

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1007/s10766-013-0249-6

http://hdl.handle.net/10251/49284

Springer Verlag (Germany)

Cámara, J.; Cuenca, J.; Giménez, D.; García, LP.; Vidal Maciá, AM. (2014). Empirical
Installation of Linear Algebra Shared-Memory Subroutines for Auto-Tuning. International
Journal of Parallel Programming. 42(3):408-434. doi:10.1007/s10766-013-0249-6.

Noname manuscript No.
(will be inserted by the editor)

Empirical Installation of Linear Algebra Shared-Memory
Subroutines for Auto-Tuning

Jesús Cámara, Javier Cuenca, Domingo Giménez, Luis-Pedro García and

Antonio M. Vidal

Received: date / Accepted: date

Abstract The introduction of auto-tuning techniques
in linear algebra shared-memory routines is analyzed.

Information obtained in the installation of the routines

is used at running time to take some decisions to reduce

the total execution time. The study is carried out with

routines at different levels (matrix multiplication, LU
and Cholesky factorizations and linear systems sym-

metric or general routines) and with calls to routines in

the LAPACK and PLASMA libraries with multithread

implementations. Medium NUMA and large cc-NUMA
systems are used in the experiments. This variety of

routines, libraries and systems allows us to obtain gen-

eral conclusions about the methodology to use for linear

algebra shared-memory routines auto-tuning. Satisfac-

tory execution times are obtained with the proposed
methodology.

Keywords Linear algebra libraries · Linear algebra

routines · Empirical installation · Shared-memory ·

Auto-tuning

Jesús Cámara (corresponding author) and Domingo Giménez
Departamento de Informática y Sistemas, University of Mur-
cia, Spain. E-mail: {jcm23547,domingo}@um.es

Javier Cuenca
Departamento de Ingeniería y Tecnología de Computadores,
University of Murcia, Spain. E-mail: jcuenca@um.es

Luis-Pedro García
Servicio de Apoyo a la Investigación Tecnológica,
Technical University of Cartagena, Spain. E-mail:
luis.garcia@sait.upct.es

Antonio M. Vidal
Departamento de Sistemas Informáticos y Computación,
Technical University of Valencia, Spain. E-mail: avi-
dal@dsic.upv.es

1 Introduction

The appearance of multicore and cc-NUMA systems

has led to the need to develop optimized software for

this type of systems. Software optimization techniques

are used in parallel routines to decide how to execute
them with low execution times. Decisions are taken at

running time as a result of a learning phase which is

carried out when the routine is installed in the system.

During installation the values of some system param-
eters in a theoretical model of the execution time of

the routines are estimated, or some empirical study of

the behavior of the routine in the system is carried out

experimentally. The decisions taken at running time de-

pend on the type of computational system used. Some
could be: selecting the appropriate number of threads

to use at each level of parallelism; how to assign pro-

cesses to processors; or selecting the correct block size

in algorithms by blocks.

Linear algebra routines are the basic computational

kernels used in many scientific applications, and it is es-

pecially interesting to optimize and auto-optimize them,
because any improvement will produce a reduction of

the execution time of the high-level scientific applica-

tions where they are used. Furthermore, the auto-tuning

techniques used for linear algebra routines can be ex-
tended to routines in different fields [15,4].

In this work, previous ideas for installing multithrea-

ded basic linear algebra routines in large cc-NUMA
systems [6] are combined and extended. In [6], auto-

tuning is carried out by applying installation techniques

to the BLAS-3 matrix multiplication routine (dgemm),

which constitutes the basic subroutine for many com-
putational routines. Here, these ideas are extended for

higher-level routines. The LU and Cholesky factoriza-

tions and their multithread implementations in LA-

Manuscript
Click here to download Manuscript: IJPP-D-12-00395.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/ijpp/download.aspx?id=26671&guid=db542358-07d4-43fa-a70c-c278816d5726&scheme=1
http://www.editorialmanager.com/ijpp/viewRCResults.aspx?pdf=1&docID=619&rev=1&fileID=26671&msid={95B7B7F0-9459-4989-AF29-29FB82320B71}

2

PACK [3] and PLASMA [24] are considered, along with

symmetric and general linear systems routines based

on LDLT and LU factorizations. This variety of rou-

tines and systems allows us to draw general conclu-

sions about the installation and auto-tuning of shared-
memory linear algebra subroutines.

The rest of the paper is organized as follows. Sec-

tion 2 discusses the background of auto-tuning and its
application to parallel linear algebra routines. Section

3 summarizes the auto-tuning methodology we use for

linear algebra routines in NUMA systems. Section 4

analyzes the application of the auto-tuning methodol-
ogy to MKL [14] implementations of the matrix mul-

tiplication and matrix factorizations. In section 5 the

methodology is extended to higher level routines (so-

lution of multiple linear systems), and section 6 shows

some experiments of the application of the methodology
to PLASMA routines. Finally, conclusions and future

research lines are offered in section 7.

2 Background

Advanced computational systems have a complex struc-

ture which complicates their efficient use. Scientists and
engineers use these advanced systems to solve problems

of high computational cost, and they need optimized

routines with which the solution times of their problems

are reduced. The work for optimizing the code by hand
can take several weeks or months and it requires deep

knowledge of several disciplines, like computer archi-

tecture, programming and debugging tools, and math-

ematical software. Furthermore, the optimization task

performed for a specific platform may not necessarily
be suitable for other platforms. Such a diverse work-

ing environment has triggered important changes in the

traditional way of optimizing the software for scientific

calculations, with the goal of following the pace of both
the user needs and the new hardware developments.

Automatic optimization techniques have emerged

as valuable tools that provide scientific software with
environment adaptation capacity [21]. The techniques

are applied to routines in different fields like discrete

Fourier transform [11], digital signal processing trans-

forms [25], Fast Wavelet transform [4] or quantum chem-

istry [26]. In many scientific problems, the basic com-
putational components are linear algebra routines, and

so auto-tuning techniques are especially interesting in

linear algebra, and there are numerous projects in this

field: ATLAS [29] optimizes computational kernels for
dense linear algebra, SPARSITY [13] works with sparse

linear algebra kernels, ABCLib-DRSSED [17] with rou-

tines for obtaining eigenvalues, etc.

In parallel linear algebra the auto-tuning is carried

out in different ways and for different computational

environments. The libraries are optimized in the instal-

lation process for shared memory machines [29] or for

message-passing systems [8,9]. The routines can adapt
to the conditions of the system at a particular moment

[23]. Poly-algorithms [20] and poly-libraries [2] can be

used.

Auto-tuning is usually through theoretical models
of the execution time of the routine or through empiri-

cal analysis of the behavior of the routine based on ex-

haustive testing. The approach in FAST [7] is an exten-

sive benchmark followed by a polynomial regression to
find optimal parameters for different routines in homo-

geneous and heterogeneous environments. Polynomial

regression is used in [28] to decide the most appropri-

ate version from variants of a routine, and a black-box

pruning method is introduced to reduce the enormous
implementation space. In the FIBER approach [16] the

execution time of a routine is approximated by fixing

one parameter (problem size) and varying the other

(unrolling depth for an outer loop); a set of polyno-
mial functions of degrees 1 to 5 is generated and the

best is selected; the values provided by these functions

for different problem sizes are used to generate another

function where the second parameter is now fixed and

the first one is varied. The Incremental Performance
Parameter Estimation is introduced in [27], in which

the estimation of the theoretical model by polynomial

regression is started from the least sampling points and

incremented dynamically to improve accuracy. In [19]
the number of sampling points is reduced by using a

predetermined shape of the curve that represents the

execution time, and the concept of “speed band” is in-

troduced to represent the inherent fluctuations in the

speed due to changes in load.

Nowadays, with the increased complexity of compu-

tational environments, which are hierarchical and het-

erogeneous in different ways, it is necessary to adapt

the techniques previously developed for simpler envi-
ronments to these more complex systems. Thus, basic

linear algebra routines are being redesigned for plat-

forms based on multicore processors [5] and for hetero-

geneous/hybrid architectures [1], including GPUs [22,

18]. For these routines, which combine different par-
allel programming paradigms and several parallelism

levels, it is more difficult to obtain satisfactory theoret-

ical models of the execution time, and the auto-tuning

approach based on empirical estimations through ex-
haustive testing is preferable. In this work an adapta-

tion of this auto-tuning method to NUMA platforms is

proposed in order to select automatically the number

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

of threads to use in the different parallelism levels and

the block sizes in algorithms working by blocks.

3 The auto-tuning methodology

Implementations of shared-memory linear algebra rou-

tines are normally not very scalable. This produces a
degradation of the performance in large cc-NUMA sys-

tems [10]. To improve the scalability of the routines,

the auto-tuning methodology explained in [6] for the

gemm routine can be extended to higher-level routines.
The goal is to select the most appropriate number of

threads at each level of parallelism, together with the

values of other algorithmic parameters, like the block

size (or sizes) in algorithms by blocks. The method-

ology of [9] is adapted to the empirical installation in
NUMA systems. It is divided in three phases, which are

represented in figure 1:

DESIGN

INSTALLATION

EXECUTION

LAR

Extracting AP

Selected AP
Implementing

the Manager

SOLAR Manager

Tuning APInstallation Set

Tuned AP

Execution

of LAR

Optimum AP

Selection of

Optimum AP

nR

Fig. 1 Scheme of the empirical auto-tuning methodology.

– Design phase. Initially, when the routine (LAR)
is designed, a model of the execution time is de-

veloped, and this model is used in the subsequent

phases. When an implemented routine or library is

used and the model of the execution time is not

available, it can be empirically estimated. Auto-tu-
ning of linear algebra routines in large cc-NUMA

based on theoretical models is a difficult task, which

has been analyzed in [10], but with only partially

satisfactory results. The approach used here for lin-
ear algebra routines optimization in NUMA systems

is based on the empirical study of the behavior of

the routine, which could in turn be combined with

modelling techniques. In any case, the algorithmic

parameters (AP) influencing the execution time of

the routine are determined, and they are included

in the theoretical model (if available) or they are

used to design and implement an engine (the Self-
Optimized Linear Algebra Routine Manager, SO-

LAR_Manager) with which satisfactory values of

the algorithmic parameters are determined in the

subsequent phases. Typical algorithmic parameters
in linear algebra routines in cc-NUMA are:

– The number of threads at each parallelism level,

which can be, for example, the number of

OpenMP threads and of MKL threads in a two-

level routine which combines OpenMP and MKL
parallelism.

– The block size in algorithms by blocks, like those

in LAPACK and some routines of PLASMA, or

inner and outer block sizes in algorithms with
two levels of blocks, like some PLASMA rou-

tines.

Furthermore, there may be influences between the

optimum values of the algorithmic parameters. For

example, the optimum block size changes with the
number of threads, and so the values of the algorith-

mic parameters must be estimated en bloc, and the

SOLAR_Manager must be prepared for a combined

search for optimum values. This combined search

process is not normally considered in linear algebra
libraries, but the influence is especially important

in large systems, with many cores and where many

threads, at different levels, should be started to fully

exploit the computational system.
– Installation phase. In the installation of the rou-

tine, when using the model of the execution time,

some system parameters in the model are experi-

mentally estimated for the specific platform in ques-

tion. The model must be adapted to the particu-
lar characteristics of large NUMA platforms, where

there is a shared memory space with non uniform

data access time, which makes it difficult to develop

an accurate model [10]. As an alternative, we con-
sider an installation without the use of a theoret-

ical model (because the code of the routine is not

available, or due to the difficulty in obtaining an

accurate model for a complex system). The SO-

LAR_Manager is ready to conduct some experi-
ments with which the behavior of the routine in the

system is analyzed. In this learning phase, experi-

ments are carried out for some significant problem

sizes (Installation_Set), and to search for the val-
ues of the algorithmic parameters (Tuned AP) with

which the lowest experimental execution time is ob-

tained for each one of the Installation_Set sizes.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

For example, experiments are conducted for differ-

ent problem sizes, number of threads at the different

parallelism levels, and block size or sizes in routines

working by blocks. In large NUMA systems, due

to the memory hierarchy and the affinity between
memory blocks and processors/cores, the empirical

representation of the behavior of the routine is not

an easy task, and it may be necessary to have ex-

tensive experimentation together with some method
to reduce the number of experiments during the in-

stallation, but obtaining results that represent the

shape of the execution time curve well when the

problem and system sizes vary. The information gen-

erated in the installation is stored for use when the
routine is executed. This information (both in the

theoretical and empirical approaches) is included in

the routine together with a decision engine to ob-

tain an auto-tuning version of the routine, which is
compiled and ready to be called from a non-expert

user to solve a problem efficiently.

– Execution phase. When a problem is being solved,

the size of the problem and the system size estab-

lished by the user (maximum number of cores) are
used to decide the values of the algorithmic param-

eters which will be used. The SOLAR_Manager is

prepared to select the number of threads at each

parallelism level and the block sizes. The selection
of these parameters is done in the auto-tuning rou-

tine prior to the call to the basic routine with the

values selected for the parameters. When a theoret-

ical model with experimental estimation of the sys-

tem parameters is used, the different possible values
(from a set of combinations) for the algorithm pa-

rameters are substituted in the model, and these val-

ues which provide the lowest theoretical execution

time are used to solve the problem. In the empirical
auto-tuning approach, the information generated in

the learning phase is stored in a table with entries

for the problem and the system sizes experimented

with, and the number of threads and block sizes that

are selected are those which give the lowest execu-
tion time for a stored size close to the size of the

problem we are working with.

Thus, the general characteristics of the methodology
are:

– The key factor for the success of the methodology

is how the installation of the routine is done. The

experiments in the installation should give a pre-
cise shape of the evolution of the execution time

for different problem sizes and values of the algo-

rithmic parameters. Exhaustive experimentation is

necessary, but some pruning method should be used

to reduce the search space [28,19,27].

– The results depend on how the experiments carried

out in the installation reflect the behaviour of the

routine. The SOLAR_Manager is prepared for an
automatic installation and execution, but the sys-

tem manager or the user of the routine could decide

to change the parameters of the installation (the In-

stallation_Set) to better reflect the behavior of the
routine when a change in the system occurs, for a

tuned installation for a particular system or for a

better study of the behaviour of the routine for de-

sired problem sizes.

– The method is simple enough to be adapted for rou-
tines of different complexity and for complete sci-

entific problems. We analyse its application to lin-

ear algebra routines of different computational levels

and in different libraries (LAPACK and PLASMA).
The experiments show that the method, though sim-

ple, produces satisfactory results.

To illustrate how it works, the empirical auto-tuning

methodology is applied in the next section to some ba-
sic routines (matrix multiplication and matrix factor-

izations), and extensions to higher-level routines and

to routines in PLASMA are considered in subsequent

sections.

4 Auto-tuning of basic routines

Two-level routines are used to exploit the different mem-

ory levels in large NUMA systems. OpenMP and MKL

parallelism are combined, with exploitation of the im-
plicit parallelism provided by the multithread imple-

mentations of LAPACK routines in MKL. For exam-

ple, a scheme of a two-level matrix multiplication may

be that shown in algorithm 1. There is OpenMP par-
allelism in the pragma constructor, with a number of

threads nthomp, and MKL parallelism when the dgemm

routine is called, with nthmkl threads working in each

matrix multiplication. Nested parallelism is enabled and

the MKL dynamic selection of threads is disabled be-
cause the combination of OpenMP and MKL paral-

lelism does not work with the dynamic selection en-

abled [10]. The goal of the auto-tuning is to determine,

for each problem size, the values of nthomp and nthmkl

with which the lowest execution time is obtained.

In matrix factorization routines the block size is an

additional parameter to be decided. For example, in

the Cholesky factorization scheme shown in algorithm
2, the number of OpenMP and MKL threads in the

two-level dgemm or dtrsm routines must be established,

as well as the block size NB. The optimum values for the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

omp_set_nested (1) ;
mkl_set_dynamic (0) ;
omp_set_num_threads (nthomp) ;
mkl_set_num_threads (nthmkl) ;
#pragma omp paral le l {

obtain size and initial position of the

submatrix of A to be multiplied

call dgemm to multiply this submatrix by

matrix B

}

Algorithm 1 Scheme of a two-level matrix multiplication.

different parameters are interdependent, i.e. the value of

the block size determines the size of the matrices in the
matrix multiplication, and consequently the optimum

number of threads in the two-level dgemm.

DO 20 J = 1 , N , NB

∗ Update and factorize the current

∗ diagonal block and test

∗ for non−positive−definiteness .
JB = MIN (NB , N−J+1)
CALL dsyrk (. . .)
CALL dpotf2 (. . .)
IF (J+JB . LE . N) THEN

∗ Compute the current block column .
CALL dgemm (. . .)
CALL dtrsm (. . .)

END IF

20 CONTINUE

Algorithm 2 Scheme of the LAPACK Cholesky (potrf)
routine.

The installation of the routine in the system is made

by executing the routine for each matrix size specified in

the Installation_Set by varying the number of OpenMP

and MKL threads at each level of parallelism from one
to the number of available cores in the system, and

using a combination of threads not exceeding the maxi-

mum number of cores (nthomp×nthmkl≤cores). Once

the routine has been installed, the number of threads

with which the lowest time is obtained for each problem
size is stored, and, at execution time, for a particular

problem size, the number of threads to be used to solve

the problem is selected by using the information stored

during the installation phase.

Experiments have been carried out in different

shared-memory systems, from a medium NUMA sys-

tem to a large cc-NUMA system:

– Hipatia: a cluster with 14 nodes with 2 Intel Xeon
Quad-Core, 2.80 GHz, and 2 nodes with 4 Intel Xeon

Quad-Core, 2.93 GHz. The nodes with 16 cores are

used in the experiments.

– Saturno: a NUMA system with 24 cores, Intel Xeon

E7530 (hexa-core) processors, 1.87GHz, 32 GB of

shared-memory.

– Ben: composed of 128 cores, Intel-Itanium-2 Dual-

Core processors, 1.6 GHz, 1.5 TB of shared-memory.
– Pirineus: comprising 1344 cores, Intel Xeon X7542

(hexa-core) processors, 2.67 GHz, 6.14 TB of shared-

memory. The maximum number of cores to be used

together is 256.

4.1 Experiments with the matrix multiplication

We begin by analyzing the behavior of the matrix mul-

tiplication. Initially only MKL parallelism (1 OpenMP
thread - multiple MKL threads) is considered and then

the two levels of parallelism (OpenMP+MKL). Table 1

compares, for each system and with hyperthreading ca-

pability disabled, the execution time (in seconds) with a

sequential (1 OpenMP thread + 1 MKL thread) execu-
tion (Seq.), the execution time with MKL parallelism

and the maximum number of cores (Max.Cores), the

lowest execution time when using only MKL parallelism

(Low.MKL) and the lowest execution time obtained us-
ing two levels of parallelism (Low.OMP+MKL). The

last column shows the speed-up achieved using two lev-

els of parallelism with respect to only MKL parallelism

(the quotient Low.MKL/Low.OMP+MKL). The num-

bers in brackets represent the threads with which the
lowest time is obtained. The use of two levels of par-

allelism provides better speed-up with respect to the

use of a single level of parallelism (Speed-up column).

Furthermore, the largest reduction is not obtained with
a number of threads equal to the maximum number of

cores, but with an intermediate combination of OpenMP

and MKL threads. The advantage of using two-level

parallelism is more apparent in the largest systems,

where more cores can be used efficiently with
OpenMP+MKL parallelism. This can be observed in

figure 2, which compares the number of cores with which

the lowest execution time is obtained for MKL and

OpenMP+MKL.
The results of these initial experiments led us to

study auto-tuning techniques capable of determining

(during the installation phase) the most appropriate

number of OpenMP and MKL threads to establish at

each level of parallelism in the execution phase, so en-
suring execution times close to the optimum with a min-

imum installation time. One initial possibility is to fix

the number of OpenMP and MKL threads according

solely to the number of cores, but not to the charac-
teristics of the system. For example, if the number of

OpenMP and MKL threads is established as the square

root of the number of cores in the system, satisfactory

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

N Seq. Max.Cores Low.MKL Low.OMP+MKL Speed-up MKL/(OpenMP+MKL)

Saturno
1000 0.2498 0.0335 0.0318 (20) 0.0291 (8-3) 1.09
2000 1.9849 0.2257 0.2257 (24) 0.2151 (6-4) 1.05
3000 6.6704 0.7255 0.5205 (17) 0.5205 (1-17) 1.00

Ben
1000 0.3144 0.0759 0.0269 (22) 0.0181 (5-8) 1.49
2000 2.4626 0.3306 0.1294 (36) 0.0749 (10-6) 1.73
3000 8.2604 0.6640 0.3076 (40) 0.2131 (24-4) 1.44

Pirineus
1000 0.2199 0.4547 0.0322 (12) 0.0235 (2-16) 1.37
2000 1.6815 1.1569 0.4796 (16) 0.0797 (5-12) 6.01
3000 5.4696 1.2903 0.3955 (60) 0.2752 (4-15) 1.44

Table 1 Comparison of the execution times of dgemm. Sequential time (Seq.), execution time with the maximum number of cores
(Max.Cores), lowest execution time obtained with MKL when varying the number of threads (Low.MKL) and lowest execution
time obtained using two levels of parallelism (Low.OMP+MKL), and speed-up of the OpenMP+MKL implementation with
respect to MKL. In brackets, the number of threads with which the lowest time is obtained. Times in seconds.

Fig. 2 Comparison of the number of cores with which
the lowest execution time is obtained in MKL and
OpenMP+MKL matrix multiplications.

speed-ups are obtained in the systems where experi-
ments have been carried out, but the number of threads

in the two levels does not correspond to the optimal

combination of OpenMP and MKL threads. For a more

exact combination, exhaustive testing can be conducted

in the installation phase, and the large installation time

should be reduced with guided and pruned search. Two

installation techniques are compared:

– The first technique performs an exhaustive search in

all the possible combinations of OpenMP and MKL

threads, with the total number of threads up to the
number of cores. As a result, it obtains the optimal

number of threads corresponding to the minimum

execution time, but it uses a high installation time,

because all possible executions are carried out for

each matrix size in the Installation_Set, varying the
number of threads up to the number of available

cores.

– In order to reduce the installation time, another

technique is applied, in which a guided search based
on a percentage is performed. The number of threads

at each level of parallelism is increased until we get

an execution time that exceeds the current mini-

mum by an amount equal to the percentage estab-

lished. The precision required to get the optimum
number of threads depends on the percentage cho-

sen. Therefore, the use of high percentage values will

give a result closer to the optimum, because more

executions are carried out by ignoring values corre-
sponding to local optima.

Experiments with exhaustive and guided search have

been carried out. The same Installation_ Set {500, 1000,

3000} and Validation_Set {700, 2000} are used dur-
ing the installation phase and for validation. Table 2

shows the execution time (in seconds) obtained when

applying guided search with different percentages. The

combination of OpenMP-MKL threads with which the
optimum time is achieved is shown in brackets. Figure

3 shows the quotient of the execution time for the dif-

ferent percentages with respect to the lowest time. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

differences with respect to the lowest experimental time

is very small for large problems in large systems, and

only in Saturno is a high percentage necessary in order

not to fall in local minima, with which the execution

time is much higher than the optimum experimental.
In the cc-NUMA systems the execution times are very

close to the optimum with medium percentages. Fur-

thermore, the time employed in the installation phase

is substantially reduced with respect to that with ex-
haustive search (figure 4), giving affordable installation

times and satisfactory execution times with the guided

search technique with 10% and 20% thresholds.

Fig. 3 Quotient of the execution time with the number of
OpenMP and MKL threads selected with guided search with
different percentages with respect to that with exhaustive
search, for the OpenMP+MKL matrix multiplications.

4.2 Experiments with matrix factorizations

In matrix factorizations, the auto-tuning methodology

can be applied to its internal dgemm routine, which is

used to perform all the matrix multiplications involved

Fig. 4 Installation time (in seconds) of the MKL and
OpenMP+MKL matrix multiplication, obtained in different
systems after applying exhaustive search and guided search
with different percentages.

in the computation by blocks [12]. As an example, we
consider the Cholesky factorization, where the auto-

tuning is applied to the dgemm routine used for the

matrix multiplications to update the lower triangular

parts of matrix A (algorithm 2). When using the MKL

implementation of LAPACK, the block size is auto-
matically determined by the ILAENV function. There-

fore, it is necessary to work directly with the reference

potrf routine. The dgemm is replaced by a parallel im-

plementation that uses two levels of parallelism, and the
auto-tuning process is performed in order to select the

most appropriate number of threads at each level. The

other routines used internally in the Cholesky factoriza-

tion are called using their corresponding multithreaded

MKL implementations.

Experiments have been carried out in Saturno, and

the Installation_Set used is: {256, 768, 1280, 1792, 2304,
2816, 3328, 3840, 4352}. At running time, the decisions

for the problem sizes in the Validation_Set are taken

by applying an interpolation process to the informa-

tion stored during the installation. Table 3 shows the

execution times (in seconds) obtained with the auto-
tuning methodology and the lowest execution times ob-

tained experimentally by a perfect oracle. The number

of OpenMP and MKL threads at each level of paral-

lelism is shown in brackets. The number of threads most
frequently used is 24 (the total number of cores in the

system), but with different combinations (3-8, 4-6, 6-4).

The times obtained with the auto-tuning methodology

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

N Exhaustive 1.00% 10.00% 20.00% 50.00%

Saturno
500 0.004 (6-4) 0.009 (2-2) 0.009 (2-2) 0.009 (2-2) 0.004 (2-12)
700 0.010 (6-4) 0.023 (2-2) 0.023 (2-2) 0.023 (2-2) 0.011 (2-12)
1000 0.029 (8-3) 0.033 (3-3) 0.033 (3-3) 0.033 (3-3) 0.030 (2-12)
2000 0.215 (6-4) 0.260 (3-3) 0.260 (3-3) 0.260 (3-3) 0.258 (2-10)
3000 0.521 (1-17) 0.834 (3-3) 0.834 (3-3) 0.834 (3-3) 0.709 (3-8)

Ben
500 0.005 (23-1) 0.013 (1-4) 0.005 (4-6) 0.005 (4-6) 0.005 (1-20)
700 0.010 (7-4) 0.015 (1-10) 0.012 (5-6) 0.012 (5-6) 0.011 (1-19)
1000 0.018 (10-4) 0.030 (1-16) 0.018 (6-7) 0.018 (6-7) 0.025 (1-19)
2000 0.080 (10-5) 0.098 (3-15) 0.083 (6-8) 0.083 (6-8) 0.096 (3-16)
3000 0.219 (25-3) 0.230 (5-14) 0.238 (6-10) 0.238 (6-10) 0.230 (5-14)

Pirineus
500 0.006 (1-24) 0.008 (4-4) 0.008 (4-4) 0.008 (4-4) 0.008 (4-4)
750 0.013 (2-16) 0.016 (4-4) 0.025 (4-6) 0.025 (4-6) 0.025 (4-6)
1000 0.026 (2-16) 0.033 (4-3) 0.026 (4-8) 0.026 (4-8) 0.026 (4-8)
2000 0.080 (5-12) 0.232 (4-8) 0.081 (4-15) 0.081 (4-15) 0.081 (4-15)
3000 0.275 (4-15) 0.275 (4-15) 0.275 (4-15) 0.275 (4-15) 0.275 (4-15)

Table 2 Execution times (in seconds) of two-level dgemm, obtained after applying exhaustive and guided search using different
percentages. In brackets, the combination of OpenMP-MKL threads with which the optimum time is achieved.

are normally close to the optimum, and the total num-

ber of threads used is also similar. In larger systems,

differences in the execution times are higher.

N Optimum Auto-Tuning
512 0.0012 (1-16) 0.0014 (1-14)
1024 0.0040 (4-6) 0.0042 (3-8)
1536 0.0076 (4-6) 0.0080 (6-4)
2048 0.0134 (2-12) 0.0141 (4-6)
2560 0.0326 (7-3) 0.0842 (6-4)
3072 0.0505 (7-3) 0.0835 (6-4)
3584 0.0780 (3-8) 0.0786 (4-6)
4096 0.1247 (3-8) 0.1275 (4-6)

Table 3 Execution times (in seconds) obtained with the ap-
plication of the auto-tuning methodology (Auto-Tuning) to
the dgemm routine of potrf and lowest experimental execution
time (Optimum), and number of OpenMP and MKL threads
used in these executions, in Saturno.

In order to analyse the improvement achieved with

this methodology when applied to linear algebra rou-

tines which call lower level routines, a comparative study
of the execution time obtained by different implemen-

tations of the Cholesky potrf routine has been carried

out. Table 4 shows the results obtained for the reference

LAPACK routine (LAPACK), a potrf LAPACK rou-

tine which internally calls the multithreaded MKL rou-
tines dsyrk, dpotf2 and dtrsm (LAPACK+MKL), and

the modified LAPACK routine where dgemm is replaced

by the auto-tuned dgemm2L routine (LAPACK+AT).

The results of applying the auto-tuning methodology
are satisfactory, but for some problem sizes a loss of

performance occurs due to the interpolation applied to

select the number of OpenMP and MKL threads.

N LAPACK LAPACK+MKL LAPACK+AT
512 0.043 0.0039 (9) 0.0038 (1-14)
1024 0.333 0.0129 (12) 0.0116 (3-8)
1536 1.105 0.0246 (24) 0.0244 (6-4)
2048 2.614 0.0755 (24) 0.0766 (4-6)
2560 5.075 0.1091 (24) 0.1656 (6-4)
3072 8.787 0.2030 (21) 0.2376 (6-4)
3584 13.935 0.2792 (21) 0.3230 (4-6)
4096 20.895 0.3907 (21) 0.3839 (4-6)

Table 4 Execution times (in seconds) obtained with different
versions of the potrf routine: the reference LAPACK routine
(LAPACK), the LAPACK routine with multithreaded MKL
kernels (LAPACK+MKL) and the LAPACK routine with
the auto-tuning methodology (LAPACK+AT), in Saturno.
In brackets, the number of threads with which the execution
times are obtained.

The Cholesky factorization of LAPACK (Algorithm

2) is computed by blocks. The size and shape of these
blocks vary depending on the value selected internally

by the LAPACK ILAENV function. In this function, that

value is selected according to the problem size, but not

with respect to the number of threads used. Therefore,
we can reduce the execution time even more by selecting

the optimum block size for each value of the Installa-

tion_Set. To apply this idea to multithreaded routines,

two parameters must be selected: the number of threads

and the block size. The number of threads is selected for
the dgemm routine by applying the auto-tuning method-

ology, and for the selection of the block size it is neces-

sary to work directly with the LAPACK potrf routine,

so that the block size selected by the ILAENV function
can be modified in order to select the best block size.

Table 5 compares, for different matrix sizes, the exe-

cution time obtained for the potrf routine when the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

block size is internally selected by ILAENV and the ex-

ecution time when the block size is selected with the

auto-tuning technique. All the experiments have been

done in Saturno using the same Installation_Set {256,

768, 1280, 1792, 2304, 2816, 3328, 3840, 4352}, with
block sizes power of 2 from 32 to 512 and a number of

cores from 1 to 24. When the routine potrf uses the

ILAENV function to select the block size, the same value

is used for several matrix sizes regardless of the num-
ber of threads. When the number of threads and the

block size are selected with the auto-tuning method-

ology, lower execution times are obtained. For small

matrix sizes, the use of larger blocks is preferable, but

for larger sizes a lower value than that selected by the
ILAENV function (which does not consider the number

of threads, only the matrix size) is more appropriate.

Figure 5 compares the speed-up with respect to the

LAPACK+MKL version with the block size selected
with the ILAENV function of the two versions of auto-

tuning: when only the number of threads is selected

and when the block size is also selected as a function

of the number of threads. The improvement achieved

by selecting the appropriate block size is between 6%
and 30% for most matrix sizes. Therefore, if we also use

the block size joint with the selection of the number of

threads in the auto-tuning methodology, better results

are obtained for the potrf routine. Similar results are
obtained for other routines, and the advantage of the

auto-tuning is more apparent in larger systems.

LAPACK+MKL LAPACK+AT
ILAENV threads+block

N Block Time Block Time
512 32 0.0039 (9) 128 0.0034 (1-14)
1024 96 0.0129 (12) 128 0.0115 (3-8)
1536 192 0.0246 (24) 64 0.0265 (6-4)
2048 384 0.0755 (24) 128 0.0621 (4-6)
2560 384 0.1091 (24) 64 0.0878 (6-4)
3072 512 0.2030 (21) 64 0.1457 (6-4)
3584 512 0.2792 (21) 256 0.2524 (4-6)
4096 512 0.3907 (21) 256 0.3645 (4-6)

Table 5 Execution times (in seconds) obtained for the potrf
LAPACK routine with a block size selected by the ILAENV

function (LAPACK+MKL with ILAENV) and the LAPACK
routine with auto-selection of the block size and number of
OpenMP and MKL threads (LAPACK+AT), in Saturno. In
brackets, the number of OpenMP and MKL threads with
which the lowest times are obtained.

5 Extension of the methodology to higher level

routines

The same methodology applied to low level routines can

be extended to other routines which call low level rou-

Fig. 5 Quotient of the execution time of auto-tuning with
threads selection and with threads and block size selection,
with respect to LAPACK+MKL with block size selected with
ILANEV, for the potrf routine in Saturno.

tines. With the Cholesky factorization we have shown

how the methodology can be directly applied to the rou-

tine or to a lower level routine (dgemm) used internally.
For higher level routines we have the same possibilities.

For example, the dgesv routine to solve general multi-

ple linear systems uses the LU factorization, which in

turn uses the matrix multiplication. The auto-tuning
technique can be applied to the matrix multiplication

and then the LU factorization uses the two level ma-

trix multiplication with a different number of threads at

each level and for the different multiplications carried

out in the factorization process. Otherwise, the auto-
tuning can be made at a higher level in the LU fac-

torization by selecting the optimum number of threads

and the block size. Once we have an auto-tuning LU

factorization it can be used in the linear system rou-
tine.

LAPACK routine sysv can be used to solve a lin-

ear system AX = B with A a symmetric matrix. But
the implementation of this routine in LAPACK (or in

MKL) is not very scalable, and when the number of

cores is large it may be preferable to use the general rou-

tine gesv. The auto-tuning methodology can be used in
this case to decide both the routine to use and the val-

ues of the parameters. The joint installation of these

routines should provide information of the preferred

routine and of the number of threads (and consequently

of cores) to use when solving a particular problem, de-
pending on the problem size and the size of the compu-

tational system (the number of cores reserved to solve

the problem).

With the Installation_Set {256, 768, 1280, 1792,

2304, 2816, 3328, 3840} in Saturno the installation time

with the exhaustive search is 79 seconds for dsysv, 62

for dgesv, 217 for zsysv and 231 for zgesv, giving a
total of 589 seconds. This is not long, but it can be re-

duced with a guided search as explained in section 4 for

the matrix multiplication. For example, a guided search

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

for dsysv with a stopping threshold of 1% gives an in-

stallation time of 9 seconds, and when the threshold is

10% the installation time rises to 36 seconds. This re-

duction in the installation time could produce a worse

selection of the number of threads at execution time,
but we can see in figure 6 (top) that the selection is sat-

isfactory with the 10% threshold, for which the execu-

tion time and the selected number of threads practically

coincide with those obtained with exhaustive search. If
we consider that the deviation in the execution time

is obtained as the mean of the relative deviation for

all the sizes (|obtained time−optimum time|
optimum time

), exhaustive

search gives a deviation of approximately 4.8%, and

so this deviation is the minimum we can expect from
any installation method. Lower deviations are obtained

with guided search (4.3% and 2.5% with guided search

with 1% and 10% threshold), which means guided search

produces satisfactory results with a lower installation
time. These results are due to the shape of the execu-

tion time of the routine in Saturno, where the execution

time is practically constant from a number of threads

on. For larger systems the differences are bigger. The

figure also compares (bottom) the selection of the num-
ber of threads. The selection with exhaustive search and

guided search with 10% threshold practically coincide,

and the number of threads is very close to the optimum.

The mean deviation of the selected number of threads
with respect to the optimum is of 2 threads for ex-

haustive search and guided search with 10% threshold,

but with a 1% threshold the deviation rises to approx-

imately 5, which means a worse selection which has no

proportional influence on the execution time, due to its
flat shape.

The guided installation can be extended to be ap-

plied to the joint installation of several similar routines.

For example, when installing dsysv and dgesv the in-
formation generated for one of them can be used to

guide the search for the other routine. If the first rou-

tine being installed is dsysv and the number of threads

selected for each problem size in the installation is used

to start the search for this problem size for the routine
dgesv, the installation time for dgesv with a guided

search with 1% and 10% threshold is 8 and 9 seconds.

So, the installation time of the two routines is reduced

from 141 seconds to 17 and 45 seconds.

The routine to use in the solution of the problem can
be selected using the information stored in the installa-

tion. To do so, it is necessary to store for each problem

size in the Installation_Set the number of threads with

which the execution time of the routine gesv is for the
first time lower than that of the corresponding routine

sysv. For a given problem size in a Validation_Set we

consider that the change from sysv to gesv occurs for

Fig. 6 Comparison of the optimum execution time (top) and
number of threads (bottom) with those obtained with exhaus-
tive search and guided search with 1% and 10% threshold.
Routine dsysv, in Saturno.

the same number of threads as for the closest problem

size in the Installation_Set. The number of threads at

which the change happens is shown in table 6. The ta-
ble shows results in Saturno and in a quadcore laptop.

For the problem sizes in which the change does not hap-

pen at the predicted point, two values are shown: the

number of threads at which gesv is better than sysv

for the first time, and the number of threads at which
the change happens according to the information stored

in the installation. In Saturno, the number of threads

at which the change happens is well predicted in 35 of

46 cases, and in the laptop in 30 of 46, which means
the correct selection is made approximately 70% of the

times. The behavior in the two systems is slightly dif-

ferent, with the number of threads at which the change

happens increasing with the problem size more quickly

in Saturno than in the laptop, which may be due to
the difference in the memory hierarchy in the two sys-

tems and the use of different versions of MKL. Fur-

thermore, an unexpected behaviour is observed in the

laptop, where the gesv routines with one thread are
preferred to sysv for small problem sizes, which is de-

tected at installation time.

If the routines dsysv and dgesv are installed to-

gether in Saturno with determination of the best rou-

tine for each number of cores, the installation time is
reduced from 140 to 48 seconds, and in the joint instal-

lation of zsysv and zgesv the reduction is from 447 to

135 seconds.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

Saturno laptop
size dsysv-dgesv zsysv-zgesv dsysv-dgesv zsysv-zgesv
384 2 3 / 2 1 2 / 1
512 2 3 / 2 2 / 1 2 / 1
640 2 3 2 / 1 2
896 3 / 2 3 2 / 1 3 / 2
1024 2 3 1 2
1152 3 3 2 3
1408 3 3 2 3
1536 3 3 2 3
1664 3 3 2 3
1920 3 5 / 3 2 3
2048 3 5 / 3 2 3
2176 4 5 2 3
2432 4 5 2 3
2560 4 5 2 3
2688 4 5 2 3
2944 5 / 4 7 2 3
3072 3 / 4 7 3 / 2 3
3200 5 / 4 7 2 / 3 3
3456 5 / 4 7 3 3
3584 5 / 4 9 / 7 2 / 3 4 / 3
3712 5 9 3 / 4 3 / -
3968 5 9 3 / 4 3 / -
4096 5 9 3 / 4 3 / -

deviation 0.26 0.35 0.30 0.43

Table 6 Comparison of the number of threads at which gesv outperforms sysv and the number of threads at which this
happens according to the information stored at installation time, with different problem sizes and in two different systems.

As we did with the Cholesky factorization in the

previous section, the multithread MKL or reference LA-

PACK routines can be used to introduce auto-tuning
with selection of the number of threads and the block

size. To compare the behavior of MKL and reference

LAPACK routines, the routines zsysv and zgesv are

compared in Saturno in table 7 and figure 7. The table

shows the execution time of the two routines in their
implementation in MKL and reference LAPACK, with

one thread and 24 threads, and the figure shows the

quotient of the execution time obtained with reference

LAPACK with respect to that with MKL. The block
size used by MKL is not known, and LAPACK always

selects a block size of 64, regardless of the number of

threads. We can see that MKL slightly improves on LA-

PACK in the sequential version (approximately 4%),

which can be produced by a suitable selection of the
block size in MKL, but also by additional internal opti-

mizations. The improvement with 24 threads is higher,

around 20% for zsysv and 60% for zgesv. No dynamic

selection of the number of threads was allowed in MKL,
so the improvement is not due to the number of threads.

It is possible that MKL changes the block size with the

number of threads, but additional optimizations must

be included, especially in zgesv. In reference LAPACK

the parallelism is achieved in the basic routines which

zsysv and zgesv call (MKL routines), and so the par-

allelism could be at a lower level than that in MKL.

zsysv zgesv

size MKL LAPACK MKL LAPACK
1 thread

512 0.036 0.040 0.060 0.060
1024 0.257 0.274 0.458 0.455
1536 0.831 0.879 1.499 1.516
2048 1.926 2.013 3.487 3.560
2560 3.697 3.865 6.707 6.981
3072 6.304 6.554 11.49 11.99
Total 13.05 13.62 23.70 24.55

24 threads
512 0.024 0.032 0.009 0.020

1024 0.112 0.139 0.038 0.090
1536 0.294 0.332 0.113 0.229
2048 0.525 0.624 0.250 0.472
2560 0.873 1.042 0.540 0.842
3072 1.269 1.525 0.903 1.296
Total 3.09 3.69 1.85 2.94

Table 7 Comparison of the execution time of MKL and ref-
erence LAPACK routines zsysv and zgesv for different prob-
lem sizes, when using 1 and 24 threads, in Saturno.

Our goal is not to reduce the execution time ob-
tained with the MKL routines, but to analyze the pa-

rameters selection methodology. We consider the joint

selection of the number of threads and the block size.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

Fig. 7 Quotient of the execution time of routines zsysv and
zgesv in reference LAPACK with respect to MKL for different
problem sizes, when using 1 and 24 threads, in Saturno.

Table 8 compares the execution time in Saturno of the

routines zsysv and zgesv in the cases:

size 64-24 64-thr Lowest AT-blo-thr
zsysv

512 0.032 0.029 (17) 0.025 (18-40)
1024 0.139 0.131 (21) 0.116 (18-40) 0.116 (18-32)
1536 0.332 0.322 (21) 0.292 (18-32)
2048 0.624 0.611 (21) 0.585 (21-32) 0.596 (20-32)
2560 1.042 1.032 (17) 0.961 (22-40)
3072 1.525 1.525 (24) 1.446 (24-48) 1.517 (22-40)

zgesv

512 0.020 0.020 (21) 0.018 (18-32)
1024 0.090 0.090 (24) 0.083 (24-32) 0.085 (21-32)
1536 0.228 0.228 (24) 0.207 (22-24)
2048 0.472 0.472 (24) 0.449 (24-48) 0.460 (23-32)
2560 0.819 0.819 (24) 0.804 (24-56)
3072 1.296 1.296 (24) 1.294 (22-56) 1.307 (23-56)

Table 8 Comparison of the execution time of the routines
zsysv and zgesv in Saturno, for block size and number of
threads fixed at 64 and 24 (64-24), for the best number of
threads with block size 64 (64-thr), for the best combination
of block size and number of threads (optimum), and with the
block size and number of threads empirically selected from
information obtained at installation time (emp-blo-thr). The
number of threads and the optimum block size used in the
different cases are also shown.

– With a block size of 64 and a number of threads

equal to that of available cores (column 64-24). This

seems to be a good choice because when more cores

are used a larger reduction of the execution time is

expected, and 64 is a reasonable block size, and is
selected by the LAPACK routine ILAENV.

– With a block size of 64 and the number of threads

with which the lowest execution time is obtained

(column 64-thr).
– With the combination of block size and number of

threads which gives the lowest experimental execu-

tion time (Lowest).

– The rows for sizes 1024, 2048 and 3072 show, in

the column AT-blo-thr, the execution time with the

block size and number of threads selected. The rows

for sizes 512, 1536 and 2560 correspond to the values

obtained with executions for all the number of cores
(from 1 to 24) and block sizes a multiple of 8 from

8 to 256. These three matrix sizes could be used

for installation, and the decisions for other problem

sizes (1024, 2048 and 3072 in the table) are taken
using the information stored in the installation.

Some conclusions can be drawn:

– The selection of the number of threads slightly re-

duces the execution time for small matrices or in

zsysv, with a worse parallelism, which means that
the best number of threads does not coincide nor-

mally with the maximum. In larger systems the dif-

ferences would be more apparent.

– The selection of the block size and the number of

threads allows additional reduction of the execution
time, which is greater for small matrices, and with

a maximum percentage of reduction in the experi-

ments of about 18%.

– The use of auto-tuning normally produces a reduc-
tion in the execution time with respect to that with

block size 64 and 24 cores, but this reduction is lower

than the optimum obtained experimentally, which is

normal because auto-tuning does not always select

the best parameters combination.

6 Application of the methodology to PLASMA

routines

The same methodology shown with the multithread

MKL implementation of LAPACK can be applied to

other linear algebra packages. The PLASMA library

[24] is conceived to exploit the multicore capacity of
present systems, and we show here some experiments

which prove that empirical auto-tuning techniques are

also applicable to PLASMA.

The behavior of some routines in LAPACK and

PLASMA in medium multicore systems is shown in

figures 8 (Hipatia) and 9 (Saturno). The results with

Hipatia have been obtained in a node with 16 cores us-

ing 16 threads, and in Saturno 24 threads have been
used. For all the routines the default values were taken

for the block sizes: block and inner block equal to 120

for the matrix multiplication and the Cholesky factor-

ization and block of size 200 and inner block of size 20
for the LU factorization and the complex linear system

routine (which uses the LU factorization). The compar-

ison of the two libraries is similar in both systems:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

Fig. 8 Comparison of the execution times of the routines
dgemm, dpotrf, dgetrf and zgesv, in Hipatia with 16 threads.

– Better results are obtained with MKL for large ma-

trices. PLASMA outperforms MKL only for some

small problem sizes.
– The percentage of the improvement of MKL with

respect to PLASMA is different in the two systems

and for the different routines, which makes it im-

possible to draw general conclusions about the ad-

vantage of using MKL.
– The differences in the execution time between the

two libraries is not very large, and the selection of

the optimum block sizes in PLASMA could make it

competitive with MKL. One good option for opti-
mization is to consider the selection of the library

together with the number of threads and the block

sizes.

Fig. 9 Comparison of the execution times of the routines
dgemm, dpotrf, dgetrf and zgesv, in Saturno with 24 threads.

So, the same techniques used with LAPACK and

MKL routines to select the best implementation and

configuration of parameters for a particular problem
size and in a particular system can be applied to

PLASMA.

To achieve high performance with multicore archi-

tectures, PLASMA relies on tile algorithms, which pro-

vide fine granularity parallelism. Its performance strong-
ly depends on tunable execution parameters trading

off utilization of different system resources. The outer

block size (NB) trades off parallelization granularity

and scheduling flexibility with single core utilization,
while the inner block size (IB) trades off memory load

with extra-flops. In this case the values to search for in

the installation are the number of threads, NB and IB.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

The search begins with the smallest problem size in the

Installation_Set, with which the experimentation time

is small. From these initial optimum tuning parameters

the search for larger problems can continue in different

ways. Two possibilities are considered:

– A guided search exploring all the possible combina-

tions (PLASMA-GS-All) of number of threads, outer

block size, and inner block size (th, NB, IB) begins

by using the best combination of parameters found
for the previous matrix size in the Installation_Set.

The search continues using neighbouring values for

the parameters obtained by applying a pre-set of

increments for each parameter (th± th_inc, NB±
NB_inc, IB ± IB_inc), until we get an execution

time that exceeds the minimum in an amount equal

to the threshold established. As a result, we ob-

tain the optimal number of threads, NB and IB

for each problem size in the Installation_Set, but
with a high installation time, because 27 executions

are carried out for each matrix size in the Installa-

tion_Set, varying th, NB and IB.

– The second technique (PLASMA-GS-Par) performs a
guided search in each parameter, varying the value

of one parameter and maintaining the value of the

other parameters fixed. As in the previous case, the

search starts with the value for the parameters that

provide the best execution time for the previous
problem size in the Installation_Set. The search

for the best possible value for each parameter ends

when the execution time exceeds the threshold.

Some PLASMA routines depend on one parame-
ter and on the number of threads (for example, the

Cholesky factorization) while others depend on the three

parameters. As an example we analyse how the instal-

lation process works for the LU factorization, which
depends on the three parameters. The Installation_Set

used in the experiments is {500, 1500, 2500, 3500, 4500,

5500, 6500, 7500, 8500, 9500}; the increment values are

th_inc = 1, NB_inc = 10 and IB_inc = 2; and the

threshold value is set to 10%.

Tables 9 (Saturno) and 10 (Hipatia) show, for dif-

ferent matrix sizes, the execution time (in seconds) ob-

tained for the PLASMA LU factorization when the pa-

rameters are selected with the two techniques consid-

ered, the lowest execution time obtained for the MKL
LU factorization, and the lowest time obtained with

PLASMA LU factorization without parameter tuning.

The improvements obtained with the two techniques

are close, with a difference in the total time of ap-
proximately 6% in favour of PLASMA-GS-Par in Saturno

and of approximately 10% in favour of PLASMA-GS-All

in Hipatia. The time required to tune the parameters

with PLASMA-GS-All is much higher than that with

PLASMA-GS-Par. For example, in Saturno, this time

with PLASMA-GS-All is about 50 minutes, while with

PLASMA-GS-Par the installation time is reduced to ap-

proximately 10 minutes. In both systems, the reduction
of the execution time obtained with the parameters tun-

ing methodology is important, of about 26% with re-

spect to MKL and 20% with respect to PLASMA with-

out tuning in Saturno, and of about 15% with respect
to MKL and 23% with respect to PLASMA without

tuning in Hipatia.

The same techniques used with the LU factoriza-

tion can be applied to other routines, but different re-
sults are obtained depending on the particular rou-

tine and system. For example, when the auto-tuning

methodology is applied to the Cholesky factorization

in Saturno with the Installation_Set {500, 1000, 1500,
2000, 2500, 3000, 3500, 4000, 4500, 5000}, the instal-

lation time is reduced from approximately 57 minutes

with exhaustive search to approximately 7 minutes with

guided search with 10% threshold. The auto-tuning se-

lects satisfactory values of the parameters, but in this
case only two parameters are tuned (number of threads

and block size) and the advantage of MKL with re-

spect to PLASMA is bigger than for the LU factoriza-

tion (figure 9), and the auto-tuned PLASMA version is
surpassed by the implementation in MKL.

7 Conclusions

An empirical auto-tuning methodology for linear alge-

bra routines in NUMA systems has been analyzed. The
methodology has been tested in different multicore sys-

tems and with routines of different computational lev-

els and from different linear algebra packages. Some

aspects of the methodology have been explained and
exhaustive experimentation shows their applicability:

– The values of some parameters are selected: the num-

ber of OpenMP and MKL threads in two-level rou-
tines, the block size in algorithms by blocks, or the

outer and inner block sizes in implementations with

two block levels (for example, the PLASMA LU fac-

torization).

– When working at a medium or high computational
level (routines which call lower level routines), the

methodology can be applied directly to the medium

or high level routine or it can use an auto-tuned

version of the lower level routines.
– Better results are obtained when the parameters are

auto-tuned jointly rather than separately. This hap-

pens if we consider the block size as dependent on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

size PLASMA-GS-All PLASMA-GS-Par MKL PLASMA
2000 0.11 (17-103-10) 0.10 (15-128-98) 0.11 0.15
3000 1.17 (23-78-34) 0.21 (23-158-106) 0.28 0.29
4000 0.39 (24-158-47) 0.40 (24-173-119) 0.55 0.50
5000 0.69 (24-188-52) 0.70 (24-183-148) 1.06 0.87
6000 1.17 (23-228-65) 1.17 (23-198-184) 0.87 0.87

7000 1.76 (23-248-59) 1.74 (24-218-208) 2.36 2.13
8000 2.48 (24-248-78) 2.52 (24-258-238) 3.45 3.08
9000 3.50 (24-268-87) 3.50 (24-288-270) 4.73 4.31
10000 4.70 (24-320-110) 4.68 (24-288-276) 5.78 5.79
Total 15.97 15.02 19.19 17.99

Table 9 Comparison of the time obtained for the PLASMA LU routine with the thread, NB and IB configuration (in
brackets) selected with the installation techniques PLASMA-GS-All and PLASMA-GS-Par, the lowest time obtained with MKL LU
and the lowest time obtained with PLASMA LU. In Saturno, times in seconds.

size PLASMA-GS-All PLASMA-GS-Par MKL PLASMA
2000 0.14 (15,154,30) 0.18 (16,157,41) 0.15 0.15
3000 0.37 (16,204,55) 0.37 (16,204,167) 0.37 0.28

4000 0.59 (16,234,75) 0.66 (16,234,221) 0.70 0.66
5000 0.95 (16,284,100) 1.17 (16,274,239) 1.20 1.12
6000 1.58 (16,334,125) 1.72 (16,324,290) 1.85 1.82
7000 2.26 (16,364,140) 2.54 (16,364,343) 2.66 2.78
8000 3.26 (16,404,165) 3.61 (16,404,385) 3.86 4.09
9000 4.48 (16,424,185) 4.85 (16,424,416) 5.11 5.66
10000 5.86 (16,424,190) 6.40 (16,424,420) 6.71 7.67
Total 19.49 21.50 22.61 24.23

Table 10 Comparison of the time obtained for the PLASMA LU routine with the thread, NB and IB configuration (in
brackets) selected with the installation techniques PLASMA-GS-All and PLASMA-GS-Par, the lowest time obtained with MKL LU
and the lowest time obtained with PLASMA LU. In Hipatia, time in seconds.

the number of threads and the problem size, and

not only on the latter.

– Satisfactory parameters selection is obtained with

low installation time with guided search techniques,
which can be implemented to avoid falling into local

minima.

– The joint installation of a group of similar routines

can be conducted in such a way that an important
reduction of the installation time is obtained.

– In some cases in which several routines, implemen-

tations or libraries are available to solve a particu-

lar problem, the joint installation of them for auto-

tuning allows the best routine together with the val-
ues of the parameters to be selected.

– The results obtained are system-dependent, and no

general conclusions about the best values for the

parameters can be drawn, but the methodology has
been shown to provide satisfactory results in sys-

tems of different characteristics, and the advantage

of using the methodology is more apparent in larger

systems, where the range of possible values for the

parameters increases.

In conclusion, the methodology has been shown to

be versatile and useful for the design of efficient rou-

tines, which can execute efficiently (obtaining execution

times close to the lowest achievable) without the need

for user expertise.

We are working on the application of similar method-

ologies to other types of parallelism (message-passing
and GPUs) to routines of different types or to particu-

lar scientific applications.

Acknowledgements

Partially supported by Fundación Séneca, Consejería

de Educación de la Región de Murcia, 08763/PI/08,

PROMETEO/2009/013 from Generalitat Valenciana,

the Spanish Ministry of Education and Science through
TIN2012-38341-C04-03, and the High-Performance

Computing Network on Parallel Heterogeneus Architec-

tures (CAPAP-H). The authors gratefully acknowledge

the computer resources and assistance provided by the
Supercomputing Centre of the Scientific Park Founda-

tion of Murcia and by the Centre de Supercomputació

de Catalunya.

References

1. E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov. Nu-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

merical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. Journal of Physics:
Conference Series, 180(1), 2009.

2. P. Alberti, P. Alonso, A. M. Vidal, J. Cuenca, and D.
Giménez. Designing polylibraries to speed up linear al-
gebra computations. International Journal of High Per-
formance Computing and Networking, 1(1/2/3):75–84,
2004.

3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J.
Dongarra, J. Du Croz, A. Grenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
User’s Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1995.

4. G. Bernabé, J. Cuenca, and D. Giménez. Optimization
techniques for 3D-FWT on systems with manycore GPUs
and multicore CPUs. In ICCS, 2013.

5. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A
class of parallel tiled linear algebra algorithms for mul-
ticore architectures. Parallel Computing, 35(1):38–53,
2009.

6. J. Cámara, J. Cuenca, D. Giménez, and A. M. Vidal.
Empirical autotuning of two-level parallel linear algebra
routines on large cc-NUMA systems. In ISPA, 2012.

7. E. Caron, F. Desprez, and F. Suter. Parallel extension of
a dynamic performance forecasting tool. Scalable Com-
puting: Practice and Experience, 6(1):57–69, 2005.

8. Z. Chen, J. Dongarra, P. Luszczek, and K. Roche. Self
Adapting Software for Numerical Linear Algebra and LA-
PACK for Clusters. Parallel Computing, 29:1723–1743,
2003.

9. J. Cuenca, D. Giménez, and J. González. Architecture
of an automatic tuned linear algebra library. Parallel
Computing, 30(2):187–220, 2004.

10. J. Cuenca, L.-P. García, and D. Giménez. Improving
linear algebra computation on NUMA platforms through
auto-tuned nested parallelism. In Proceedings of the 2012
EUROMICRO Conference on Parallel, Distributed and
Network Processing, 2012.

11. M. Frigo. FFTW: An Adaptive Software Architecture
for the FFT. In Proceedings of the ICASSP Conference,
volume 3, page 1381, 1998.

12. G. Golub and C. F. Van Loan. Matrix Computations.
The John Hopkins University Press, third edition, 1996.

13. E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Opti-
mization framework for sparse matrix kernels. Int’l.
J. High Performance Computing Applications (IJH-
PCA), 18(1):135–158, February 2004.

14. Intel MKL web page. http://software.intel.com/

en-us/intel-mkl/.

15. S. Jerez, J.-P. Montávez, and D. Giménez. Optimizing
the execution of a parallel meteorology simulation code.
In Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium. IEEE, May 2009.

16. T. Katagiri, K. Kise, H. Honda, and T. Yuba. Fiber: A
generalized framework for auto-tuning software. Springer
LNCS, 2858:146–159, 2003.

17. T. Katagiri, K. Kise, H. Honda, and T. Yuba. AB-
CLib_DRSSED: A parallel eigensolver with an auto-
tuning facility. Parallel Computing, 32(3):231–250, 2006.

18. J. Kurzak, S. Tomov, and J. Dongarra. Autotuning gemm
kernels for the FERMI GPU. IEEE Trans. Parallel Dis-
trib. Syst., 23(11):2045–2057, 2012.

19. A. L. Lastovetsky, R. Reddy, and R. Higgins. Building
the functional performance model of a processor. In SAC,
pages 746–753, 2006.

20. J. Li, A. Skjellum, and R. D. Falgout. A poly-
algorithm for parallel dense matrix multiplication on two-
dimensional process grid topologies. Concurrency - Prac-
tice and Experience, 9(5):345–389, 1997.

21. K. Naono, K. Teranishi, J. Cavazos, and R. Suda (Ed-
itors). Software Automatic Tuning. From Concepts to
State-of-the-Art Results. Springer, 2010.

22. R. Nath, S. Tomov, and J. Dongarra. An improved
MAGMA gemm for FERMI graphics processing units.
IJHPCA, 24(4):511–515, 2010.

23. A. Petitet, L. S. Blackford, J. Dongarra, B. Ellis, G. E.
Fagg, K. Roche, and S. S. Vadhiyar. Numerical libraries
and the grid. IJHPCA, 15(4):359–374, 2001.

24. PLASMA. http://icl.cs.utk.edu/plasma/.
25. M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R.

Johnson, D. A. Padua, M. M. Veloso, and R. W. John-
son. Spiral: A Generator for Platform-Adapted Libraries
of Signal Processing Algorithms. IJHPCA, 18(1):21–45,
2004.

26. L. Seshagiri, M.-S. Wu, M. Sosonkina, Z. Zhang, M. S.
Gordon, and M. W. Schmidt. Enhancing adaptive
middleware for quantum chemistry applications with a
database framework. In IPDPS Workshops, pages 1–8,
2010.

27. T. Tanaka, T. Katagiri, and T. Yuba. d-Spline based
incremental parameter estimation in automatic perfor-
mance tuning. In PARA, pages 986–995, 2006.

28. R. Vuduc, J. Demmel, and J. Bilmes. Statistical mod-
els for automatic performance tuning. In International
Conference on Computational Science (1), pages 117–
126, 2001.

29. R. C. Whaley, A. Petitet, and J. Dongarra. Auto-
mated empirical optimizations of software and the AT-
LAS project. Parallel Computing, 27(1-2):3–35, 2001.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

