operators on Banach spaces G1 and G2, respectively. It can be also be
defined by means of the following condition: if there exist C > 0 such that for every finite
sequence x1, ..., xn ∈ X and y∗1, ..., y

∗
n ∈ Y ∗

‖(〈T (xi), y∗i 〉)
n
i=1‖r ≤ Cδp1,σ((xi)ni=1) · δp2,σ((y∗i )

n
i=1)

This kind of domination is in fact the same thing that characterizes that BT , the bilinear
operator associated to T , is absolutely (r(1− σ); p1, p2;σ)-continuous. This provides the
domination (see [13, Th. 2.4])

|〈T (x), y∗〉| ≤ C(
∫
BX∗

(|〈x, x∗〉|1−σ ‖x‖σ)
p1

1−σ dη1)
1−σ
p1 ·(

∫
BY ∗∗

(| 〈y∗, y∗∗〉1−σ ‖y∗‖σ dη2)
p2

1−σ )
1−σ
p2 ,

where η1 and η2 are Radon measures on the corresponding unit balls.
After Theorem 3.5, we can find the following factorization scheme for the (p1, σ, p2, σ)-

dominated operators (we use the same notation that in Theorem 3.5). Consider a (p1, σ, p2, σ)-
dominated operator T : X → Y . Then there are regular Borel probability measures η1
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and η2 on BX∗ and BY ∗∗ , respectively, such that T factorizes as

X
T−→ Y

i ↓ ↑ T̃
M1

i−→ S1

and T ∗ factorizes as

Y ∗
T ∗−→ X∗

i ↓ ↑ T̃ ∗

M2
i−→ S2

where S1 ⊆ Lp1,σ(η1) and S2 ⊆ Lp2,σ(η2) are the subspaces appearing in Theorem 3.5.
In fact, our multilinear factorization result Theorem 3.6 gives that the bilinear form BT
associated to T factorizes as

X × Y ∗ → S1 × S2 → R.
In the case of operators defined between Banach lattices, and as a consequence of

our results, more can be said on the factorization schemes for (p1, σ, p2, σ)-dominated
operators. In order to do this, let us introduce now some notions regarding Banach
function spaces. Let (Ω,Σ, µ) a σ-finite measure space. Let L0(µ) be the space of classes
of µ-a.e. measurable functions. We consider a Banach function space X(µ) ⊆ L0(µ) in
the sense of [12, p.28], i.e. a Banach ideal of locally integrable functions containing all the
characteristic functions of sets of finite measure (see also this text or [17] for the definition
of order continuity and the Fatou property and the main results regarding this class of
Banach lattices). We write X for short if the measure is clear in the context, and X(µ)′

for the Köthe dual of X, i.e. the elements of the dual space that can be represented as
integrals of measurable functions. Assume that the Banach function space X(µ) is also
p-convex. In this case, it is well-known that the p-th power space of X that is defined as

X[p] := {f ∈ L0(µ) : |f |1/p ∈ X(µ)}

with the quasi-norm ‖f‖X[p]
:= ‖|f |1/p‖pX(µ), is a Banach function space with a norm that

is equivalent to ‖f‖X[p]
when X is p-convex (see Proposition 2.23 in [17] and the same

book for the definitions and main results on p-th powers). As in the case of the spaces
Lp,σ that we have defined in the previous sections, we can define the interpolation space
(X(µ), Lp(ν))σ, where ν is absolutely continuous with respect to µ and X(µ) ↪→ Lp(ν) is
the corresponding inclusion quotient map, is well defined. Then the expression

‖f‖p,σ := inf
n∑
i=1

‖x‖σ(
∫
|f |pdν)

1−σ
p

for f ∈ X, where the infimum is defined over all decomposition in X as
n∑
i=1
fi = f , is

a seminorm on X. We write (X(µ), Lp(ν))σ for the corresponding quotient space and
i : X(µ)→ (X(µ), Lp(ν))σ for the inclusion/quotient map.

Let X(µ) be a Banach function space, let E be a Banach space and let T : X(µ)→ E
be an operator. Let 1 ≤ p < ∞ and let 0 ≤ σ < 1. We say that T is pσ-concave (see
[27, Def. 3.1]) if there is a constant C > 0 such that for every finite sequence of functions
f1, ..., fn ∈ X(µ), it holds

‖(T (fi))
n
i=1‖ p

1−σ
≤ C

∥∥∥∥∥∥
(

n∑
i=1

(|fi|1−σ‖fi‖σ)
p

1−σ

) 1
p

∥∥∥∥∥∥ .1−σ
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These operators are characterized as the ones that allow a domination by means of an
interpolation formula as follows (see Theorem 3.4 in [27]). Suppose that X(µ) is order
continuous. An operator T : X(µ)→ E is pσ-concave if and only if there is an nonnegative
element ϕ ∈ (X(µ)[p])′ such that for every f ∈ X(µ),

‖T (f)‖ ≤ (
∫
|f |pϕdµ)

1−σ
p ‖f‖σX .

A (p, σ)-absolutely continuous operator is always pσ-concave. This can be proved easily
using Proposition 1.d.9 in [12] (see Example 3.3 in [27]). This result can be extended
to the case of multilinear maps using the same inequalities. Let 1/p = 1/p1 + 1/p2 and
0 ≤ σ < 1 such that p

1−σ ≥ 1. It can be easily shown that every (p1, σ, p2, σ)-dominated
operator satisfies that there is a constant C > 0 such that for every f1, ..., fn ∈ X(µ) and
g∗1, ..., g

∗
n ∈ Y ∗(ν),∥∥(〈T (fi), g∗i 〉)

n
i=1

∥∥
p

1−σ

≤ C.

∥∥∥∥(∑n
i=1

(
|fi|1−σ‖fi‖σ

) p1
1−σ
) 1
p1

∥∥∥∥1−σ

X

∥∥∥∥(∑n
i=1

(
|g∗i |1−σ‖g∗i ‖σ

) p2
1−σ
) 1
p2

∥∥∥∥1−σ

Y ∗

We will say that such an operator satisfies a (p1, σ, p2, σ)-concave domination.

Theorem 5.6. Let T : X(µ)→ Y (ν) be an operator between the order continuous Banach
function space X(µ) and the Banach function space with the Fatou property Y (ν) such that
its Köthe dual is order continuous. Assume also that X(µ) is p1-convex and Y (ν) is p∗2-
concave for 1 ≤ p <∞. Let 0 ≤ σ < 1. The following statements are equivalent.

(i) The operator T satisfies a (p1, σ, p2, σ)-concave domination.
(ii) There is a couple of functions f ′ ∈ X(µ)′ and g ∈ Y (µ) such that for all f ∈ X(µ)

and g∗ ∈ Y ∗(ν),

|〈T (f), g∗〉| ≤
(∫
|f |p1 f ′dµ

) 1−σ
p1

‖f‖σX
(∫
|g∗|p2 gdν

) 1−σ
p2

‖g∗‖σY ∗

(iii) There is a factorization for T as

E
T //

i

��

F

(X,Lp1(f0µ))σ
T̂ // ((Y ′, Lp2(g0ν))σ)∗

i′

OO

Consequently, each operator as above satisfying that the associated bilinear form is
(p; p1, p2;σ)-absolutely continuous factorizes as in (iii).

Proof. For the equivalence between (i) and (ii) it can be used the same argument based in
Ky Fan’s Lemma that proves Theorem 1 of [8]; for obtaining the right inequalities from the
ones given in (i), see also the proof of Theorem 3.4 of [27] that leads to the linear version
of our result. Notice that the assumptions of X being p1-convex and Y being p∗2-concave
(and so Y ∗ is p2-convex) is necessary for proving it. Also the requirements on the order
continuity and the Fatou property, that allows to assure that X∗ = Y ′, Y ′∗ = Y ′′ and
Y ′′ = Y .
Let us prove (ii) ⇒ (iii). Clearly, the assumptions on T allows to extend the bilinear form
Φ(f, g) := 〈T (f), g〉 as

X(µ)× Y ′(ν)→ (X,Lp1(f0µ))σ × (Y ′, Lp2(g0ν))σ → R.
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with a continuous bilinear form Φ̂ : (X,Lp1(f0µ))σ × (Y ′, Lp2(g0ν))σ → R. Therefore we
can define the map TΦ̂ : (X,Lp1(f0µ))σ → ((Y ′, Lp2(g0ν))σ)∗ by 〈TΦ̂(x), y′〉 := Φ̂(x, y′).
We have that i : Y ′ → (Y ′, Lp2(g0ν))σ, and so i′ : (Y ′, Lp2(g0ν))∗σ → (Y ′)∗. Since Y ′ is
order continuous, (Y ′)∗ = Y ′′ and the Fatou property of Y gives Y ′′ = Y . Consequently,
the factorization is obtained for T̂ := TΦ̂. The converse implication is obvious. �

Remark 5.7. More applications in this setting can be obtained regarding the positive
version of the absolutely (p, σ)-continuous operators and their multilinear extensions. For
example, boundedness properties for the associated bilinear form of an operator as the ones
provided by the absolutely (p, σ)-continuous operators for the integration map associated
to a vector measure provide information about the containment of an interpolated space
into the space of integrable functions with respect to m (see [7]). The same technique
that we have shown above should provide also the corresponding result for the multilinear
case.

EL-Hadj Dahia acknowledges with thanks the support of the Ministère Algérienne de
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of sequences, Math. Nachr. 279, 15, 1709-1722 (2006)
[27] P. Saphar, Produits tensoriels d’espaces de Banach et classes d’applications linéaires, Studia Math.
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