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Abstract. Next generation of smart grid technologies demand intel-

ligent capabilities for communication, interaction, monitoring, storage,

and energy transmission. Multiagent systems are envisioned to provide

autonomic and adaptability features to these systems in order to gain

advantage in their current environments. In this paper we present a

mechanism for providing distributed energy storage systems (DESSs)

with intelligent capabilities. In more detail, we propose a self-configurable

mechanism which allows a DESS to adapt itself according to the future

environmental requirements. This mechanism is aimed at reducing the

costs at which energy is purchased from the market.
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1 Introduction

Smart grid technologies are positioned as one of the leading frameworks to build

the next generation of systems and applications. Intelligent functions are ex-

pected to provide the smart grid with self-corrective and reconfiguration features,
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by creating a more complex interaction behavior among intelligent devices [1].

To address these issues, the multiagent system paradigm is widely agreed to be

one challenging approach to build these systems [2–6].

According to [7], one of the most important challenges for the power grid of

the future is the implementation of widely distributed energy storage systems

(DESSs) with intelligent monitoring, communications, and control. Storage can

be applied at the energy production, at the transmission system, at the distribu-

tion system, and on the customer’s side [8]. Energy storage systems in the smart

grid area have been historically used with different functional and economical

proposals. Among others, storage provides support to maintain and improve

power quality, frequency, and voltage; storage also provides support users when

failures on the network occurs, in order to improve the reliability of the power

supply; or it can be used for reducing the need to buy new central generation

capacity [9–11].

One of the benefits from storage that has been discussed in the literature long

ago is referred to the use of storage systems for energy arbitrage. This involves

purchasing electric energy during periods when the price is low, to charge the

storage devices, so that the stored energy can be used or sold at a later time when

the price is high [9]. However, little work has been done focused on the use of

agent-based techniques for energy arbitrage modeled by DESS. To this respect,

we focus on how intelligent storage systems can be build to achieve optimal

configurations in the smart grid. We propose a self-configuration mechanism in

order to provide a DESS with intelligent storage for improving the efficiency

level. This mechanism uses an organizational representation of the DESS and

focus on determining which devices are charging and supplying energy to the

system at each moment. The objective of this process is aimed at scheduling the
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supplying and charging periods in order to reduce the costs for purchasing the

energy demanded.

The rest of the paper is organized as follows. Section 2 analyzes some works

related with our proposal. Section 3 presents the DESS model. Section 4 explains

in detail the self-configuration mechanism. Section 5 shows the evaluation of the

mechanism proposed. Finally, Section 6 presents some concluding remarks.

2 Related Work

Several works have appeared that study the benefits of DESS. In [12] authors

focus on the problem of determining the scheduling of energy storage devices

in order to the distribution losses are minimized. They model a DESS with

distributed wind generators. Results demonstrate that distributed storage im-

proves losses in the case of distributed generation. In [13] it is used a hybrid

energy storage system, which is composed by heterogeneous storages devices, in

order to reduce the cost of single storage systems. In [14] is proposed a DESS

for managing large amounts of data. Other works such as [15] are focused on

specification and simulation of smart grid scenarios.

Regarding arbitrage, several works have been appeared focused on this issue

[16–18]. Decisions about when to store and use the energy depend on different

factors such as the market prices, the storage costs, the transmission costs, etc.

In addition, a storage device is typically characterized by its power capacity,

its energy capacity, and its round trip efficiency among other parameters [19],

which are dependent on the specific technology used for storage (pumped-hydro,

compressed air, regenerative fuel cells, etc. [20, 11]).

In the last few years, agent-based technologies have been used for modeling

and controlling smart-grid systems. Power TAC [21] provides an environment for
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trading on energy systems. In [22] propose an agent-based simulator for smart

grid environments. Most of these approaches are focused on optimizing the sys-

tem performance. In [23], agents represent customers which are faced with a

multi-scale decision-making problem along temporal and contextual dimensions.

The objective of these agents is to maximize the utility focused on these di-

mensions by learning the information of time-series. In [24], authors propose a

model for dynamic coalition formation to approximate optimal micro-grid con-

figurations. In [25], an agent-based control framework is proposed to manage

and coordinate the distributed energy resources.

Although the multiagent paradigm is envisioned as a strong solution for mod-

eling DESSs because of its distribution and heterogeneity, little work has been

done focused with this aim. In [26] a service restoration with distributed en-

ergy storage support is proposed. A multiagent system is proposed to detect

and restore the system when a fault occurs. Ramchurn et al. [27] propose an

agent-based framework in which agents are able to shift demand to times when

green energy is available by using their storage devices. Results are focused on

measuring green energy usage and energy cost reduction, but caused because of

the use of green energy. In [28] a multiagent system for real-time control and

management of a microgrid is presented. In this work, the multiagent system is

proposed for demand side management and generation control. In [3], authors

present an agent-based model for micro-storage management in the micro-grid.

They propose a strategy based on game theory which reduces costs and carbon

emission and converges to an efficient storage behavior. Their storage strategy

proposed is focused on a learning mechanism that decides on when to store

energy and when to use the stored energy in individual home devices. In our ap-
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proach, agents are part of a purely cooperative system, in which the best decision

for the whole system does not require to affect positively to all individuals.

Our approach is focused on reducing the purchasing cost of electrical en-

ergy by coordinating and optimizing the individual devices of the DESS. There-

fore, considering a predicted energy consumption and purchasing prices, the

self-configuration approach must decide at each moment which devices are sup-

plying and charging, in order to satisfy the expected demand and the system

restrictions such as transferring capacity of the system.

prices and the effect that hourly charging or discharging would have on those

prices. With varying prices, charges and discharges are sometimes curtailed when

the price impacts reduce the marginal arbitrage value to zero. In other cases,

such as on Friday morning, the device does not operate at all with varying prices,

even though it would with fixed prices. [19]

3 DESS Model

The DESS modeled in this work represents a group of storage devices that are in

charge of storing energy purchased from the market in order to supply this energy

to the system (Figure 1). This system can be viewed as a whole large storage sys-

tem composed by individual and heterogeneous devices. The self-configuration

mechanism is aimed at deciding for any storage device, when to store energy and

when to use the stored energy. The optimal configuration is dependent on the

current and future energy purchasing prices, and the current and future energy

demand. This represents a decision-making problem that determines the state

of each storage device.

Following our previous definition of dynamic multiagent organization [29],

we model the DESS as a multiagent system Gt = 〈At, Λt, ∆t, Φ〉, where:
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Fig. 1. Representation of the DESS.

– At = {a1 . . . an} denotes the set of agents that are associated to the storage

devices. Each agent ax is able to charge and supply energy according to the

following tuple of parameters 〈max powerx,min energyx,max energyx,

energytx, charge
t
x, supply

t
x, p

t
x〉, where:

• max powerx represents the maximum power of the storage device.

• min energyx and max energyx represent the minimum energy for the

storage working and the maximum energy that can be stored.

• energytx represents the energy available that is stored at the moment t.

• chargetx represents the energy charged from the grid at the moment t.

• supplytx represents the energy supplied to the system at the moment t.

• ptx represents the average price of the stored energy in ax, according to

the prices at which this energy was previously purchased:

p̄ t =


λt for t = 0

(energyt−1
x ×p̄ t−1)+(charget−1

x ×λt−1)−(supplyt−1
x ×p̄ t−1)

energyt−1
x +charget−1

x −supplyt−1
x

for t > 0

The amount of energy charged from the grid and supplied to the system

determines the switch process charge/discharge.



7

– Λt = λt+1 . . . λm denotes the sequence of energy purchasing price estimations

for the following moments. A given energy purchasing price λy represents the

estimated price at which the energy can be purchased from the market at

the moment y.

– ∆t = δt+1 . . . δm denotes the sequence of forecast demand of energy for the

following moments. A given demand δy represents the forecast demand of

energy at the moment y.

– Φ denotes the set of constraints that must be fulfilled at each moment.

4 Self-configuration Mechanism

The self-configuration mechanism is based on our previous work about role real-

location in agent societies [30] and is intended at providing the decision-making

process that determines the state of each storage device at any moment. This

mechanism provides a general vision of the whole system and allows to deter-

mine the specific consequences of each change of state in the rest of the system.

It obtains the configuration of the storage devices that minimizes the energy

purchasing costs, depending on the energy purchasing price and the energy de-

mand for the forthcoming moments. The problem of predicting future energy

purchasing prices is widely studied in other works such as [31–33], and is out of

the scope of this work.

We define the concept of impact as a measurement of the effects of being

charging or supplying energy, in terms of system utility based on the costs for

carrying out each this action. This impact evaluates the different alternatives

that can be chosen from the current storage devices configuration in order to

adapt it, based on the benefits and costs of each alternative.
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Considering δt+1 as the forecast demand of energy for the next moment

t+ 1, this demand must be supplied by the energy stored in some of the storage

devices: δt+1 =
∑
ax∈A supply

t+1
x . The energy supplied by each agent supplier

ax must fulfill the restrictions of the storage device. That is, this energy cannot

exceed the maximum power of the storage device and the energy limitations:

supplyt+1
x ≤ min(energytx −min energyx,max powerx)

In case of being a supplier, the energy stored at the agent ax will be reduced

to: energyt+1
x = energytx−supplyt+1

x . This causes that each storage device needs

to be charged eventually from the grid.

If the agent ax is charged at the moment t+ 1, the energy charged charget+1
x

must also fulfill the restrictions of the storage device:

charget+1
x ≤ min(max energyx − energytx,max powerx)

Otherwise, if ax is not charged at the next moment t+ 1, the charge could

be postponed to a future moment t′ at which the energy purchasing price is the

cheapest one. This t′ is comprised in the period of time up to t+n, i.e. until the

reserves of the DESS are running out, formally:

(
t+ 2 ≤ t′ ≤ t+ n

)
∧
(
λ
t′
x = argmin

i∈[t+2,t+n]

(λ
i
x)

)
∧

i=t+n∑
i=t+2

δ
i ≤

∑
x∈A

min(energy
t
i −min energyx,max powerx)

∧
i=t+n+1∑

i=t+2

δ
i
>
∑
x∈A

min(energy
t
i −min energyx,max powerx)


Considering the above definitions, the impact for an agent ax for being a

supplier at the moment t+ 1 is measured as the cost required for supplying a

given part of the energy demanded for the whole system:

I(ax, supplier)
t+1 = supplyt+1

x × p̄xt ∧ supplyt+1
x ≤ δt+1

In contrast, the impact for an agent ax for being in charge at the moment

t+ 1 is measured as the cost for charging the storage device at the next moment
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subtracted from the cost for not charging the storage device in the future best

moment t′:

I(ax, charge)
t+1 = charget+1

x × λt
′
− charget+1

x × λt+1

Given the state of the system defined as Gt = 〈At, Λt, ∆t, Φ〉, the status of

each agent (supplier or charge) for the next moment t+ 1 is determined by the

self-configuration mechanism. For each possible configuration G t+1, we measure

the impact of a whole self-configuration of the system as the aggregation of the

impact of each allocation:

I(G t+1) =
∑

ax∈At+1

I(ax, supplier)
t+1 +

∑
ax∈At+1

I(ax, charge)
t+1

Let Θ denote the set of all the possible different configurations that can be

obtained from the current state. The challenge of the self-configuration mecha-

nism is to find the specific configuration Ĝ t+1 that minimizes the whole impact:

I(Ĝ t+1) = argmin
Gt+1∈Θ

I(G t+1)

5 Evaluation

In this section we present some experiments for testing the performance of the

self-configuration mechanism applied to the DESS model. For these experiments,

we use a system composed by a set of five agents that represent heterogeneous

storage devices At = {a0, a1, a2, a3, a4}1. The details of each storage device are

given in Table 1. We assume a 100% charging and discharging efficiency, but

this could be changed by considering the corresponding energy losses. In order

to simulate a realistic scenario, the system hourly load demand represents the

1 Each one of these devices could be composed by a set of individual and homogeneous

elements.
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Table 1. Configuration of the storage devices.

Storage device Max. Power (MW) Max. Energy (MWh) Min. Energy (MWh) Initial Energy (MWh)

a0 50 250 25 175

a1 100 500 50 250

a2 150 750 100 375

a3 200 1000 150 500

a4 250 1250 200 625

0.1% of the real demand in the whole Spanish electric system. The purchasing

price represents the hourly marginal price of the corresponding daily market

auction. In this auction, a specific price is agreed for each hour of the following

day. Energy storage would be economical when the marginal cost of energy varies

more than the costs of storing and retrieving the energy plus the price of energy

lost in the process.

For each experiment, we consider different alternatives for purchasing energy

from the market. The first alternative follows a static strategy, which purchases

from the market the expected demand of energy for each hour. The second alter-

native follows a fixed charge, which considers the self-configuration mechanism

for charging the DESS depending on the expected future demand, and the ex-

pected future prices. In this alternative, a fixed transferring load is taken from

the market in all hours, which corresponds to the average demand for the whole

period tested. Finally, the last alternative follows a variable charge, which con-

siders the self-configuration mechanism and considers a variable transferring load

taken from the market in all hours, between 0 and 600MWh. One remarkable

change in the consumers and industries demand occurs at the weekends, because

most industries close, which causes a demand reduction. Therefore, in the fol-
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lowing figures we compare the demand and prices during 48 hours on weekdays

and at the weekend during the month of September.

Figure 2 shows the cost of satisfying the whole demand for the three charging

strategies. We can observe that the costs of the strategies that consider the self-

configuration mechanism are almost always lower than the static charge strategy.

This is because the self-configuration mechanism allows to buy and store energy

when the price is expected to increase by taking into consideration the forthcom-

ing energy demand and the purchasing price. Furthermore, the variable strategy

obtains lower cost than the fixed strategy. This is because, the load taken from

the market can be adjusted. In order to test this issue, Figure 3 compares the %

(a) Weekdays (b) Weekend

Fig. 2. Cost for satisfying the demand.

of energy (normalized between 0 and 100) that is taken from the market for the

fixed and variable strategies. This figure also shows the energy price for each

hour, which is normalized as well. As expected, the variable strategy takes the

maximum energy for charging the DESS at those moments from which the price

is going to increase in the next hours (hour 2 and 26 for the weekdays and 8, 34,

and 44 at the weekend). When the price is high and there is no need to charge,



12

this charge is avoided (between hour 10 and 18 for the weekdays and between

hour 12 and 20 at the weekend). In contrast, the fixed strategy does not consider

this deliberation because the load taken from the market is constant for each

hour. This causes an increase in the aggregated cost for supplying the energy.

Figure 4 shows the average price of all the energy stored in the DESS. It can

(a) Weekdays (b) Weekend

Fig. 3. Percentage of energy taken from the market.

be observed that the highest average price is obtained by the static alternative,

which specially at the weekend can be around 5e/MWh higher thant the al-

ternatives that use the self-configuration mechanism. Regarding these dynamic

strategies, note that although the price is quite similar for the fixed and variable

strategies at the weekend, their differences are more considerable on weekdays.

The value of arbitrage for each two weekdays period period represents a

saving of 4.85e/MWh for the fixed strategy and 9.48e/MWh for the variable

strategy. Because of the energy demand decreases at the weekend, this saving is

2.66e/MWh for the fixed strategy and 3.98e/MWh for the variable strategy.

Finally, in order to test the scalability and adaptability of the approach,

we propose an scenario composed by five agents for each one of the different
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(a) Weekdays (b) Weekend

Fig. 4. Average supplying price.

storage devices, that is, 25 agents. In this scenario we test the performance of

the above strategies when some agents become suddenly unavailable during 30

hours. Figure 5(a) shows the cost of satisfying the whole demand when three

storage devices become unavailable at hour=10 and three more at hour=20.

This simulation is labeled as unavailable services. We compare this simulation

with a simulation without any setback during the whole execution (availability

100%) and also with the static strategy. On the one hand, we can observe that

the performance of a larger system is also better when a variable strategy is

used. On the other hand, we can observe that when some setback occurs this

may cause the system to reconfigure to a sub-optimal configuration. As we can

observe, the cost from hour=10 on and from hour=20 on is a little bit higher

when a setback occurs. Although this may cause a lose of efficiency, the approach

is able to adapt the system in order to find a configuration that is still better

than a fixed strategy.

Figure 5(b) shows the average price of all the energy stored in this scenario.

Similar to the behavior of the cost, when some setback occurs, an increase in
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(a) Cost for satisfying the demand (b) Average supplying price

Fig. 5. Large-scale scenario with some services unavailable.

the price may also occur because the system may be forced to buy energy earlier

than expected.

6 Conclusions

We proposed a self-configuration mechanism which provide distributed storage

in smart grids with intelligence. The representation of the DESS by means of

a multiagent organization provides different future challenges such as including

other organizational dimensions to be adapted (such as the agent population)

and to improve the organizational interaction and cooperation among agents.

The decision-making process associated to the self-configuration mechanism,

obtains the solution which minimizes the energy supplying costs for satisfying

the demand. As we observed in the experiments, these costs can be significantly

reduced when taking into account the future prices and demand. In addition,

since the objective is to maximize the utility of the whole system, conflicts that

can emerge from individual utilities are solved due to the global view of the

system. What is more, the configuration of the storage devices fits the current

and future parameters of the environment by adjusting the number of devices
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that are charging and supplying energy at any moment. As a future work we

plan to use this approach in a domain in which the performance of the system

depends not only from the energy purchasing price but also from the energy

spend, which is related with the user satisfaction criteria.
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