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Abstrat

In-phase and out-of-phase osillations have been observed in BWR reators. To

improve the safety of these reators it is neessary to detet in a reliable way these

osillations from the neutroni signals. In this paper, a methodology to deompose

the neutroni signals in its modal amplitudes is proposed. Usually, to ompute this

deomposition the Lambda eigenfuntions are used as expansion funtions and their

adjoint modes are used as weight fators. Di�erent approahes using the Alpha

modes are investigated to obtain the LPRM signals modal deomposition for a BWR

unstability event. The alulation of Alpha eigenmodes is reviewd and the osillation

parameters for the modal deomposition of the neutroni signals from Ringhals NPP

have been alulated.

Key words: Lambda Modes, Alpha Modes, BWR reators stability, LPRM

readings.

1 Introdution

Several events have been observed in BWR nulear power reators where fully

developed osillations were present in the neutroni power measured by the

LPRM detetors installed in the reator ore. Some of these events were in-

voluntary and other ones were indued intentionally as experiments. Mainly,

BWR neutroni osillations have been lassi�ed as in-phase osillations, where
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Fig. 1. LPRMs disposition in an axial plane for Ringhals 1 reator.

the whole ore osillates together. And the out-of-phase osillations, where half

of the ore behaves out-of-phase from the other half. A modal interpretation

has given for the in-phase and the out-of-phase osillations of a BWR reator,

assoiating the in-phase osillations with the amplitude of the fundamental

mode of the reator. The out-of-phase osillations are interpreted as the on-

tribution of the subritial azimuthal modes amplitudes to the osillations

(Marh-Leuba and Rey, 1993).

For safe operation, it is desirable to have a monitoring system apable of

indiating the hange in neutron multipliation within the reator ore as

ritiality is approahed. The neutron monitoring system in a BWR makes

use of �ssion detetors inorporated in di�erent detetor systems: Start-up,

Intermediate and Loal Power Range (Morgan, 1970). The Loal Power Range

Monitoring (LPRM) subsystem is the most elaborate and omplex subsystem

of the neutron monitoring system. It is omposed of numerous in-ore �ssion

hambers, typially plaed in four axial planes of the reator ore, arranged

along an in-ore assembly. To provide ore wide overage, a geometrial array

of the in-ore assemblies is used. A typial array is shown in Fig. 1.

The neutroni power signals obtained from the Loal Power Range Moni-

tors are di�ult to analyse. Several tehniques exist to detet and lassify

the possible osillations in a BWR, as the one presented in (Van der Hagen

et al., 1994), where the out-of-phase osillations ontributions are separated

subtrating the ontributions of signals from LPRMs plaed in an opposite

diretion with respet to the symmetry line of the ore. The main disadvan-

tage of this method is that the determination of the symmetry line of the

ore is not an easy task, and to obtain aurate results, a large number of

instrumented LPRMs are needed. Other possibility is to use a modal deom-

position of the signals from the LPRMs in the ore (Verdú et al., 1998) using

the dominant Lambda modes previously omputed for a given on�guration

of the reator ore (Verdú et al., 1994). To use this tehnique it is neessary to
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ompute previously the dominant modes of a stati on�guration of the rea-

tor ore. This omputation is expensive from the omputational point of view

and requires a set of nulear ross-setions for the ore on�guration. In this

way, other options have been investigated that avoid this omputation. The

Prinipal Component Analysis (PCA), onsiders the signals provided by all

instrumented LPRMs onstruting an information matrix, and studying the

harateristis of the spetrum of the dominant singular values of this matrix

(Ginestar et al., 2006). Another option is the Independent Component Anal-

ysis (ICA) that omputes experimental modes for the LPRMs signals using a

statistial independene riterion (Ginestar et al., 2011).

Sine there is a physial interpretation for the amplitudes evolution of the

di�erent neutroni harmonis, espeially in the analysis of instability events,

a ombination of these tools beomes useful to analyse this kind of events, dis-

tinguishing the ontributions of the in-phase osillations and the out-of-phase

osillations. Apart from the Lambda modes other kind of modes an be de�ned

for the neutron di�usion equation, suh as the Alpha modes (time-eigenvalues

problem). The Alpha modes problem is basi in the �eld of nulear rea-

tor physis (Bell and Glasstone, 1970), and it is important for subritiality

ontinuous monitoring tehniques (see, for example, (Uhrig, 1970; Williams,

1974)). Reently, it has been proposed in Ref. Kobayashi (2005) to use the

quasi-stati method to solve time dependent soure problems using as weight

funtion the adjoint Alpha fundamental eigenmode, whih is shown to be

better than the adjoint Lambda eigenmode, espeially for the analysis of sub-

ritial systems. This is justi�ed beause the use of the adjoint Alpha modes

eliminates the �rst order error in the hange of the �ux introdued by the use

of the adjoint Lambda mode as weighting funtion.

The Alpha modes an be e�iently omputed for a ommerial reator (Verdú

et al., 2010), in this way, to omplete the set of tools available to analyse the

LPRM signals provided during an instability event, in this paper, di�erent

power modal deomposition methods using the Alpha modes are proposed

and ompared with the ones performed using the Lambda modes.

The rest of the paper is strutured as follows: setions 2 and 3 are devoted,

respetively, to review the Lambda modes, the Alpha modes and their proper-

ties. The di�erent modal deompositions proposed using the Lambda modes

and the Alpha modes are presented in setion 4. The results of the di�erent

modal deompositions performed for some of the LPRMs signals provided in

the Ringhals stability benhmark are shown in setion 5. Finally, the main

onlusions of the paper are summarized in setion 6.
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2 Lambda modes

To obtain the Lambda modes equation (Henry, 1982), our starting point is

the two-energy groups approximation of the neutron di�usion equation,

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

λdkCkχ ,

dCk
dt

= βkM1φ− λdkCk , k = 1, . . . , K, (1)

where

L =







−~∇
(

D1
~∇
)

+ Σa1 + Σ12 0

−Σ12 −~∇
(

D2
~∇
)

+ Σa2





 ,
(

v−1
)

=







1
v1

0

0 1
v2





 ,

(2)

and

M =







νΣf1 νΣf2

0 0





 , M1 =
(

νΣf1 νΣf2

)

, φ =







φ1

φ2





 , χ =







1

0





 .

(3)

Critiality an be fored by dividing the �ssion nulear ross setions by a

positive number, λ, obtaining the steady state equations

Lφ = (1− β)
M

λ
φ+

K
∑

k=1

λdkCkχ ,

0 = βk
M

λ
φ− λdkCkχ ,

that is,

Lφ = (1− β)
M

λ
φ+

K
∑

k=1

βk
M

λ
φ .

Taking into aount that

∑K
k=1 βk = β, we obtain the Lambda modes equation

Lφn =
1

λn
Mφn , (4)

where λn are the Lambda eigenvalues and φn their orresponding Lambda

modes. A stati on�guration of the reator is desribed by the dominant

Lambda eigenvalue, whih is the k-e�etive, and its orresponding eigenmode

desribes the stationary neutron �ux distribution in the reator ore.
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The adjoint problem assoiated with (4) is given by

L†φ†
n =

1

λn
M†φ†

n , (5)

where

L† =







−~∇
(

D1
~∇
)

+ Σa1 + Σ12 −Σ12

0 −~∇
(

D2
~∇
)

+ Σa2





 , M† =







νΣf1 0

νΣf2 0





 .

The Lambda modes, φn, and their adjoint Lambda modes, φ†
m, satisfy a

biorthogonality relation of the form

〈

φ†
m,Mφn

〉

=
∫

R
d~r φ†

mMφn = δm,n
〈

φ†
m,Mφn

〉

, (6)

where R is the volume de�ned by the reator ore and δm,n is Kroneker's

delta.

3 Alpha modes

To obtain the Alpha modes equation (Bell and Glasstone, 1970), the starting

point is again the neutron di�usion equation,

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

λdkCkχ ,

and the delayed neutron preursors are assumed to be in steady state

0 = βkM1φ− λdkCk .

This implies

(

v−1
) ∂φ

∂t
+ Lφ = (1− β)Mφ+

K
∑

k=1

βkMφ ,

that is,

(

v−1
) ∂φ

∂t
+ Lφ = Mφ .

Assuming the time fatorization

φ (~r, t) = eαtψ (~r) , (7)
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for the neutroni �ux, we obtain the Alpha modes equation (Modak and

Gupta, 2007), (Verdú et al., 2010),

(− (v)L+ (v)M)ψn = αnψn , (8)

where αn are the Alpha eigenvalues and ψn their orresponding Alpha modes.

It is worth to be remarked that a ritial on�guration of the reator orre-

sponds to the value α = 0 and, while for the Lambda modes problem we are

interested on omputing the dominant eigenmodes (the ones with the assoi-

ated eigenvalue with largest magnitude), for the Alpha modes problem we will

be interested on omputing the Alpha modes whose orresponding eigenvalues

have the smallest magnitude.

The adjoint Alpha modes problem is given by

(

−L† (v) +M† (v)
)

ψ†
n = αnψ

†
n . (9)

If the Alpha modes are non degenerate, the Alpha modes and their orre-

sponding adjoint modes are biorthogonal, that is

〈

ψ†
m, ψn

〉

=
∫

R
d~r ψ†

mψn = δm,n
〈

ψ†
m, ψn

〉

(10)

Using the Alpha modes equation (8) and the adjoint Lambda modes, we an

write

〈

φ†
n, (−L+M)ψn

〉

= αn
〈

φ†
n,
(

v−1
)

ψn
〉

,

thus,

−
〈

L†φ†
n, ψn

〉

+
〈

φ†
n,Mψn

〉

= αn
〈

φ†
n, (v)

−1
ψn
〉

,

and using the adjoint Lambda modes equation (5), we obtain a relation be-

tween the Lambda modes and the Alpha modes given by

αn =

(

1− 1
λn

)

〈φ†n,[v−1]ψn〉
〈φ†n,Mψn〉

. (11)

4 LPRM modal deomposition

4.1 Lambda modes

As it has been exposed above, BWR reators have di�erent number of Loal

Power Range Monitors installed in its ore, whih measure the neutroni power

in di�erent positions of the ore at di�erent levels.
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In the two energy groups approximation, the neutroni �ux is omposed of

the fast and thermal �uxes

φ =







φ1

φ2





 ,

and the loal neutroni power distribution is of the form (Verdú et al., 1998)

P = K (Σf1φ1 + Σf2φ2) ,

where K is a normalization onstant.

Assuming that the neutroni �ux an be desribed as a linear ombination of

Nm Lambda modes







φ1

φ2





 =
Nm
∑

n=1

an







φ1,n

φ2,n





 ,

the neutroni power an be written as

P =
Nm
∑

n=1

an (Σf1φ1,n + Σf2φ2,n) =
Nm
∑

n=1

anPn , (12)

where Pn are the power modes

Pn = Σf1φ1,n + Σf2φ2,n .

Assuming that the average number of neutrons per �ssion, ν, is the same for

the fast and thermal groups and that it remains onstant for the whole reator

ore, by using the biorthogonality relation (6), we obtain the amplitudes, an,

of the power modal deomposition as,

an =
ν

〈

φ
†
n,Mφn

〉

∫

R
d~r φ

†
1,nP . (13)

A disrete version of expression (13) works well if the power distribution is

known in all the nodes of the ore disretization. Unfortunately, in a real

situation the only information we have is the neutroni power measured by

the LPRMs.

To simplify the proess, we onsider that the LPRM signal ontributions or-

respond to an average plane of the reator. These signals are

L1(rT ), L2(rT ), . . . , Lp(rT ), r = 1, 2, . . . , Nt,

and T is the sampling time of the aquisition system. Eah signal Ll(rT ) is
onsidered to be plaed in the spatial oordinates (xl, yl). Also it is assumed
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that the signals have zero mean. Using the power modal deomposition (12),

it an be assumed that the LPRM signals an be expanded as

Ll(rT ) =
Nm
∑

n=1

an(rT )Pn (xl, yl) . (14)

To estimate the amplitudes an(rT ), we follow two ways. First, analogously

to the ontinuous ase, we use the fast adjoint Lambda modes to onstrut

weighting fators Wl (xl, yl) = φ
†
1,l (xl, yl). These fators are not orthogonal to

the power modes if only the positions of the LPRMs are onsidered, but they

an be used to onstrut a system of linear equations of the form

p
∑

l=1

φ
†
1,m (xl, yl)Ll(rT ) =

Nm
∑

n=1

(

p
∑

l=1

φ
†
1,m (xl, yl)Pn (xl, yl)

)

an(rT ) , (15)

with m = 1, . . . , Nm. Solving these systems for r = 1, . . . , Nt, the time evolu-

tion of the amplitudes of the di�erent power modes are obtained.

A seond proedure used to ompute the power mode amplitudes is based on a

least squares riterion. Using this riterion it is assumed that the amplitudes,

an(rT ), make minimum the square error

ε2 =
p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

an(rT )Pn (xl, yl)

)2

.

Computing the derivative of this error with respet to the amplitudes, we have

∂ε2

∂am(rT )
= 0 =

p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

an(rT )Pn (xl, yl)

)

Pm (xl, yl) ,

obtaining the system of equations

p
∑

l=1

Pm (xl, yl)Ll(rT ) =
Nm
∑

n=1

(

p
∑

l=1

Pm (xl, yl)Pn (xl, yl)

)

an(rT ) , (16)

whose solution provides the evolution of the power modes amplitudes using

a least squares riterion. System (16) is similar to the system (15) obtained

above. The only hange is that the power modes are used as weighting fators

instead of the fast adjoint Lambda modes.
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4.2 Alpha modes

Now, instead of using the Lambda modes as basis funtions, it is assumed that

the neutroni �ux an be expanded in terms of the Alpha modes







φ1

φ2





 =
Nm
∑

n=1

cn







ψ1,n

ψ2,n





 ,

the neutroni power an now be expressed as

P =
Nm
∑

n=1

cn (Σf1ψ1,n + Σf2ψ2,n) =
Nm
∑

n=1

cnPan , (17)

where Pan are the Alpha power modes,

Pan = Σf1ψ1,n + Σf2ψ2,n .

For the Alpha power modes there is not a biorthogonality relation that pro-

vides a losed expression for the amplitudes, similar to (13). Thus, a least

squares riterion will be used to ompute the evolution amplitudes of the

Alpha power modes, by solving the linear systems

p
∑

l=1

Pam (xl, yl)Ll(rT ) =
Nm
∑

n=1

(

p
∑

l=1

Pam (xl, yl)Pan (xl, yl)

)

cn(rT ) . (18)

5 Signal analysis results

To test and ompare the performane of the methodologies exposed above,

two ases of the Ringhals 1 Stability Benhmark have been onsidered.

Ringhals 1 is an ABB design BWR with a 2270 MW of nominal thermal power

and 11550 kg/s of total ore rated mass �ow. The �rst analysed ase is known

as Reord 10 of the benhmark. During this event, the reator was working at

77.7% of its nominal power and the ore �ow was of 4104 kg/s (58.2%). This

event has been lassi�ed as an in-phase osillation (Lefvert, 1996). The seond

ase is known as Reord 9 of the benhmark and orresponds to LPRMs'

measurements when the reator was working at 72.6% of its nominal power

and a ore �ow of 3694 kg/s (52.4%). This event has been lassi�ed as an out-

of-phase osillation (Lefvert, 1996). Table 1 presents a summary of the ore

working onditions and the alulated stability harateristis of the global

osillation for both ases.
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Table 1

Stability harateristis of Ringhals reator for Reords 10 and 9.

Power (%) Flow (%) Frequeny (Hz) Deay Ratio

(Global osillation)

Re. 10 77.7 58.2 0.50 0.71

Re. 9 72.6 52.4 0.56 0.80

Table 2

Three dominant Lambda eigenvalues for Reords 10 and 9 of Ringhals reator.

λ1 λ2 λ3

Re. 10 0.99369 0.99073 0.98716

Re. 9 1.00178 0.99493 0.99297

Table 3

Three smallest Alpha eigenvalues for Reords 10 and 9 of Ringhals reator.

α1 α2 α3

Re. 10 -106.1040 -281.7486 -321.9185

Re. 9 41.9364 -119.4661 -165.0216

5.1 Lambda modes

The �rst three dominant Lambda modes for Reords 10 and 9 have been

omputed using the LAMBDA ode (Verdú et al., 1999, 2005). The omputed

values for the three dominant eigenvalues for Reords 10 and 9 are shown in

Table 2.

The shapes of an average plane of the power modes distribution assoiated

with these eigenvalues are presented in Fig. 2 and Fig. 3. For both on�gu-

rations we obtain, onseutively, the fundamental mode and two azimuthal

modes.

5.2 Alpha modes

The �rst three Alpha modes with smallest magnitude have been also omputed

for Reords 10 and 9 (Verdú et al., 2010). The obtained values for the three

smallest eigenvalues for Reords 10 and 9 are shown in Table 3.

The shapes of an average plane of the Alpha power modes assoiated with

these eigenvalues are presented in Fig. 4 and Fig. 5. The shape of the Alpha

modes are in both ases quite similar to ones obtained for the Lambda modes.
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11



1
8

16

24

32

1

8

16

24

32
0

0.5

1

1.5

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

First mode (Fundamental)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Seond mode (Azimuthal)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Third mode (Azimuthal)

Fig. 3. First three power Lambda modes for the Reord 9 on�guration of Ringhals

reator. Surfae and ontour representation of the axial average plane of the modes.

12



1
8

16

24

32

1

8

16

24

32
0

0.5

1

1.5

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

First Alpha power mode (Fundamental)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Seond Alpha power mode (Azimuthal)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Third Alpha power mode (Azimuthal)

Fig. 4. Smallest three Alpha power modes for the Reord 10 on�guration of Ringhals

reator. Surfae and ontour representation of the axial average plane of the modes.

13



1
8

16

24

32

1

8

16

24

32
0

0.5

1

1.5

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

First Alpha power mode (Fundamental)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Seond Alpha power mode (Azimuthal)

1
8

16

24

32

1

8

16

24

32

−2

−1

0

1

2

Mesh numbers in X−directionMesh numbers in Y−direction

R
el

at
iv

e 
va

lu
e

Mesh numbers in X−direction

M
es

h 
nu

m
be

rs
 in

 Y
−

di
re

ct
io

n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Third Alpha mode (Azimuthal)

Fig. 5. Smallest three Alpha power modes for the Reord 9 on�guration of Ringhals

reator. Surfae and ontour representation of the axial average plane of the modes.
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5.3 Signals deompositions

For both Reords 10 and 9, we have onsidered signals of the LPRMs plaed

in two axial planes with 36 detetors per plane. These signals have a sampling

time of T=0.08 s and we have onsidered Nt = 1000 samples for eah signal.

The signals for the two axial planes are averaged and the mean of eah signal

is subtrated.

The three omputed eigenmodes are used to perform the LPRM Modal De-

omposition of Reords 10 and 9 and in order to ompare the power modal

deompositions using the Lambda and the Alpha modes, only the least squares

riterion for the omputation of the amplitudes evolution is used.

The real LPRM number 30 for Reord 10 together with its Lambda power

modal reonstrution by means of expression (12) and its Alpha power modal

reonstrution with expression (17) are shown in Figure 6. LPRM number 30 of

Reord 9 and its reonstrutions are shown in Figure 7. To give a quantitative

measure of the error obtained for the signals reonstrution using the Lambda

modes we introdue the relative error

εl =

















Nt
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p
∑

l=1

(

Ll(rT )−
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Nt
∑

r=1

p
∑

l=1

(Ll(rT ))
2

















1

2

. (19)

Similarly, for the signals reonstrution using the Alpha modes we introdue

the error

εa =

















Nt
∑

r=1

p
∑

l=1

(

Ll(rT )−
Nm
∑

n=1

cn(rT )Pan (xl, yl)

)2

Nt
∑

r=1

p
∑

l=1

(Ll(rT ))
2

















1
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. (20)

The relative errors obtained in the reonstrution of the 36 signals of Reord

10 and Reord 9 using the Lambda modes and the Alpha modes are shown in

Table 4.

It is observed that the obtained relative errors are quite similar for both reon-

strutions, being the reonstrution obtained with the Lambda modes slightly

better than the reonstrution obtained using the Alpha modes. Also, it is in-

teresting to remark that similar results are obtained if the adjoint modes are
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Table 4

Relative errors for the reonstrution of the signals of Reords 10 and 9 of Ringhals

reator using the Lambda modes and the Alpha modes.

εl εa

Re. 10 0.536 0.543

Re. 9 0.435 0.451
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Fig. 6. LPRM number 30 of Reord 10 together with its Lambda Power modal

reonstrution and its Alpha power modal reonstrution.
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Fig. 7. LPRM number 30 of Reord 9 together with its Lambda Power modal re-

onstrution and its Alpha power modal reonstrution.

used to onstrut weighting fators to ompute the power modes amplitudes

evolution.

The results for the time evolution of the amplitudes of the di�erent Lambda

power modes orresponding to Reord 10 are shown in Fig. 8, and the orre-

sponding to Reord 9 in Fig. 9. This is a near stable ase, with a deay ratio

about 0.7 and a fundamental frequeny of 0.54 Hz. Nevertheless, from Fig.

9 we an see a developed osillation for the seond and third modal power

ontributions.

The power modal deomposition of the LPRMs has been also omputed using

the Alpha-modes. The results obtained for the time evolution of the amplitudes

of the di�erent modes orresponding to Reord 10 are shown in Fig. 10, and

the orresponding to Reord 9 in Fig. 11, and the orresponding ones to the

Reord 10. These results are very similar to the ones obtained with the Lambda

16
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Fig. 8. Time evolution of the amplitudes of the power lambda modal deomposition

for Reord 10.
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Fig. 9. Time evolution of the amplitudes of the lambda power modal deomposition

for Reord 9.

modes.

6 Conlusions

For safe operation of BWR reators it is important to have an e�ient system

to detet and lassify the unstable events using the signals provided by the

LPRMs installed in the reator ore. For some instability events, suh as the
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Fig. 10. Time evolution of the amplitudes of the Alpha power modal deomposition

for Reord 10.
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Fig. 11. Time evolution of the amplitudes of the Alpha power modal deomposition

for Reord 9.

in-phase and the out-of-phase osillation a modal interpretation has been given

assoiating the in-phase osillations with the osillations of the amplitude of

the fundamental mode and the out-of-phase osillations with the osillations of

the azimuthal modes. Several modal equations have been proposed assoiated

with the neutron di�usion equation. In this paper, the Lambda modes and

the Alpha modes have been reviewed and a simple method to deompose the

LPRMs signals in di�erent power modes ontribution using both, the Lambda

and the Alpha modes has been proposed and the performane of eah kind of

modes has been ompared studying two ases of Ringhlas 1 stability benh-

18



mark. This analysis shows that both the Alpha and the Lambda modes for a

nulear reator, whih is a nearly ritial system, have a similar shape and an

be suessfully used to analyse the di�erent LPRM signals ontributions. The

Alpha modes and the Lambda modes have di�erent mathematial properties,

in this way, they an be used to onstrut di�erent redued order models to

analyse the BWR stability harateristis.
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