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Abstract The problem of estimating the class distribution (or prevalence)
for a new unlabelled dataset (from a possibly different distribution) is a very
common problem which has been addressed in one way or another in the
past decades. This problem has been recently reconsidered as a new task in
data mining, renamed quantification when the estimation is performed as an
aggregation (and possible adjustment) of a single-instance supervised model
(e.g., a classifier). However, the study of quantification has been limited to
classification, while it is clear that this problem also appears, perhaps even
more frequently, with other predictive problems, such asregression. In this
case, the goal is to determine a distribution or an aggregated indicator of the
output variable for a new unlabelled dataset. In this paper, we introduce a
comprehensive new taxonomy of quantification tasks, distinguishing between
the estimation of the whole distribution and the estimation of some indicators
(summary statistics), for both classification and regression. This distinction is
especially useful for regression, since predictions are numerical values that can
be aggregated in many different ways, as in multi-dimensional hierarchical
data warehouses. We focus on aggregative quantification for regression and
see that the approaches borrowed from classification do not work. We present
several techniques based on segmentation which are able to produce accurate
estimations of the expected value and the distribution of the output variable.
We show experimentally that these methods especially excel for the relevant
scenarios where training and test distributions dramatically differ.
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1 Introduction

A common situation in data mining applications involves training a regression
model predicting the expenditure, consumption, number of complaints, or any
other numeric value y. For instance, imagine that we have learnt a model for
individual customer expenditure from a customer portfolio X1 (i.e., a dataset)
that corresponds to a specific region, business area and time period, as ex-
tracted from a hierarchical multidimensional data warehouse. Eventually, we
may want to apply the model to a different customer portfolio X2, e.g., a dif-
ferent slice of the datamart for which we do not have the true value for y (i.e.,
X2 is an unlabelled dataset). In order to assess this second portfolio, some
typical questions might be: (1) “what’s the expected average expenditure for
the new portfolio?”, (2) “what’s the percentage of customers that will have
an expenditure lower than 20 euros?”, (3) “what’s the typical expenditure for
this portfolio?”

An answer to these questions can be given by just applying the regression
model to each customer in the new portfolio X2, so leading to a set Ŷ2, which
makes up a continuous empirical distribution p̂. With this distribution, the
above questions are just expressed as (1) Ep̂ [y] (i.e., the mean of Ŷ2), (2)

Pr(y ≤ 20|y ∈ Ŷ2) (i.e., a tail of the distribution) and (3) the value t for which
Pr(y ≤ t|y ∈ Ŷ2) = 0.5 (i.e., the median).

The above example refers to the aggregation of a regression model, but
the notion can also be applied to the aggregation of a classification model.
In fact, the latter has received much more attention in the literature under
different names, with the term class prevalence (or distribution) estimation
being the most common (Neyman, 1938; Tenenbein, 1970; Alonzo et al, 2003).
Many of these works focussed on how a small sample could be used to estimate
the distribution of a bigger sample (‘double’ or ‘two-phase’ sampling) and not
necessarily when the distributions change. Also, some of these works do not
rely on a supervised model issuing an output value for every single instance in
the dataset.

Forman (2005; 2006; 2008) presented the problem as a new supervised ma-
chine learning task called ‘quantification’. Quantification (for classification)
was defined as follows: “given a labeled training set, [. . .] induce a quantifier
that takes an unlabeled test set as input and returns its best estimate of the
class distribution”(Forman, 2006). Quantification is characterised (and distin-
guished from other distribution estimation problems) by how the problem is
presented.

First, quantification focusses on cases where the training and test distribu-
tions differ (a distribution shift), because otherwise the quantification problem
would be pointless: if the training and test distributions are equal, the best
estimation for the test set seems to be the observed empirical distribution on
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Fig. 1 An artificial example showing the applicability of quantification depending on the
existence of (data) distribution shift and concept drift. Top left: actual distribution for the
first batch (train). Top right: actual distribution for a second batch (test) where neither the
concept nor the distribution have changed (p(y|x) and p(x) have not changed). While the
estimation of the distribution may still be a problem when the number of training data is
small, quantification is unnecessary here because other (and simpler) statistical approaches
exist. Bottom left: actual distribution for a third batch (test) where the distribution (p(x))
has changed but the concept is the same (p(y|x) has not changed), so an estimator p̂(y|x),
trained on the first batch can still be useful. Quantification focusses on this problem. Bot-
tom right: actual distribution for a fourth batch (test) where the distribution p(x) has not
changed but the concept has drifted (p(y|x) has changed completely). Estimating the dis-
tribution here is a much more difficult problem.

the training data, possibly using a smoothing approach or other statistical
techniques. We then expect a change in the distribution. This may be a co-
variate shift or a prior probability shift (Moreno-Torres et al, 2012), depending
on whether the change originates on the covariates X or on the outputs Y .
We will just use the term distribution shift for both cases. Importantly, a dis-
tribution shift is different from a concept drift, where the very target function
changes between training and test. Figure 1 shows this difference.

Second, the problem is presented with a labelled training dataset from
which we can learn a supervised model or estimate other parameters, which
are then used to estimate the distribution for the whole unlabelled dataset
—available as a batch of examples.

A different question is how the problem is solved. A general and practical
approach is performed by aggregating the predictions of an underlying su-
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pervised model (a regression model, a classification model, or a conditional
probability estimator p̂(y|x)), which gives a prediction for each single instance
x. In other words, quantification is performed by aggregating the estimations
for individual examples, with a possible adjustment of this aggregation, as
we will see. This is especially appropriate in data mining applications where
we already have (validated) predictive models, as well as applications with
hierarchical data, where we train the model at the lower level and want to
aggregate (roll-up) its predictions upwards, as usual in modern data ware-
houses. This differs from cases where we may have a global estimator or other
individual, but unsupervised, estimators, such as a likelihood estimator p̂(x|y)
or a joint distribution estimator p̂(x, y). This choice of single-instance super-
vised models is motivated by two observations: (1) predictive models are by
far more common in data mining practice than likelihood or joint distribution
estimators, and (2) the target function p(y|x) will be the same since we do
not consider concept drift, while p(x|y) or p(x, y) are different whenever the
distribution changes. This means that a supervised model estimating p̂(y|x)
can be preserved (differently from p̂(x|y) or p̂(x, y)).

Given this setting for quantification, the simplest approach is then to calcu-
late the predictions for all the examples using the model and aggregate them.
This is, in fact, an ideal solution when the supervised model is perfect. How-
ever, many models are imperfect and biased (because of the difficulty of the
problem: overfitting, underfitting, lack of data for some regions, and other fac-
tors). In fact, Forman showed that, for classification quantification, the naive
method “classify & count” does not generally produce a good approximation
of the actual distribution for the dependent value y. In other words, a biased
predictive model may lead to bad estimations of the overall distribution of
the dependent value, especially when this distribution is significantly different
from the distribution used for training.

Interestingly, however, some not-so-good models can be unbiased, and ag-
gregating their predictions may lead to good quantification, or there might be
some quantification techniques for biased models that could reduce or correct
their bias and lead to good quantification. Forman summarises this (Forman,
2008): “it is sufficient but not necessary to have a perfect classifier in order to
estimate the class distribution well”.

Since then, and given the large number of applications of quantification,
new methods have been introduced that have improved the results for classifi-
cation quantification, such as an “adjusted classify & count” (Forman, 2008),
“median sweep” (Forman, 2008), and many others (Sánchez et al, 2008; Xue
and Weiss, 2009; Bella et al, 2010; González-Castro et al, 2012), either by
using crisp classifiers, or soft classifiers (rankers or probability estimators).

The problem of quantification for regression may have the same large num-
ber of applications as quantification for classification. Regression quantifica-
tion addresses a very common situation: the prediction of aggregated numeri-
cal values such as sales, consumptions, duration, people, etc. However, to our
knowledge, it has not been addressed in the context of distribution shift and
using a base regression model.
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While in classification this distribution is a discrete distribution (described
as a set of probabilities for each class), in regression we can estimate a complete
(empirical) continuous distribution and not only an expected mean. This also
makes aggregative quantification for regression a more difficult task, as we will
see, since the base regression models not only have bias on the location (the
mean) but also have a tendency to compact the data and reduce the variability
and dispersion of the output variable.

The goal of this paper is to develop new methods for regression quantifi-
cation that can be applied over any predictive model built with off-the-shelf
data mining software tools. As focussing on regression quantification, we will
assume that the underlying predictive model is a regression model and we
will concentrate most of our effort to this direct approach. Also, and just for
comparison, we will briefly explore the indirect approach of using classification
techniques applied to a discretised version of the problem.

We first explore the adaptation of several ideas from previous quantification
methods, such as an “adjusted regress & sum”. However, as we will see, this
adaptation produces poor results. A better analysis of the problem leads to
a novel approach based on the idea of segmentation. Instead of estimating
the whole distribution (which may have many different shapes depending on
the application) and use this to correct the error of the regression model, we
just use a more flexible approach. We segment the training distribution into
bins and use the errors in each bin to adjust (scale) the regression model.
Using these segmentation techniques and simple adjustments for location and
spread we are able to get much better results than the “adjusted regress &
sum” method.

Our contribution in this paper is then manifold. Firstly, we give a more
solid and comprehensive view of the quantification problem for several tasks,
leading to a taxonomy of quantification approaches with their corresponding
evaluation metrics. This taxonomy also distinguishes the cases where we want
to estimate an indicator (e.g., summarised statistic) of the distribution or the
whole distribution. Secondly, we show that the problem of regression quantifi-
cation is richer than the problem of classification quantification, because we
move from a discrete output to a continuous output. The ideas which work for
classification quantification do not work for regression quantification (such as
global adjustment), using a direct approach, unless we convert the regression
problem to a classification problem through discretisation as an indirect ap-
proach. And thirdly, we propose new methods based on segmentation which
are able to show good results even in the difficult distribution shift scenario
we set in the experiments.

The paper is organised as follows. Section 2 introduces some notation, two
examples and some previous work. From here we introduce a comprehensive
taxonomy and a set of metrics for each quantification task in section 3. Then
we focus on regression quantification in section 4, which analyses the problem
more formally. We introduce several methods that are inspired by classifica-
tion quantification and some new methods based on segmentation, adjustment
and spread, all assuming underlying regression techniques. In contrast, some
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other indirect methods based on a discretisation of the problem and the use of
classification quantification are also defined for reference. Section 5 performs
a thorough experimental evaluation of these methods for the indicator esti-
mation case and the distribution estimation case. Finally, section 6 closes the
paper with a discussion of results and some future work.

2 Background

In this section, we will introduce some notation to express what quantification
is precisely. The understanding of this problem will be helped by two exam-
ples and a proper account of related work, including a short description of the
methods which have been previously introduced for (classification) quantifica-
tion.

2.1 Notation

We will deal with supervised (or predictive) problems, where the input and
output domains are denoted by X and Y respectively. An unlabelled dataset
is any subset (actually a multiset) of X. A labelled dataset D is any subset
of X × Y . We will use the terms DX and DY for the projections of D for
the input and output domains respectively. Occasionally, we will drop the
subindex when clear from the context. Given an unlabelled or labelled dataset
D of size n = |D|, we will assume a (strict) order such that we can just refer to
an example with its index i in this order. Somewhat abusing notation we will
express i = 1 . . . n or i ∈ D indistinctly. For the ith example, yi will denote the
true output value corresponding to the input value xi. In this paper we refer
to both classification and regression problems. In classification, the output
domain is a set of nominal values Y = {l1, l2, . . . , lc} usually referred to as
class labels or simply classes; whereas in regression problems the output values
are real numbers (Y ⊂ R). A crisp model is any function m : X → Y . The
estimation (or prediction) for input xi is denoted by ŷi. A soft or probabilistic
model is any function which returns a probability distribution for any given
input value x, i.e., a conditional probability estimator p̂(y|x). For classification
this is a categorical distribution and for regression this can be any continuous
distribution. Typically, Train will denote the training dataset, while Test will
denote the test dataset. In that follows, Pr means probability, p denotes a
probability density function o discrete probability distribution function and P
denotes a cumulative distribution function.

The (true) empirical (marginal) distributions for dataset D are given by
the function pDX

(x) for the input values and pDY
(y) for the output values.

In classification,

pDY
(l) , Pr(y = l|y ∈ DY ) (1)
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is a categorical probability distribution (which gives a probability or frequency
for each class label l). In the binary case, ⊕ will denote the positive class and
⊖ the negative class. For instance, given a binary dataset D with a 80% of
class ⊕ then pDY

(⊕) = 0.8.
In regression, pDY

(r) is a probability density function for each real value
r, with cumulative distribution function (PDY

(r)):

PDY
(r) , Pr(y ≤ r|y ∈ DY ) =

∫ r

−∞

pDY
(y)dy (2)

The expected value for this distribution is just the mean of DY , which is
denoted by:

µDY
, E[DY ] =

∫ ∞

−∞

y pDY
(y) dy =

∑n

i=1 yi
|D| (3)

And σDY
denotes the standard deviation of the target values of D,

σDY
,

√∑n

i=1(yi − µDY
)2

|D|2

Given an unlabelled dataset DX , we do not know pDY
. Estimating this

probability distribution is precisely what this paper is about. Let us give a def-
inition of quantification:

Definition 1 Quantification: Given a labelled training dataset Train ⊂
X × Y for a supervised problem p(y|x), and given an unlabelled test dataset
Test, the quantification problem is the estimation of pTestY from Train. If Y is
a discrete set, then we have a classification quantification problem, and pTestY

is a discrete (categorical) distribution. If Y is a continuous set, then we have
a regression quantification problem, and pTestY is a continuous distribution.

If this estimation is performed by aggregating the individual predictions
ŷi of a predictive model then we have an aggregative quantification approach.
The trivial solution for the aggregative quantification problem for classification
is defined as:

p̂TestY (l) ,

∑n

i=1 I(ŷi = l)

|Test| (4)

where I is the indicator function (I(true) = 1 and I(false) = 0). This solution
is known as Classify & Count (CC). Similarly, the trivial solution for the
quantification problem for regression is defined by the cumulative empirical
distribution:

P̂TestY (r) ,

∑n

i=1 I(ŷi ≤ r)

|Test| (5)

which can be called Regress & Splice (RS). Note that this gives a value for
each possible r, which determines an estimated distribution. In quantification,
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(Perfect) individual predictions → (Perfect) distribution → (Perfect) indicators

Fig. 2 A schematic view of how much information (and effort) we require depending on
the problem we want to solve. This gradation is illustrated by the arrows which become
implications when we have perfect estimations.

we are interested in the whole distribution of TestY or some of its indicators,
such as a mean or a median. Of course, this distribution or indicators can be
well estimated by the use (e.g., aggregation) of very accurate individual predic-
tions. However, it is important to realise again that we could also achieve good
results from not-so-good individual predictions, provided they are not biased
(locally and globally). As a thought experiment, consider that we scramble
the predictions of a good regression model for an unlabelled dataset by just
swapping an indefinite high number of predictions. After this, the distribu-
tion is exactly the same, even though the regression model becomes awful for
individual predictions.

This unidirectional relation is shown in Figure 2, where we illustrate that
individual predictions are much more informative and require more effort than
the estimation of the whole distribution. This is illustrated by the arrows,
which show some kind of summarisation. Only when we have perfect estima-
tions, these arrows become implications. Interestingly, as we go from left to
right less information and effort is required. As a result, this schema also sug-
gests that we do not always need to derive the indicators from the distribution,
or the distribution from the individual predictions. In fact, on some occasions,
it may be better to estimate the indicators directly.

One single and generally useful indicator that can be calculated from this
estimated distribution (Eq. 5) is its expected value, which is an estimation for
µTestY above (Eq. 3),

µ̂TestY ,

∑n
i=1 ŷi

|Test| (6)

which could be similarly called Regress & Sum (RS)1. In that follows, since
we will focus on the output domain and distribution, we will usually drop Y
in TestY .

2.2 Examples: understanding quantification

Given the notation above we will see two specific examples that will help to
better understand what quantification is, and how it works when aggregat-
ing predictions from a base classification or regression model. We will also
informally discuss some classical concepts that play an important role here,
such as dataset imbalance or unevenness, overfitting, bias and variance, which
will all be more formally addressed in section 4.1. Let us see an example for
classification first:

1 We use the same acronym for Regress & Splice and Regress & Sum, since both just
aggregate the individual values with any further processing.
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Example 1 A quantification problem in classification
Consider a car renting company which assesses the suitability (acceptability)
of a car (unacceptable, acceptable, good or very good) according to several
characteristics.2 A classification model has been trained from data collected
over a recent batch of cars which were supplied by the usual provider. Now, a
deal is being negotiated with a new provider, which has given detailed informa-
tion about the characteristics of all the cars in the new batch. The car renting
company may be interested in calculating how many cars will be unacceptable.
This is a quantification problem that can be solved by aggregating the pre-
dictions of the classification model for this new batch of cars. Figure 3 (top)
shows the class distribution for the first batch (Train, left) and second batch
(Test, right), which is not known by the car renting company and it is what we
want to estimate. We see an important class distribution shift between Train
and Test. In this case, we approximate the test distribution with a decision
tree learnt from the training dataset. Its confusion matrix for Train and Test
is shown in the middle row of Figure 3. If we apply the decision tree to all the
examples in the test set and plot the predicted class frequencies, we get the
histogram on Figure 3 (bottom, right). As we can see, this estimated distribu-
tion significantly differs from the actual one. The estimation for class ‘good’ is
almost perfect but a considerable error appears on ‘unacc’ and ‘vgood’. Notice-
ably, we are not even able to guess which the majority class is for this dataset
(it is ‘acc’ instead of ‘unacc’). In this case, quantification works well for some
classes and poorly for others. Consequently, the goodness of quantification in
classification can be interpreted in different ways, according to the goal of the
quantification problem (estimating the frequency of one class, calculating the
majority class, deriving the Pareto ordering of classes or deriving the whole
distribution). Finally, it is interesting to take a look at Figure 3 (bottom, left).
We see that the classification model applied to the training dataset (which was
used for building the model) does not yield perfect quantification either. In
fact, we can see that the model neglects class ‘vgood’ while overestimating
‘unacc’. This is due to the imbalance of the original dataset, where ‘unacc’
was highly prevalent. Typically, supervised models get biased in favour of cen-
tral or majority values, because it is always preferrable in terms of expected
error to bet for frequent values when there is some uncertainty. While this is
good for classification metrics, we have that this bias is ultimately translated
into the test set (or even magnified, since the model has more uncertainty on
the test set). Taking this into account, we might think that getting a model
which gives a perfect account of the distribution for the training set is the
ideal solution, but this will generally make the model incur into overfitting,
and the extrapolation to the test set will be poor —since we have a distribution
shift. A possible idea to escape from this dilemma is to keep using supervised
models which have been devised to have good generalisation performance as
usual, and try to compensate the bias over the training set with some kind of

2 The example is elaborated, with some fictional elements, from the cars dataset in the
UCI repository (Frank and Asuncion, 2010).
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Fig. 3 Top row: Actual class distribution for the first batch (training, left) and the second
batch (test, right) of Example 1. Middle row: Confusion matrices for training and test.
Bottom row: Estimated class distribution using the naive quantification method Classify &
Count.

post-hoc adjustment. This ‘adjustment’ is precisely what several classification
quantification methods in the literature really do.

Let us now move to a regression problem.

Example 2 A quantification problem in regression
Consider a maternity ward that has collected data about baby weight at birth
(dependent variable) for risk pregnancies, jointly with several features about
the mother and her current and previous pregnancies (input variables). With
these (training) data, a regression model has been trained in order to predict
baby weight.3 In order to better plan the resources needed and the number

3 The example is elaborated, with some fictional elements, from the lowbwt dataset in
the UCI repository (Frank and Asuncion, 2010), originally from (Hosmer and Lemeshow,
2000).



Aggregative quantification for regression 11

of expected complications, the hospital wants to estimate the distribution of
weight births for the following month, according to a new group of pregnant
women (test data) that the maternity ward is monitoring for future deliveries.
This group has been reallocated from a different hospital (and borough), so
we expect an important distribution shift but no important concept drift (see
Figure 1), since the factors for delivery weights used in the model are assumed
to have similar effects to any woman. So, the training and test distributions
are different, mostly on their location, as seen in the first row of Figure 4. The
second row of the figure shows how the model (a regression tree) behaves for
the reference (train) and new (test) group of pregnant women. As we can see,
this is not an excellent model; although there is some correlation between the
actual values y and the estimated values ŷ, there seems to be some overfitting
and underfitting, depending on the region (this is possible in regression trees).
Note that the distribution of the estimated values differs from the distribution
of the actual values for the training set (Figure 4, third row, left). The model
compacts the predictions by paying less attention to those values which are
at less dense regions or farther from the central part of the distribution. Also,
the shape is now surprisingly bimodal, showing how distribution can be deeply
modified just for the training set. In this case, because the original training
distribution is relatively even (nearly symmetric), all this scarcely affects the
location statistics for the estimated values, such as the mean or the median
(2.50 and 2.25 versus 2.50 and 2.45 respectively).

When we compare the actual distribution for the test set (Figure 4, top
right), with the naive approach by Regress & Splice (RS) (Figure 4, third row
right), we see that the measures of location (mean and median) and spread
(sd), as well as the distributions are different. Location is biased, variance is
much lower and the shape is much more compact than the original. As we will
see in section 4, we can improve the estimated location and spread by using
several methods. Figure 4 (bottom left and right) shows better mean and
standard deviation given by the method akM (on the left using a smoothed
distribution as in section 4.4, and on the right an ad-hoc smoothing over the
mean assuming a normal distribution). In particular, the method akM uses an
adjustment (correcting the bias), a segmentation (addressing the distribution
estimation locally, by segments) and a spreading mechanism. Adjustment (also
mentioned in the classification quantification above) is justified because the
bias is expected to be replicated (or magnified) in the test set (as happens for
the RS method in this case, at least for the median, which is 0.20 kg lower
for the training set but almost 0.40 kg lower for the test set). Segmentation
is justified to better account for all the regions for which we have data in
the training set, more independently of their density. Spreading, as mentioned
above, is justified because the distribution is too compact. The reason is easy
to understand and is similar to the classification case. The use of the MSE
(mean squared error) as the metric for evaluating regression models makes
that those predictions which highly deviate from the true value are strongly
penalised. Consequently, for the most uncertain cases (which may come from
the least populated regions) the model tends to output values closer to the
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global mean. As a result, many (if not all) regression methods compact the
predictions. We can see that, in this example, it is clearly the case (Figure 4,
second and third rows). We will see adjustment, segmentation and spreading in
subsequent sections. For the moment, we just want to highlight the importance
of a good distribution estimation. For instance, the one on the right of the
bottom row of Fig. 4 is obviously more accurate for questions such as “how
many births have a weight between 2,5 and 3,5 kg”, which can be answered
with a value (45%), which is closer to the actual value (48%). Note that the
other distribution estimation based on the method akM gives a value of 21%,
while the estimation given by the RS method is 93%.

The previous two examples show the nature of quantification when derived
by aggregating a predictive model and brings out the similarities and differ-
ences between quantification for classification and regression. These examples
have also introduced some of the phenomena (bias and compactation) of the
trivial aggregation methods RS. Both problems are shared by classification
and regression, whenever the dataset is ‘uneven’ (in terms of class imbalance
or in terms of irregular densities). Models tend to ignore peripheral (minority)
cases, and this may lead to bias and compactation in the training data, which
will also be present (and possibly worsened) on the test data. These previous
insights are useful to better understand some previous techniques that have
been developed for classification quantification, as we see below.

2.3 Previous methods for quantification

As mentioned in the introduction, the estimation of the class distribution
for an unlabelled dataset has been addressed under different perspectives and
applications. We mentioned some works on two-phase sampling, which referred
to the problem as class prevalence estimation (Neyman, 1938; Tenenbein, 1970;
Alonzo et al, 2003), where the goal and procedures were different from the
setting we consider here. In some of these works, there was no distribution shift,
but the need of estimating the class distribution of a population from a small
sample (see Figure 1, top row). Also the estimation of the class distribution
was not made by aggregating the predictions of a base classifier, but using a
‘measurement device’ (Neyman, 1938). In fact, this presentation of the problem
is so frequent that it might have been solved in one way or another in the past,
in different areas, especially from a Bayesian point of view (see, e.g., Chan and
Ng 2006).

In the cases where we have a quantification problem as given by definition 1,
with a distribution shift and an underlying supervised model constructed from
the training set whose predictions can be aggregated for the test set, we have
the setting first explored by (Forman, 2005, 2006, 2008). He developed different
quantification methods (for classification) using the class predictions given by
a crisp classifier or a ranker (a soft classifier outputting scores, probabilities
or other estimations of the reliability of each class). The simplest one is the
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Fig. 4 Estimations using a regression tree for Example 2. First row: actual distributions
of the dependent value (y) for the training (left) and test (right) datasets. Second row: a
plot of the regression model showing the correspondence between the actual values and the
estimated values for the training and test datasets. Third row: estimated class distribu-
tion using the naive quantification method Regress & Splice (RS) for the training and test
datasets. Fourth row: estimated class distribution using a more sophisticated method akM

for the test dataset: Left: using smoothing on the distribution. Right: using smoothing on
the mean.
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classify & count (CC) method (see Eq. 4). This method gives poor results
since it underestimates the minority classes, as we have seen in Example 1.
For this reason Forman introduced several other quantification methods by
properly adjusting the threshold and, in some cases, also scaling the result.
The adjusted count (AC) method is an improvement of the CC method that
estimates the true proportion of positives p̂os by applying the equation

p̂os =
p̂os

′ − fpr

tpr − fpr

where p̂os
′
is the proportion of predicted positives

∑
i∈Test

I(ŷi=⊕)

|Test| . Forman

proposed estimating the true positive rate tpr and false positive rate fpr by
cross-validation on the training set. Since this scaling can give negative results
or results above 1, the last step was to clip p̂os to the range [0..1].

Forman also defined a collection of methods based on selecting a classifier
threshold over a soft classifier which, unlike the AC method, are determined
from the relationship between tpr and fpr in order to provide better quan-
tification estimates. For instance, the X method (which selects the threshold
that satisfies fpr = 1 − tpr), the Max method (which selects the threshold
that maximises the difference tpr − fpr) or the T50 method (which selects
the threshold where tpr = 50%) are some of the methods in this group. The
Median Sweep (MS) method is a different approach that tests all the thresh-
olds in the test set, estimates the number of positives in each one and returns
a mean or median of these estimations. Finally, Forman proposed the Mix-
ture Model (MM) (Forman, 2005) which calculated the distributions for the
positive examples and negative examples separately and then joined them in
a mixture. One of the conclusions of Forman’s works is that the best results
were obtained with MS.

There have been a variety of methods using the probability estimations of
a soft classifier (Sánchez et al, 2008; Bella et al, 2010; González-Castro et al,
2012). The first method in (González-Castro et al, 2012), HDx, is not an
aggregative quantification method, because it does not use a base classifier, but
just works on the distribution of the input variables x. It compares likelihoods
p(x|y) (the authors use the term “class probability density functions”) for
a validation and the test dataset with the Hellinger distance (using binning
to approximate the integral in the definition of this distance). For a range
of class proportions, it chooses the one which leads to the smallest distance.
Since it discretises the input space, this method has limitations because of
data sparsity and computational cost, when the number of features is high.
An alternative aggregative quantification method, HDy, is also introduced (as
an adaptation of HDx), which discretises the conditional probabilities for y
(instead of x). This makes it tractable when the number of features is high
(and it also gives better results), because it constructs bins for y instead of x.
Both methods rely on exploring a range of different values for the estimated
class distribution, which works well for two classes.

Other methods use quantification to improve classification results or take
advantage of a semi-supervised scenario (see, e.g, Xue and Weiss 2009). The
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quantification methods in (Xue and Weiss, 2009) are mostly based on Forman’s
original technique.

In (Bella et al, 2010) a collection of new quantification methods based on
using the class membership probability (given by a probabilistic classifier) is
introduced. The idea is based on the simple Probability estimation & Average
(PA) method, where the class probability estimations are just averaged. This
can be seen as just the probabilistic version of CC, since it considers the
estimated class probability for each example instead of crisp decisions. Given
a probabilistic classifier p̂(y|x), the average of the estimated probabilities for
the positive class is calculated as:

p̂PA
Test(⊕) ,

∑
x∈Testp̂(⊕|x)

|Test|
Logically, as in the CC method, if the proportion of positive examples in

the training set is different from the proportion of positive examples in the test
set, the result obtained by the PA method will not be satisfactory in general.
So, as in the AC method, the idea is to use a proper scaling. The Scaled
Probability Average (SPA) method (Bella et al, 2010) consists in applying
the scaling over the test set that makes that the positive probability average
for the positives in the training set, denoted by Train⊕, is 1 and that the
positive probability average for the negatives in the training set, denoted by
Train⊖, is 0. Therefore, this scaling transforms the estimation given by PA
so that the positive probability average for the positives (p̂Train⊕

(⊕)) is 1 and
the positive probability average for the negatives (p̂Train⊖

(⊕)) is 0. Formally,
SPA is defined as:

p̂SPA
Test (⊕) ,

p̂PA
Test(⊕)− p̂Train⊖

(⊕)

p̂Train⊕
(⊕)− p̂Train⊖

(⊕)

The results in (Bella et al, 2010) show a significant improvement over
Forman’s methods.

3 Beyond classification: a comprehensive view of quantification and

its evaluation metrics

The examples and the previous work seen in section 2 suggest that the quan-
tification problem is multifaceted. Consequently, it can be studied according
to several characteristics. This analysis leads to a comprehensive taxonomy
and a set of evaluation metrics for each case, as we present in this section.

3.1 A taxonomy of quantification problems

We will consider two characteristics which critically determine the quantifica-
tion problem. First, as already seen, quantification can be defined whenever
we have a supervised dataset, be it a classification or regression dataset. In
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Table 1 Taxonomy of quantification tasks.

In boldface, the problems and metrics undertaken in this paper.
Task Quantification output Evaluation

QCI Classification I[Y ] Accuracy
QCD Classification p(Y ) MSE, AE, MRE
QRI Regression I[Y ] MSE, SE
QRD Regression p(Y ) Cramér–von Mises u

fact, other predictive tasks such as categorisation, hierarchical classification or
ordinal regression can also lead to quantification problems.

A second characteristic is how much detail about the aggregated output we
require. For instance, we may only be interested in the expected value of the
output, or just a single indicator I (any summary statistic, such as measure of
location or spread, or some other function of the distribution). For instance,
in classification, this could be the mode, or majority class. In regression, this
could be the mean, as in Eq. 3 or 6, or the median. In other cases, however,
we may require a full distribution of the output value, which is a categorical
distribution in classification, as in Eq. 1 or 4 and a continuous distribution
in regression, as in Eq. 2 or 5. This dimension allows us to apply a variety of
different methods to solve the quantification problem. The distinction between
indicators and distribution is motivated by the fact that it is usually easier to
estimate a good indicator than to estimate the whole distribution well, because
the latter requires more information, as seen in Fig. 2, and the techniques may
take this into account4.

We will consider two options for the two characteristics above (classifica-
tion and regression problems, and the quantification goal as a single indicator
or a whole distribution), which will be represented by the letters C|R for clas-
sification or regression, and I|D for indicator or distribution. This gives four
possible combinations and leads to a taxonomy of quantification tasks as shown
in Table 1. This taxonomy broadens the scope of quantification, and can be
useful for distinguishing research context for future reference.

For each problem in the taxonomy, different quantification methods can
be defined depending on the underlying predictive model used to estimate
the quantification output. It is not the same to solve quantification problems
when we only have the estimation of the output value (ŷ) for each example as
when we have posterior probability estimates provided by the model (p̂(y|x)).
Many classification techniques today are able to generate (soft) probabilistic
models, and there are techniques for calibrating (Platt, 1999; Zadrozny and
Elkan, 2001; Bella et al, 2009a,b, 2012) these probabilities which may have a
positive effect on the quantification task. However, most regression techniques
are still usually crisp and only output the estimation ŷ. It is true that some
techniques can accompany each single prediction with the standard error, a
reliability measure or a confidence band, but it is not clear how to incorporate

4 In this paper the methodology for indicators and distribution is the same (except for
some minor specific techniques, mostly at the end of the process), but this could be dif-
ferent in the view that some indicators require less information and effort than the whole
distribution.
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this information in the quantification problem. For instance, a conditional
density estimator p̂(y|x) would lead to the understanding of quantification for
regression as a distribution mixture.

In this paper we focus on methods for solving cases QRI and QRD using
crisp models. We exclude from this paper those methods based on probabil-
ity estimations because they require a soft regression model or a conditional
density estimator f̂(y|x) (Hwang et al, 1994; Hyndman et al, 1996). These esti-
mators are usually non-parametric (as the shape of the true distribution is not
known). As a result, many are prone to overfitting for small or medium-sized
datasets (Hwang et al, 1994), and suffering from a number of limitations (for
instance, some approaches are restricted to only one or two input variables,
such as R’s hdrcde package, Hyndman et al 1996, and they do not handle
nominal variables appropriately). This goes beyond the usual situation a data
mining practitioner may face with a data mining tool, where she usually works
with predictive models when training data is presented in a supervised fashion
with attributes of many different types and possibly missing values. Typically,
supervised (crisp) regression models are more robust (and faster) in these sce-
narios.

Finally, the taxonomy is also useful to clarify which evaluation metric is
used for each case, as we see below.

3.2 Quantification evaluation metrics

We will start by reviewing the evaluation metrics for classification quantifica-
tion. This set of metrics is shown in the last column of Table 1. Many previous
works (Forman, 2005, 2006, 2008) on quantification for classification have used
the absolute error (AE) for problem QCD, sometimes referred to as mean abso-
lute error (MAE), when aggregated over several repetitions or datasets. More
precisely, the global AE for each class is the absolute difference of the propor-
tion of elements for each class j in a test set Test (p̂Test(j)) and the actual
value:

AETest(j) , |pTest(j)− p̂Test(j)|
and for all the classes we have the macro-average value (equal to the micro-
average value for two classes):

AETest ,
1

c

∑

j=1..c

AETest(j)

Any metric will provide a particular different view of the deviation from the
actual value, and variants exists especially for normalising results when sev-
eral repetitions and datasets are used in an experimental setting. Other met-
rics used for classification quantification are the (mean) relative error (MRE)
(González-Castro et al, 2012), which is equal to AE divided by the true positive
proportion, or the squared error (SE), known as MSE in (Bella et al, 2010).
Finally, since in classification we really estimate probabilities, a natural choice
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might seem to use measures to compare probabilities, such as cross entropy.
Clearly, the choice of a particular metric has its pros and cons, and may differ
in being symmetric or not about the errors and paying more or less attention
to the minority classes.

In case we are interested in determining which the majority class is (a
single indicator, QCI), we suggest the use of a true/false metric indicating
whether the majority class has been identified (similarly for other indicators
such as the minority case). Note that a quantifier with a good AE (or SE) does
not necessary imply that the majority class is correctly identified, especially
in multi-class problems.

This overview of metrics for classification quantification suggests that we
may also have many different options for regression quantification. We will
first consider the problems which output the mean (or other indicator) for the
output value (QRI in Table 1). Since this is a numerical value which needs
to be compared to the actual mean, we use a typical measure for assessing
the deviation with respect to a magnitude, the squared error. If we denote by
I(YTest) the true value of the indicator (e.g., the mean, the median, etc.) for
the test or deployment dataset, and I(ŶTest) the estimated value for the same
indicator, we define the squared error as follows:

SETest ,
(
I(YTest)− I(ŶTest)

)2

For practical reasons, especially when the measure is used for an experi-
mental evaluation of many repetitions and datasets (as in this paper), we may
prefer to normalise the above measure to make values being less dependent
of the magnitude range of the data and more commensurable among different
datasets. In this paper, we will use the Squared Error (SE) seen above but
normalised by the variance of the training set Train, denoted by V SE:

V SETest ,

(
I(YTest)− I(ŶTest)

)2

V arTrain(Y )

This normalisation by the variance is useful when magnitudes are aggregated
for several repetitions, datasets or techniques. In pairwise statistical compar-
isons, however, this normalisation has no effect.

Finally, we need to determine an appropriate evaluation metric for case
QRD in Table 1. Since we need to compare the estimated distribution with
the true one, we need metrics for comparing distributions, usually called diver-
gences. However, many of them cannot be applied to empirical distributions,
because the density function in some places equals 0. Consequently, empirical
distributions are compared by using their cumulative distribution functions.
A very simple statistic for comparing two empirical cumulative distributions
FV and FW is the two-sample Kolmogorov-Smirnoff (KS) statistic, which is
defined as:

KS , max
t

|FV (t)− FW (t)|
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However, since the two-sample KS statistic is only based on the point where
both distributions differ most, it disregards the shapes of the distributions. A
more refined alternative is to take an average (or an integral), instead of a
maximum. This is just the Cramér–von Mises statistic (two samples) (An-
derson, 1962). In particular, from the L1–version (Xiao et al, 2006a,b) we
just need the U value, which can be easily calculated from the empirical data
YV = v1, v2, . . . , vn and YW = w1, w2, . . . , wm as follows:

Let us consider that YV and YW are sorted in increasing order. We define
by YVW , YV ∪ YW and we also consider it is sorted. Let r1, r2, . . . , rn be the
ranks of the elements of YV in YVW and let s1, s2, . . . , sm be the ranks of the
elements of YW in YVW . Then:

U , n

n∑

i=1

(ri − i)2 +m

m∑

j=1

(sj − j)2

which is normalised as u = U
nm(n+m) . This value u (the u-statistic) will be

referred to as the cvmu metric, which ranges between 0 and 2 (4/3 when n
is large). It is lower the more similar the two distributions are. For instance,
the cvmu metric of the distributions on the right plots of the third and fourth
rows in Figure 4 with respect to the true distribution for the test set (top right
plot) are 0.41 and 0.18, respectively.

4 Regression quantification methods

Now that the place of quantification for regression in the family of quantifi-
cation tasks has been clarified, as well as its evaluation metrics, we are ready
to focus on problems QRI and QRD in Table 1. As in the classification case,
quantification is meaningless for those applications where the training and test
distributions always match. In fact, if this were the case, the perfect solution
for QRI in Table 1 would be just to estimate the indicator on the training set.
For instance, if the indicator is the mean, the Test to Train (TT ) method just
assigns the “same mean”, simply defined as:

µ̂TT
Test , µTrain

where µTrain is an instance of Eq. 3 for the training set. Clearly, this can be
adapted for any indicator, such as the median. In the experiments in section
5 we will use the same acronym TT , for the corresponding “same median”
version of the method. This method is just included as a baseline or reference,
since we will focus on methods which account for a distribution shift.

Similarly, we can define a method called Test to Train (also denoted by
TT ), which just ‘copies’ the distribution from the train to the test set and will
be used as baseline for the QRD problem. The method just uses the y values
in the training as the empirical distribution for the test. Note that there is
no mapping between examples (as in other methods where the predictions are
modified). In fact, the sizes of the training and test are usually different (which
is not a problem for the cvmu metric seen in the previous section).
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4.1 Analysing overfitting, bias and variance

Before presenting some more elaborated techniques, we analyse the regression
quantification problem better to see how to take advantage from an underlying
supervised model. Typically, regression models are trained (and evaluated) to
minimise their mean squared error (MSE ). From here, we can analyse the
performance of a model with the classical (see, e.g., Hastie et al 2009; Flach
2012) bias-variance decomposition of one example for all possible datasets D:

E{D}[(y − ŷ)2] = (E{D}[ŷ]− y)2 + E{D}[(ŷ − E{D}[ŷ])
2]

= (E{D}[ŷ − y])2 + E{D}[(ŷ − E{D}[ŷ])
2]

= (Bias{D}(ŷ − y))2 + V ar{D}(ŷ)

where E{D} denotes the expected value for all possible datasets. The above
decomposition is usually a way to understanding overfitting as high variance:
the predictions vary very significantly when we change the dataset, i.e., when
we move from training to test. Underfitting is usually understood as high bias.
At first sight, it may seem that a good regression model for quantification needs
to have low bias. However, we cannot ignore the variance, especially because we
have a data distribution shift. So, also for quantification, a good compromise
between overfitting and underfitting must be found, because both are harmful
for the extrapolation for new unseen areas. One thing that can be observed
from the previous decomposition is the effect of outermost predictions. One
can think that outermost overestimations are not harmful provided they are
usually accompanied by a balanced proportion and magnitude of outermost
underestimations. While this might be true for non-quadratic errors because
they cancel, it is not true for MSE , as shown by both components. This is the
reason why most regression techniques output predictions whose variance (i.e.,
V ar(ŷ)) is lower than the actual variance (V ar(y)), where V ar here refers to
the variance of all the examples in one dataset. This phenomenon seriously
affects the spread of the predictions, leading to more packed predictions. As a
result, regression models trained to minimise the MSE will need to be spread
out (the shape of the distribution should be widened) in order to resemble
the actual distribution, as we saw in Figure 4. The method introduced in
section 4.4 is precisely based on smoothing the distribution such that V ar(ŷ) =
V ar(y).

While the previous decomposition gives us some understanding about
spread, it gives us few clues about the location of the estimated distribu-
tion. For this purpose, it is more insightful to make the same decomposition of
all examples on one dataset, since it is the result for all examples what counts
for quantification, as follows:

E[(y − ŷ)2] = E[ǫ2]
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= (E[ǫ])2 + E[(ǫ− E[ǫ])2]

= (Bias(ǫ))2 + V ar(ǫ)

where E denotes the expected value for all the examples in one dataset, and the
error is denoted by ǫ = y− ŷ. Note that now the variance refers to the errors,
not the predictions. Just focussing on one dataset, we cannot get information
about overfitting and underfitting, but we can see other phenomena. We see
that if the model gives Bias(ǫ) = 0 then the mean of the errors will be zero —
even if the errors may still be non-zero individually. This zero bias means that
the mean will be perfectly estimated for that dataset. If the indicator function
we are interested in is the mean, then we would get perfect quantification.
Consequently, we want regression models such that Bias(ǫ) = 0. We can see
clearly that if we add a constant s to all the predictions, we get a different
Bias(ǫ) but equal V ar(ǫ). It is then natural to expect that many regression
techniques try to set Bias(ǫ) = 0 by calibrating the model in this way. In fact,
some linear regression techniques ensure Bias(ǫ) = 0 on the training set by
definition, because the MSE is minimised5. Other techniques, however, may
give slightly uncalibrated models for the training set, because the asymmetry
of the training set forces the technique to unbalance the estimations for risk
minimisation. Independently of the regression technique being used, we can
always find the optimal constant s for a dataset, by just setting s equal to the
bias:

s = Bias(ǫ) = E[ǫ] = E[y − ŷ] = E[y]− E[ŷ] (7)

which just subtracts the mean of the actual values with the mean of the esti-
mated values. It is also expectable that since the errors are usually higher on
a test set, this value s may be higher for the test set than for the training set.
This will be the basis of the adjustment methods below.

Finally, while a global adjustment may solve some cases, the bias can vary
significantly between the central areas of the distribution and the outermost
values. Typically, outermost values, as mentioned above, are usually pushed to
the centre. This means that low y values will typically lead to negative bias,
and high y values will typically lead to positive bias. This suggests the use
of adjustment constants customised for different regions of the distribution,
leading to the segmentation methods in section 4.3.

5 As a mean-unbiased estimator minimises squared loss, a median-unbiased estimator is
a different choice which minimises the absolute error.
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4.2 Methods based on Regress & Sum

The simplest method for estimating the mean using an underlying regression
model is the Regress & Sum (RS) method we defined in Eq. 6 but applied
to the test set, which we will denote by µ̂RS

Test. The RS method can handle a
distribution shift, but it depends on the quality of the training data sample
(it must be representative of the overall domain) as well as on the quality of
the regression model. Otherwise, the estimation might even be worse than the
TT method. This is similar to the problems already observed for the Classify
& Count method in classification quantification.

In a quite similar way as the AC method (Forman, 2008) is an adjusted
improvement of the CC method, or as SPA is a scaled adjustment of the naive
PA method (Bella et al, 2010), we can follow the same idea in regression. In
order to do this, we need to calculate the average of the true values for the
Train set, µTrain. We also need to calculate the average of the estimated
values, i.e., µ̂RS

Train (an instance of Eq. 6 for the training set). Now, we can
derive the error bias (Bias above, in what follows denoted by B) for the
training set as follows:

BRS
Train , µTrain − µ̂RS

Train

With this value B we can adjust any method, following Eq. 7. For instance,
the Adjusted Regress and Sum method (aRS) is just:

µ̂aRS
Test , µ̂RS

Test + α ·BRS
Train (8)

where α is a parameter that makes the adjustment more or less intense, mo-
tivated by errors being expected to increase for the test set, as discussed in
the previous section. This value can be estimated from the use of a regression
technique on similar problems, or can be set to a fixed constant independently
of technique and problem, as we do in this paper. Note that when α = 0 this
is equivalent to the RS method.

Figure 4.2 shows a simple example which illustrates how the methods de-
scribed in this section work. We use a simple regression problem with only one
attribute. We split the data into two sets of the same size, Train and Test,
but different distribution. On the left side of the figure we can see the Train
dataset (points as blue circles). The dotted red line represents the model built
from the training data using a linear regression method. The solid black hor-
izontal line represents the average of the actual values y for the instances in
the Train set (0.071). The dashed red line shows the average of the linear
regression model (0.031). The difference between these values indicates that
the regression model is not calibrated with respect to the training instances.
This slight difference will be used by the aRS technique. On the right side
of Figure 4.2 we include the result of the application of the RS method over
the Test set and the results of using the aRS (with α = 1) method with the
same test dataset. We can see the different data distribution between Train
(mean 0.07) and Test (mean 0.44). In this figure, the TT and RS methods are
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Fig. 5 An artificial example y = x3 showing how several methods in section 4.2 work.
Training and test are sampled from 100 examples with a triangular distributions over x in
[0.1] with a 50/50 proportion. Left: Train data (mean = 0.07) and the regression model.
Right: Test data (mean = 0.44). The RS method and the aRS method (with α = 1) are
shown.

shown. The solid line expresses the value of the mean of the test dataset, i.e.,
the actual average value. The RS method using the linear regression returns
a value (0.25), shown as a green dotted horizontal line, which is slightly below
the actual one (0.44). However, it is much better than the TT method (0.07).
Finally, the blue dashed-and-dotted horizontal line shows the result of using
the aRS (with α = 1) method with the same test dataset. Given that the
linear regression is not calibrated with respect to the training data, there is a
correction that modifies the estimated value for this technique to 0.293.

The previous methods RS and aRS have been presented to address the
QRI quantification task in Table 1 where the indicator is the mean. The idea
can be easily extended for the median and other indicators. Also, the RS
and the aRS methods can be extended for the QRD case, where the whole
distribution needs to be estimated, and spread and shape are also important.
For this extension, we only need to apply Eq. 5, which was called Regress &
Splice. This intentionally leads to the same acronym RS, since basically both
methods are identical. In fact, Figure 4 (third row, right) shows the results
for RS for the test set in Example 2. While this actually gives a distribution
and not a single indicator, we see that the distribution has low dispersion and
most of the data clusters around the mean.

4.3 Methods based on segmentation

The previous methods are simple adaptations of some of the most common
methods in classification quantification. One of the problems when a distri-
bution shift takes place is that some ranges of values of the dependent value
which appear in the test set are rare in the training set. Consequently, the
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underlying model is not well trained for these ranges, and the quantification
approach by RS methods just worsens this issue, especially if there are outliers
either in the training or the test set. A second problem, which appears in the
QRD case (Table 1), is that the estimated distributions have low dispersion
and a highly peaked shape, and applying a correction in the same direction
is not going to have any effect on this issue. A third, related problem is that
some ranges may have more bias than others. In other words, it is a strong
assumption to think that the bias is uniform all along the range of values. In
fact, it may even be positive in some regions and negative in others, precisely
because models usually compact their predictions.

One solution for these three problems is to make a local adjustment to the
aggregation. In other words, instead of applying a global correction obtained
from the whole Train set (as the aRS method does) we propose to adjust the
estimated value of each instance in the Test set by using only a suitable subset
of the training instances (a bin).6 Therefore, we propose a segmentation of the
output values in the Train set into several groups. From each group we derive
a true average value that we compare to the average estimated value of that
group using the model, in order to determine different and local values for the
bias. This local difference (bias) is used to adjust the values in the group when
predicting the values for the Test set.

More precisely, given the set of output values y on the training set denoted
by Y , we will just apply a segmentation method d (we will consider several,
as we will discuss later on) that sorts the elements of Y in ascending order,
creates a sequence of k consecutive bins {Y1, Y2, . . . , Yk} and defines a sequence
of k − 1 limits or thresholds T = {t1, t2, . . . , tk−1} such that the threshold tj
is calculated averaging the maximum value of the bin Yj and the minimum
value of the bin Yj+1. Moreover, note that segmentation is applied to the actual
values y and not to the estimated values ŷ by the model. Then, the values for
each bin are averaged giving a sequence of bin prototypes ym1 , ym2 , . . . , ymk .
Next, for each bin j, an estimated bin prototype ŷmj is calculated by averaging
the estimated values ŷ for the training examples in that bin. From here, and
now on the test set, quantification is performed by replacing each prediction
ŷ for the test set by the estimated prototype of the bin where it belongs, i.e.,
if tj 6 ŷ < tj+1, the example belongs to bin j and its estimated prototype
is ŷmj (we consider that t0 = −∞ and tk = ∞ in order to cover all possible
values). Finally, from these modified predictions a common RS method can
be applied. This method can be used with any kind of regression model and
keeps quantification general and simple.

6 The idea of segmenting the set of outputs is not new and has led to some classifier
calibration techniques, such as binning (Zadrozny and Elkan, 2002; Bella et al, 2009b).
Calibration techniques are somewhat related to quantification techniques. In fact, RS would
be optimal if the predictive model were perfectly calibrated —for the test set. This is a key
point because calibration is always understood relative to a distribution or dataset. Given
the quantification problems with distribution shift we are considering here, it is the test set
distribution what we want to infer, so calibrating for the training set may be useless.
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Figure 6 illustrates this process. On the training set (left) a segmentation
method has generated three bins (with the same number of examples in each
bin). The average values of each bin are, ym1 = 0.32, ym2 = 0.63 and ym3 = 0.87.
The threshold between the first and the second bin is t1 = 0.46, and the
threshold between the second and the third bin is t2 = 0.79. The estimated
average values for each bin are ŷm1 = 0.33, ŷm2 = 0.52 and ŷm3 = 0.85. Therefore,
when the value predicted by the learning algorithm on the test set (right) for
an instance is less than or equal to 0.46 the method assigns 0.33 to it. If
the value predicted by the learning algorithm of an instance is between 0.46
and 0.79 the method assigns 0.52 to it. Finally, if the value is greater than
0.79 the method assigns 0.85. Clearly, segmentation does not provide enough
granularity for instance regression, but here we are interested in quantification.
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Fig. 6 Example of the predictions of a regression model for a test set (right) using the
segmentation on the training set (left). On the left we show how the bins are constructed
and how the bias Bj is estimated for each bin using the difference ymj − ŷmj . On the right,
each example is assigned to a bin j according to its prediction ŷ and the final adjusted
prediction ŷa is given by Eq. 9 using α = 5.

The example is also useful to see that segmentation has some effects on
the distribution of the new output values. Segmentation makes prediction less
sensitive to outliers and, depending on how the bins are chosen, the values
might be more robust than a single prediction. In fact, it may have impor-
tant and non-monotonic effects when the distribution is multimodal. Also,
segmentation has the effect of reducing variability, especially if k is small.

From this process, we can use the modified (segmented) predictions as
the new numerical values for each example, which can be used for both RS
(Eq. 5 and 6) as seen in section 2.1. However, the interesting thing about
the segmentation method comes when we combine it with an adjustment7, as
justified by the third problem we have mentioned above: we cannot assume

7 Note that this adjustment is performed with information from the training data exclu-
sively. An alternative possibility would be to use a validation dataset, but this would reduce
the available training data.
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that the bias Bj is the same for all the regions. So, instead of calculating
a global adjustment as in Eq. 8, we calculate the bias for each bin in the
training set, and we use it for the adjustment for that bin. In other words,
we adjust each bin independently of the rest. This has much more impact on
how predictions are modified, since some bins may have very poor estimated
averages. As can be seen in Figure 6 we have calculated the mean ŷmj of the
predicted values ŷ on the training set of each bin j, and Bj is calculated for
each bin as (ymj − ŷmj ). From here, the adjusted value is calculated for each
instance in the test set as follows:

ŷa = ŷmj + α ·Bj (9)

In Figure 6 we consider α = 5, and we obtain 0.33 + 5 · (−0.01) = 0.28 for
example i = 1, 0.85 + 5 · (0.11) = 0.95 for example i = 2 and so on. Note
that many regression models will tend to issue predictions leaned towards the
global average (because they are unsure on some cases and also because of the
MSE penalisation, discussed in section 4.1). This will lead to different values
of Bj for each bin, trying to set the values outwards.

In order to apply the previous procedure, we need some segmentation meth-
ods. Two methods will derive the segments using discretisation techniques and
the third one will use a clustering method. The three of them will keep the
numerical character of the output value (we are not discretising the prob-
lem). Bakar et al. (Bakar et al, 2009) present an exhaustive taxonomy for
data discretisation techniques. We will first explore two of the simplest and
best-known unsupervised methods: Equal Frequency intervals (EF ) and Equal
Width intervals (EW ) (Dougherty et al, 1995). Basically, these methods con-
sist in sorting the values and splitting them in k bins. The number of bins is
a parameter that has to be supplied by the user. EW puts the same num-
ber of examples in each bin whereas EF creates bins with the same length:
(max value−min value)/k. A third method (kMs) is not based on discreti-
sation techniques and will segment the output values by using k-means, which
is one of the most popular clustering algorithms. The k-means algorithm is ap-
plied on the outputs, as in the other methods, so it finally creates a partition,
which may be different to the other two cases.

All these three segmentation methods require a value for k. There are
several formulae to automatically set the number of bins. For example, Sturges
(Sturges, 1926) sets k = log2(n + 1), where n is the number of instances.
Yang (Yang, 2003) proposes a new discretisation method called Proportional
Discretisation (PD) that combines the EF and EW methods. In PD, the
number of examples in each bin (frequency) is equal to the number of bins,
and the frequency multiplied by the number of bins is equal to the number of
examples. Therefore, this method is equivalent to using the EF method with
k =

√
n. We have studied these two alternatives for establishing k. Since the

results are quite similar for both options, in this paper we will only include
the results for k = log2(n + 1). For each segmentation method, we will also
consider an unadjusted and an adjusted version. This leads to 6 combinations.
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Table 2 shows these 6 different quantification methods for regression problems
based on segmentation.

Table 2 Quantification methods for regression based on segmentation.

Segmentation method Number of bins Representative value of each bin

EFl Equal Frequency k = log2(n + 1) mean
EWl Equal Width k = log2(n + 1) mean
kMl kMeans k = log2(n + 1) mean
aEFl Equal Frequency k = log2(n + 1) mean adjusted with B
aEWl Equal Width k = log2(n + 1) mean adjusted with B
akMl kMeans k = log2(n + 1) mean adjusted with B

It is important to notice that all these methods are extremely easy to apply,
and some of them can just be computed directly by using data mining tools
(these tools typically include many discretisation and clustering methods, such
as kMeans, which can be used for the segmentation).

4.4 Spreading the distribution

In section 4.1 we discussed that regression methods usually get very packed
predictions, where it is rarely the case that V ar(ŷ) = V ar(y). We also saw
this in Example 2. While this problem does not affect the mean estimation
significantly, it can be important for some other indicators (QRI) such as the
median or other quantiles. Also, this is especially problematic for the QRD

quantification problem in Table 1.
The segmentation process using adjustment may spread the distribution

slightly but it can be insufficient in general. In order to get an appropriate
degree of spreading, we apply a kernel smoothing8 of the estimated values
ŷ. We use the ksmooth method in the R project software (R Team et al,
2012) with default parameters. If V ar(ŷ) < V ar(y) (as usual), we adjust the
bandwidth until we get V ar(ŷ) = V ar(y). If V ar(ŷ) ≥ V ar(y) we just use the
smoothing with the default bandwidth. After that, we get new values for the
predictions using as many quantiles as needed.

All the methods above, including TT , RS and aRS, will be altered by this
smoothing procedure as a postprocess.

4.5 Regression quantification using classification quantification

Now we include some methods based on discretising the original regression
problem and applying classification quantification techniques to the modified

8 An alternative, more lightweight approach could be to introduce a normal jitter to
each prediction ŷ. While this may have a similar effect, it has random effects that may be
important for small datasets. The smoothing approach presented here always leads to the
same result, since it has no random components.
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problem, and transforming it back to regression again. This indirect way of
addressing regression quantification is just included as a reference.

Note that here we no longer work with regression models but with clas-
sification models. This means that the methods in this subsection are not
applicable when we want to take advantage of an existing (possibly validated)
regression model. Also note that it is different to segment the distribution
given by the regression model (as we have done above) than to completely dis-
cretising the problem from scratch as we discuss here. Specifically, we will show
how to apply three classification quantification methods to a regression quan-
tification problem which has been converted into a classification problem from
the beginning, by discretising the training data. As all the methods we will use
(AC, T50 and MS methods, Forman 2008) were defined for binary problems,
and the discretisation of a regression output generally generates more than two
classes, we will need to apply the one-vs-all approach for the multi-class case as
Forman suggested. Although this one-vs-all approach mangles all the ordinal
information9, we explore whether this can be alternative to native regression
quantification methods, and which of the previous classification quantification
methods could be best suited in this case.

A simple way to discretise the problem is to use the segmentation on the
training set obtained by applying one of the segmentation techniques we intro-
duced in section 4.3. The idea is to assign a different class label lj to each one
of the c bins defined by the segmentation process. Next we have a classification
training dataset from which we train a classification model. For the classifica-
tion model we record the mean for each class on the training set, denoted as
µj . Using the classification model we then use any of the classification quan-
tification methods in the literature. Each method will output a probability for
each class lj as p̂TY

(lj) for the test set T . The discrete predictions are then con-
verted back into continuous predictions by setting µj if the predicted class is
lj . Consequently, the estimated mean for the test set will be

∑c

j=1 µj · p̂TY
(lj).

Other indicators can be obtained from pointwise (or binwise) quantification
using distribution smoothing techniques. In the following experimental section
we will just evaluate the mean for these classification quantification methods
for regression quantification.

5 Experiments

In this section, we present the experimental evaluation of the methods for
regression quantification introduced in the previous section: those based on
Regress & Sum or Splice, namely RS and aRS, and the six methods based on
data segmentation. We will examine the results for the quantification prob-
lems QRI (mean and median) and QRD in Table 1 and we will use their

9 Some alternatives could be figure out here, such as the use of one-vs-previous or one-
vs-adjacent schemes. This is left as a possibility for future work.
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corresponding metrics (V SE and Cramér–von Mises u metric, cvmu). Finally,
we will also include some results of the approach to regression quantification
using classification quantification.

5.1 Experimental setting

The experimental setting is based on the common case where we train a regres-
sion model on a training dataset, and we want to obtain an indicator (QRI) of
the output value for a different test dataset or the whole distribution (QRD).
As justified in previous sections, we are especially interested in cases where the
distribution of the output value varies between training and test. Additionally,
it is important to consider a scenario where the distribution of the dependent
value varies significantly, because it also affects the quality of the model, see
(Weiss, 2004; Weiss and Provost, 2001; Raeder et al, 2012; Chawla et al, 2004).
In order to ensure that this distribution shift takes place in the experiments,
for each dataset, we construct a test set selecting the 50% of the instances by
using a discrete triangular distribution over the example indices, after sorting
the examples according to their output value. More precisely, the instances
are sorted increasing by its output attribute leading to sorted indices i, and a
probability of i/(n+ 1) is assigned to each instance, with i = 1 . . . n, where n
is the number of instances of the dataset. Note that since the distribution is
applied over the indices, we do not have to care about outliers and the range
of the data, and it even works in cases where the distribution is packed. Using
this distribution, 50% examples are sampled without substitution for the test
set. The instances that have not been selected for the test set form the training
set. With this, we get a training set which misrepresents the high values, and
a test set which focusses precisely on these high values. Figure 7 shows this.

We selected 35 datasets from the UCI repository10 (Frank and Asuncion,
2010), Tunedit11 and mldata12. In Table 3 we show the name of the datasets,
the number of attributes, the number of instances of the datasets, and the
mean and the standard deviation of the output value. We also include the
means for the training and test datasets.

The whole battery of datasets can be downloaded from
http://alturl.com/5n8ad. In order to evaluate several regression tech-
niques, we employed five data mining techniques from WEKA (Witten and
Frank, 2005): Linear Regression, M5P (a regression tree), SMOreg (a support
vector machine), IBk (a nearest neighbour with k=10) and Gaussian (a
Gaussian process regression). We used the default parameters in WEKA
for the five algorithms. We repeated each configuration 100 times for each
dataset. This makes a total of 35 × 5 × 100 = 17,500 experiments for each
quantification method.

10 http://archive.ics.uci.edu/ml/
11 http://tunedit.org/repo
12 http://mldata.org/repository/data/
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Fig. 7 Sampling process to simulate a data distribution shift for the experiments. Top: the
distribution for dataset lowbwt. Bottom: the distributions of training and test datasets after
sampling using a triangular distribution over the sorted indices.

Before starting with the experiments, we studied which value of α leads to
the best adjustment. For this reason, we performed an experimental evaluation
varying the value of α from 0 (no correction) to 7. In these experiments we
employed 10 datasets of Table 3 with 10 repetitions each.

These results showed that a value of 5 obtains the optimal performance
in almost all cases. Consequently, we will use this value of α in the following
experiments.

In the experiments that follow we work with several indicators. For the
mean indicator we just calculated the mean as usual, and for the distribution
we just aggregated the results. For every application of the median (bins,
global, etc.) we used the Hodges-Lehmann estimator (Hodges and Lehmann,
1963) to give more robust estimations of the median.

5.2 General overview

We start with a set of highly aggregated results showing the behaviour of
all the regression quantification methods and all the indicators we will use
(mean, median and cvmu metric). The goal of this first overview is to get a
first impression of how methods work and, most especially, to see the general
effect of the spreading, adjustment and segmentation.
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Table 3 Datasets used in the experiments. The columns represent the name, number of
attributes, number of examples, the number of different values, the mean, median and stan-
dard deviation for the whole dataset and the mean for the Training and test datasets.

Dataset #Att. Size Distinct Mean Median SD MeanTrain MeanTest

1 gascons 5 27 26 207.03 225.8 43.8 186.68 228.95
2 bolts 8 40 40 33.93 19.26 27.41 20.89 46.98
3 vineyard 4 52 19 18.09 19.5 4.39 16 20.17
4 elusage 3 55 52 43.28 38.62 24.01 31.66 55.33
5 pollution 16 60 60 940.36 943.68 62.21 908.30 972.42
6 mbagrade 3 61 57 3.29 3.32 0.33 3.13 3.46
7 auto93 23 93 81 19.51 17.7 9.66 15.05 24.06
8 baskball 5 96 95 0.42 0.43 0.11 0.36 0.48
9 cloud 7 108 94 1.23 0.91 1.08 0.73 1.73

10 fruitfly 5 125 47 23.46 20 15.88 15.85 31.2
11 echoMonths 10 130 53 22.18 23.5 15.86 13.74 30.62
12 veteran 8 137 101 121.63 80 157.82 55.99 188.23
13 fishcatch 8 158 101 398.7 272.5 359.09 212.3 585.09
14 autoPrice 16 159 145 11445.73 9233 5877.86 8570.18 14357.68
15 servo 5 167 51 1.39 0.73 1.56 0.72 2.07
16 lowbwt 10 189 133 2944.66 2977 729.02 2554.1 3339.37
17 pharynx 12 195 177 558.73 445 418.72 346.47 773.18
18 pwLinear 11 200 189 -0.34 -0.56 4.47 -2.76 2.08
19 cpu 8 209 104 99.33 45 154.76 47.48 151.68
20 bodyfat 15 252 176 19.15 19.2 8.37 14.54 23.76
21 breastTumor 10 286 23 24.66 25 10.36 19.11 30.2
22 cholesterol 14 303 152 246.69 241 51.78 220.12 273.44
23 autoMpg 8 398 129 23.51 23 7.82 19.22 27.81
24 pbc 19 418 399 1917.78 1730 1104.67 1305.7 2529.87
25 housing 14 506 229 22.53 21.2 9.2 17.79 27.28
26 sensory 12 576 11 15.07 15 0.82 14.63 15.52
27 strike 7 625 358 302.3 129 560.66 102.16 503.08
28 quakes(stations) 5 1000 102 33.42 27 21.9 22.52 44.32
29 quakes(mag) 5 1000 22 4.62 4.6 0.4 4.4 4.84
30 concrete(str.) 9 1030 845 35.82 34.45 16.71 26.56 45.08
31 concrete(cem.) 9 1030 278 281.17 272.9 104.51 223.25 339.08
32 quake(ritcher) 4 2178 12 5.98 5.9 0.19 5.88 6.07
33 quake(focal) 4 2178 312 74.36 39 116.47 30.46 118.26
34 parkins.(motor) 17 5875 1080 21.3 20.87 8.13 16.68 25.91
35 parkins.(total) 17 5875 1129 29.02 27.58 10.7 23.03 35.01

Table 4 Aggregated results (5 regression techniques × 35 datasets × 100 iterations =
17,500 values) for each indicator (mean, median and cvmu metric) and quantification tech-
nique. We show methods TT (same distribution for Test as Train), RS (Regress & Sum or
Regress & Splice depending on the case), aRS (the adjusted version of RS), followed by the
six methods based on binning, three without adjustment (EW , EF , kM) and three with
adjustment (aEW , aEF , akM). There are rows which incorporate smoothing as a spreading
method and rows which do not, as indicated.

TT RS aRS EW aEW EF aEF kM akM
Mean w/o smoothing (Avg. VSE) 1.24 0.66 0.69 0.76 0.49 0.75 0.39 0.75 0.45
Mean with smoothing (Avg. VSE) 1.26 0.67 0.70 0.77 0.50 0.77 0.40 0.77 0.46
Median w/o smoothing (Avg. VSE) 1.24 0.58 0.77 0.68 0.54 0.67 0.52 0.68 0.54
Median with smoothing (Avg. VSE) 1.26 0.59 0.79 0.71 0.49 0.71 0.45 0.71 0.48
Distrib. w/o smoothing (Avg. cvmu) 0.85 0.60 0.58 0.52 0.29 0.52 0.23 0.51 0.24
Distrib. with smoothing (Avg. cvmu) 0.43 0.22 0.21 0.28 0.19 0.27 0.15 0.28 0.17

Table 4 shows the results for the three indicators using the metrics as intro-
duced in section 3.2. From these general and highly aggregated results we have
a first impression of the quantification methods. The direct method RS works
much better than inheriting the distribution from the training set (TT ), since
for this experimental setting we have created an important distribution shift.
This was expected and quite clear from the results of the two first columns.
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From the table we can also see that the adjustment over RS (i.e., aRS) is
not effective (it is either comparable or worse than RS), so the idea of the
adjustment, per se, does not seem to improve the quantification results. Then
we can focus on the three methods based on binning (EW , EF , kM) and we
see no improvement over RS, except a slight improvement for the distribution
case without smoothing. It is the conjunction of binning and adjustment that
leads to good results, as shown with the three methods based on binning and
adjustment (aEW , aEF , akM).

Finally, from this big picture, we are interested in the effect of smoothing.
As expected, it has almost no effect on the mean, since a Gaussian smoothing
is usually quite conservative for this indicator. For the median, smoothing is
effective for the three methods with binning and adjustment while for the rest
of methods it has not a significant effect. Finally, for the whole distribution,
smoothing is extremely effective for all methods. From this general observation,
we will just concentrate in the results with smoothing in the rest of this section.

Given this first look at the results, we now start a series of more detailed
analyses according to several issues.

5.3 Analysis for the mean indicator

Let us now focus on the experimental results for QRI using the mean. Table
5 shows the comparison of the V SE metric for all the datasets in terms of
pairwise tests, using RS as reference. Note that the use of V SE or SE is
irrelevant here, since the denominator (the variance) is always the same for
the two things we compare. For each dataset and pairwise comparison for the
100 repetitions we use the Wilcoxon’s signed-rank test. For the overall results
at the bottom, and in order to see whether the difference between more than
two methods is statistically significant, we calculated the Friedman test with
the Iman and Davenport modification. The tests are applied to the average
ranks for the 35 datasets. If there were differences between these methods, we
calculated the Nemenyi post-hoc test to compare all of the methods with each
other (with a probability of 99.5%) as recommended in (Demsar, 2006).

From the results in Table 4 (row with “Mean with smoothing”) and Table
5, we see that the aRS method, while significantly better in terms of pairwise
statistical comparison is slightly worse than RS on average. So it is not clear
whether the global adjustment is really improving the results. However, the
local adjustment is really useful for the segmentation methods. The three
segmentation methods have a similar behaviour, but from Table 4 (row with
“Mean with smoothing”) and Table 5 the best method is clearly aEF (pairwise
significant and with the smallest average). It also outperforms the RS method
in 29 datasets and only loses in 5 datasets (1 tie).

If we focus on dataset size there seems to be no relation between the size
of the datasets and the results, since no clear trend is found which can dis-
tinguish the datasets from the top to those on the bottom. Note that they
are sorted by dataset size (see Table 3). We could also consider whether the
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Table 5 Comparison for the mean indicator for all the quantification methods against
method RS. The values (W/T/L) represent the number of wins, ties and losses respectively
(in boldface we indicate whether the difference is significant with a probability of 99.5%
using the Wilcoxons signed-rank test ). The five regression techniques are aggregated, so we
make 5 × 100 comparisons in each cell of the table. All methods incorporate smoothing as a
spreading method. The rows W, T and L show all the comparisons (35× 5× 100 = 17,500).
The final row (R) shows the average rank for the Nemenyi test and whether the differences
are significant: in boldface if the method is better than RS, underlined when the method is
worse than RS, and normal face when there is no statistical difference.

aRS v RS EW v RS aEW v RS EF v RS aEF v RS kM v RS akM v RS
1 254/25/221 141/0/359 316/0/184 135/1/364 299/0/201 149/1/350 302/0/198
2 286/46/168 34/0/466 249/0/251 51/0/449 266/0/234 38/0/462 296/0/204
3 74/111/315 79/0/421 286/0/214 33/0/467 262/0/238 62/0/438 263/0/237
4 396/21/83 26/0/474 372/0/128 49/0/451 354/0/146 32/0/468 381/0/119
5 189/31/280 3/0/497 352/0/148 6/0/494 348/0/152 5/0/495 353/0/147
6 115/63/322 33/16/451 422/0/78 43/18/439 401/0/99 33/16/451 401/0/99
7 344/1/155 35/73/392 364/0/136 103/73/324 353/0/147 43/73/384 368/0/132
8 164/61/275 0/0/500 483/0/17 2/0/498 448/0/52 1/0/499 479/0/21
9 266/45/189 3/0/497 361/0/139 13/0/487 302/0/198 3/0/497 376/0/124

10 286/7/207 285/64/151 209/0/291 311/64/125 231/0/269 293/64/143 198/0/302
11 268/0/232 195/0/305 294/0/206 222/0/278 328/0/172 198/0/302 344/0/156
12 312/4/184 3/0/497 368/0/132 29/0/471 470/0/30 14/0/486 472/0/28
13 237/0/263 87/0/413 268/0/232 86/0/414 238/0/262 70/0/430 288/0/212
14 306/10/184 2/0/498 427/0/73 25/0/475 383/0/117 2/0/498 433/0/67
15 379/25/96 56/0/444 214/0/286 40/0/460 369/0/131 73/0/427 241/0/259
16 236/24/240 32/0/468 346/0/154 174/0/326 417/0/83 142/0/358 248/0/252
17 221/0/279 90/6/404 282/0/218 233/6/261 415/0/85 107/6/387 330/0/170
18 327/11/162 0/0/500 356/0/144 0/0/500 430/0/70 0/0/500 360/0/140
19 273/6/221 9/0/491 288/0/212 15/0/485 164/0/336 15/0/485 276/0/224
20 373/1/126 0/0/500 248/0/252 0/0/500 111/0/389 0/0/500 192/0/308
21 435/0/65 21/0/479 433/0/67 60/0/440 493/0/7 32/0/468 449/0/51
22 117/0/383 53/1/446 394/0/106 49/1/450 450/0/50 55/1/444 419/0/81
23 363/1/136 0/0/500 485/0/15 1/0/499 380/0/120 0/0/500 470/0/30
24 220/0/280 3/0/497 455/0/45 5/0/495 494/0/6 2/0/498 489/0/11
25 481/1/18 0/0/500 489/0/11 0/0/500 439/0/61 0/0/500 491/0/9
26 294/45/161 0/0/500 497/0/3 0/0/500 496/0/4 1/0/499 390/0/110
27 402/2/96 0/0/500 470/0/30 5/0/495 496/0/4 1/0/499 497/0/3
28 351/0/149 0/0/500 443/0/57 0/0/500 393/0/107 0/0/500 425/0/75
29 320/6/174 0/0/500 110/0/390 0/0/500 65/0/435 0/0/500 110/0/390
30 182/12/306 0/0/500 326/0/174 0/0/500 377/0/123 0/0/500 346/0/154
31 444/1/55 0/0/500 240/0/260 0/0/500 297/0/203 0/0/500 279/0/221
32 282/5/213 51/93/356 99/0/401 106/93/301 347/0/153 91/93/316 212/0/288
33 353/0/147 0/0/500 5/0/495 11/0/489 476/0/24 9/0/491 403/0/97
34 456/0/44 0/0/500 489/0/11 2/0/498 498/0/2 0/0/500 498/0/2
35 401/4/95 0/0/500 500/0/0 0/0/500 500/0/0 0/0/500 500/0/0
W 10407 1241 11940 1809 12790 1471 12579

T 569 253 0 256 0 254 0
L 6524 16006 5560 15435 4710 15775 4921
R 3.88 6.42 3.41 6.02 2.93 6.19 3.13

number of distinct values (the ‘distinct’ column in Table 3) has any effect. The
datasets where the number of different values is smallest (≤ 25) are datasets
3, 21, 26, 29 and 32. Actually, these datasets could be just considered ordinal
regression problems instead of proper regression problems. Again, we see no
special trend or behaviour for these five datasets, so the methods behave quite
homogeneously in this regard.

Finally, in Table 6 we disaggregate the results of Table 4 (row with “Mean
with smoothing”) by the underlying regression technique. While the values are
different in magnitude, the general picture is preserved in all of them, with
aEF being the best method.
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Table 6 Aggregated results (35 datasets × 100 iterations = 3,500 values) for the mean in-
dicator as in Table 4 (row ‘Mean with smoothing’) disaggregating by the five base regression
techniques.

TT RS aRS EW aEW EF aEF kM akM
LR 1.26 0.89 0.88 0.70 0.58 0.71 0.40 0.70 0.51
M5P 1.26 0.48 0.53 0.63 0.48 0.64 0.30 0.62 0.43
SMO 1.26 0.67 0.55 0.75 0.36 0.75 0.37 0.75 0.37
Gaussian 1.26 0.58 0.90 0.77 0.52 0.75 0.40 0.76 0.47
IBk 1.26 0.75 0.65 1.02 0.55 0.98 0.52 1.01 0.54
Avg. 1.26 0.67 0.70 0.77 0.50 0.77 0.40 0.77 0.46

5.4 Analysis for the median indicator

We continue with QRI but now using the median indicator, which is a more
robust statistic. Table 7 shows the comparison of the V SE metric for all the
datasets in terms of pairwise tests, using RS as reference. Note that the use
of V SE or SE is also irrelevant here, since the denominator (the variance) is
always the same for the two things we compare. We use the same statistical
tests as we used for the mean.

From the results in Table 4 (row with “Median with smoothing”) and Table
7 we see that the aRS method is now significantly worse than RS on average
(as happened for the mean) and also in terms of pairwise statistical compari-
son. So the global adjustment is not improving the results. However, the local
adjustment is really useful for the segmentation methods, as happened for the
mean. The three segmentation methods have a similar behaviour, but from
Table 4 (row with “Median with smoothing”) and Table 7 the best method is
clearly aEF (pairwise significant and with a smaller average). It also outper-
forms the RS method in 20 datasets and only loses in 9 datasets (6 ties). The
difference is not so strong as it was for the mean, possibly because the Median
is a more robust indicator than the mean.

If we focus on dataset size or number of repeated values, there is no spe-
cial phenomenon, so it seems that the methods behave quite homogeneously.
Finally, in Table 8 we disaggregate the results of Table 4 (row with “Median
with smoothing”) by the underlying regression technique. While the values are
different in magnitude, the general picture is preserved in all of them, with
aEF being the best method, as happened with the mean, except for SMO.

5.5 Analysis for the whole distribution

Now we change to the experimental results for the QRD quantification task,
where we are interested in how well the whole distribution is estimated. Table
9 shows the comparison in terms of the cvmu metric for all the datasets by
pairwise comparison, using RS as reference. We use the same statistical tests
as we used for the mean and median cases. We can see that the best methods
for QRI are also the best methods for QRD.

From the results in Table 4 (row with “Distrib. with smoothing”) and Ta-
ble 9 we see that binning with local adjustment is really useful. The three
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Table 7 Comparison for the median indicator for all the quantification methods against
method RS. The configuration and interpretation of rows and statistical tests are as in Table
5.

aRS v RS EW v RS aEW v RS EF v RS aEF v RS kM v RS akM v RS
1 257/0/243 84/0/416 282/0/218 71/1/428 252/0/248 98/1/401 261/0/239
2 207/0/293 48/0/452 219/0/281 71/0/429 217/0/283 54/0/446 295/0/205
3 273/1/226 111/0/389 302/0/198 63/0/437 246/0/254 100/0/400 285/0/215
4 281/0/219 64/0/436 346/0/154 94/0/406 335/0/165 56/0/444 329/0/171
5 258/0/242 6/0/494 335/0/165 5/0/495 343/0/157 3/0/497 332/0/168
6 124/0/376 38/22/440 409/0/91 34/20/446 381/0/119 37/19/444 400/0/100
7 216/0/284 38/73/389 311/0/189 93/73/334 300/0/200 41/73/386 304/0/196
8 232/0/268 0/0/500 463/0/37 3/0/497 438/0/62 0/0/500 455/0/45
9 90/0/410 15/0/485 260/0/240 20/0/480 225/0/275 13/0/487 300/0/200

10 106/3/391 269/84/147 227/0/273 270/80/150 206/0/294 268/79/153 205/0/295
11 215/0/285 85/0/415 246/0/254 71/1/428 282/0/218 64/0/436 275/0/225
12 81/0/419 7/0/493 342/0/158 47/0/453 441/0/59 19/0/481 433/0/67
13 71/0/429 105/1/394 235/0/265 104/0/396 194/0/306 86/0/414 222/0/278
14 119/0/381 15/0/485 337/0/163 38/0/462 280/0/220 14/0/486 325/0/175
15 60/0/440 57/0/443 179/0/321 47/0/453 170/0/330 62/0/438 191/0/309
16 139/0/361 1/0/499 233/0/267 5/0/495 352/0/148 5/0/495 174/0/326
17 94/0/406 65/6/429 274/0/226 197/6/297 403/0/97 101/6/393 308/0/192
18 317/0/183 0/0/500 345/0/155 0/0/500 404/0/96 0/0/500 361/0/139
19 133/3/364 79/0/421 234/0/266 55/0/445 109/0/391 60/0/440 219/0/281
20 255/1/244 0/0/500 232/0/268 0/0/500 115/0/385 0/0/500 199/0/301
21 485/0/15 35/0/465 406/0/94 100/0/400 490/0/10 49/0/451 420/0/80
22 86/1/413 48/6/446 355/0/145 47/5/448 452/0/48 49/5/446 409/0/91
23 20/0/480 0/0/500 452/0/48 0/0/500 422/0/78 0/0/500 448/0/52
24 86/0/414 2/0/498 385/0/115 3/0/497 473/0/27 2/0/498 444/0/56
25 252/0/248 0/0/500 466/0/34 0/0/500 420/0/80 0/0/500 461/0/39
26 360/0/140 0/0/500 498/0/2 0/0/500 457/0/43 1/0/499 366/0/134
27 71/0/429 0/0/500 458/0/42 4/0/496 458/0/42 4/0/496 490/0/10
28 81/7/412 0/0/500 395/0/105 0/0/500 264/0/236 0/0/500 369/0/131
29 450/1/49 0/0/500 27/0/473 0/0/500 29/0/471 0/0/500 32/0/468
30 397/0/103 0/0/500 227/0/273 0/0/500 219/0/281 0/0/500 234/0/266
31 191/0/309 0/0/500 310/0/190 0/0/500 367/0/133 0/0/500 344/0/156
32 99/0/401 57/97/346 99/0/401 110/94/296 394/0/106 102/94/304 146/0/354
33 100/0/400 0/0/500 3/0/497 12/0/488 427/0/73 10/0/490 358/0/142
34 100/0/400 0/0/500 413/0/87 41/0/459 466/0/34 2/0/498 446/0/54
35 100/0/400 0/0/500 475/0/25 0/0/500 489/0/11 0/0/500 467/0/33
W 6406 1229 10780 1605 11520 1300 11307

T 17 289 0 280 0 277 0
L 11077 15982 6720 15615 5980 15923 6193
R 4.89 6 3.55 5.59 3.29 5.78 3.35

Table 8 Aggregated results (35 datasets × 100 iterations = 3,500 values) for the median
indicator as in Table 4 (row ‘Median with smoothing’) disaggregating by the five base
regression techniques.

TT RS aRS EW aEW EF aEF kM akM
LR 1.26 0.75 0.90 0.65 0.57 0.66 0.46 0.65 0.53
M5P 1.26 0.43 0.71 0.57 0.47 0.59 0.35 0.57 0.45
SMO 1.26 0.56 0.55 0.69 0.37 0.69 0.42 0.68 0.41
Gaussian 1.26 0.52 0.99 0.71 0.50 0.70 0.47 0.70 0.49
IBk 1.26 0.67 0.79 0.95 0.54 0.92 0.55 0.93 0.54
AVG. 1.26 0.59 0.79 0.71 0.49 0.71 0.45 0.71 0.48

segmentation methods have a similar behaviour, but from Table 4 (row with
“Distrib. with smoothing”) and Table 7 the best method is aEF in terms of
average but akM in terms of pairwise comparison. Model aEF also outper-
forms the RS method in 26 datasets and only loses in 9 datasets (0 ties), and
aKM wins in 27 and loses in 6 (2 ties). If we focus on dataset size or number
of repeated values, again there seems to be no relation, as happened with the
mean and the median.
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Table 9 Comparison for the cvmu indicator for all the quantification methods against
method RS. The configuration and interpretation of rows and statistical tests are as in
Table 5.

aRS v RS EW v RS aEW v RS EF v RS aEF v RS kM v RS akM v RS
1 188/172/140 142/12/346 315/12/173 129/18/353 299/12/189 151/16/333 301/5/194
2 175/178/147 185/0/315 326/1/173 79/9/412 303/0/197 186/0/314 415/0/85
3 29/183/288 76/23/401 185/0/315 39/24/437 152/0/348 58/18/424 201/2/297
4 309/126/65 38/2/460 302/0/198 51/4/445 313/1/186 33/0/467 337/0/163
5 120/181/199 2/0/498 273/0/227 7/0/493 278/0/222 3/0/497 259/0/241
6 29/201/270 30/20/450 432/0/68 43/21/436 391/1/108 30/22/448 400/0/100
7 341/5/154 40/73/387 310/1/189 103/73/324 289/0/211 44/73/383 314/0/186
8 117/200/183 0/0/500 461/0/39 1/0/499 459/0/41 1/0/499 457/0/43
9 149/190/161 66/0/434 280/0/220 53/0/447 174/0/326 62/0/438 301/0/199

10 138/202/160 282/74/144 325/0/175 303/70/127 339/0/161 289/70/141 303/0/197
11 268/1/231 193/0/307 330/0/170 222/2/276 353/0/147 199/3/298 359/0/141
12 235/177/88 3/0/497 386/1/113 27/0/473 435/0/65 13/0/487 439/0/61
13 223/0/277 129/0/371 297/0/203 67/0/433 191/0/309 108/0/392 267/0/233
14 208/140/152 103/0/397 394/0/106 25/0/475 307/0/193 103/0/397 392/0/108
15 153/172/175 231/0/269 109/0/391 203/0/297 182/0/318 224/0/276 171/0/329
16 133/192/175 55/0/445 328/0/172 256/0/244 238/0/262 198/0/302 249/0/251
17 207/29/264 89/6/405 277/0/223 230/6/264 408/0/92 94/6/400 300/0/200
18 156/196/148 0/0/500 332/0/168 0/0/500 274/0/226 0/0/500 317/0/183
19 245/112/143 376/0/124 403/0/97 370/0/130 365/0/135 387/0/113 439/0/61
20 284/158/58 2/0/498 172/0/328 0/0/500 108/0/392 0/0/500 148/0/352
21 434/8/58 22/0/478 490/0/10 57/4/439 499/0/1 31/1/468 475/0/25
22 118/0/382 51/1/448 450/0/50 44/1/455 481/0/19 52/1/447 489/0/11
23 357/10/133 0/0/500 452/0/48 9/0/491 189/0/311 1/0/499 429/0/71
24 220/0/280 3/0/497 460/0/40 5/0/495 496/0/4 3/0/497 497/0/3
25 385/98/17 0/0/500 456/0/44 0/0/500 251/0/249 0/0/500 452/0/48
26 155/270/75 0/0/500 496/0/4 0/0/500 498/0/2 0/1/499 437/0/63
27 316/168/16 0/0/500 322/0/178 5/0/495 381/0/119 1/0/499 418/0/82
28 272/106/122 0/0/500 424/0/76 0/0/500 345/0/155 0/0/500 418/0/82
29 301/197/2 0/0/500 93/0/407 0/0/500 79/0/421 0/0/500 95/0/405
30 144/78/278 0/0/500 413/0/87 0/0/500 365/0/135 0/0/500 407/0/93
31 331/128/41 0/0/500 324/0/176 0/0/500 236/0/264 0/0/500 328/0/172
32 188/195/117 29/223/248 99/0/401 77/238/185 402/0/98 56/236/208 219/0/281
33 294/102/104 0/0/500 6/0/494 11/0/489 388/0/112 11/0/489 326/0/174
34 394/64/42 0/0/500 500/0/0 2/0/498 500/0/0 0/0/500 500/0/0
35 349/79/72 0/0/500 500/0/0 0/0/500 500/0/0 0/0/500 500/0/0
W 7965 2147 11722 2418 11468 2338 12359

T 4318 434 15 470 14 447 7
L 5217 14919 5763 14612 6018 14715 5134
R 3.96 6.23 3.38 5.81 3.48 5.99 3.1

Finally, in Table 10 we disaggregate the results of Table 4 (row with “Dis-
trib. with smoothing”) by the underlying regression technique. While the val-
ues are different in magnitude, the general picture is preserved in all of them,
with aEF being the best method, except for SMO, where it is akM .

Table 10 Aggregated results (35 datasets × 100 iterations = 3,500 values) for the cvmu
indicator as in Table 4 (row ‘Distrib. with smoothing’) disaggregating by the five base
regression techniques.

TT RS aRS EW aEW EF aEF kM akM
LR 0.43 0.22 0.22 0.26 0.22 0.26 0.16 0.25 0.19
M5P 0.43 0.19 0.20 0.23 0.20 0.24 0.14 0.23 0.17
SMO 0.43 0.22 0.17 0.28 0.15 0.27 0.16 0.28 0.14
Gaussian 0.43 0.21 0.24 0.28 0.20 0.27 0.15 0.27 0.17
IBk 0.43 0.27 0.22 0.35 0.21 0.33 0.16 0.35 0.17
AVG. 0.43 0.22 0.21 0.28 0.19 0.27 0.15 0.28 0.17
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5.6 Analysis for the methods based on classification

We will now investigate the results for the methods based on classifiers, as seen
in section 4.5. Here we will only focus on the mean, given the characteristics of
these methods. Table 11 shows the comparison in terms of the V SE metric for
all the datasets by pairwise comparison, using RS as reference. We apply the
same statistical tests as we used for the previous cases. We use four underlying
classifiers: J48, Logistic Regression, IBk (k = 10) and Näıve Bayes, all of them
using Weka with default parameters. We use the process of discretising the
problem and then a classification quantification method (Forman’s Adjusted
Count, T50 o Median Sweep), followed by a recovering of the magnitudes from
the classes. Since we have three discretisation methods (EW, EF, kM), there
are 9 methods. All them are compared against RS.

Table 11 Comparison for the mean indicator using the V SE metric for all the quan-
tification methods based on the conversion of the problem into a classification against the
genuine regression quantification method RS. There are four classification techniques and
five regression techniques for RS, so we make 4 × 5 × 100 comparisons in each cell of the
table. The rows W and L show all the comparisons (35 × 4 × 5 × 100 = 70,000). There are
no ties in this table (because we are comparing very different approaches). Consequently,
we only show W/L (wins and losses). The configuration of statistical tests is as in Table 5.

ACEW-RS ACEF-RS ACkM-RS T50EW-RS T50EF-RS T50kM-RS MSEW-RS MSEF-RS MSkM-RS

1 1283/717 1288/712 1297/703 690/1310 761/1239 595/1405 859/1141 1191/809 859/1141

2 1023/977 505/1495 823/1177 933/1067 380/1620 745/1255 505/1495 645/1355 708/1292

3 318/1682 677/1323 564/1436 396/1604 211/1789 203/1797 1407/593 1117/883 614/1386

4 1499/501 895/1105 1192/808 1146/854 729/1271 849/1151 544/1456 1538/462 964/1036

5 474/1526 441/1559 504/1496 335/1665 139/1861 322/1678 774/1226 1344/656 489/1511

6 916/1084 763/1237 1012/988 656/1344 678/1322 826/1174 904/1096 734/1266 876/1124

7 1360/640 502/1498 1002/998 1053/947 311/1689 635/1365 457/1543 1529/471 653/1347

8 1148/852 1010/990 1211/789 714/1286 730/1270 618/1382 865/1135 1728/272 802/1198

9 692/1308 279/1721 637/1363 556/1444 147/1853 434/1566 211/1789 1194/806 428/1572

10 1856/144 1074/926 1573/427 1299/701 749/1251 1461/539 341/1659 238/1762 1389/611
11 1637/363 882/1118 1295/705 1149/851 569/1431 690/1310 793/1207 1205/795 658/1342

12 1874/126 822/1178 1804/196 1716/284 786/1214 1446/554 59/1941 1277/723 1283/717
13 980/1020 256/1744 585/1415 648/1352 148/1852 373/1627 458/1542 751/1249 429/1571

14 1197/803 153/1847 883/1117 930/1070 37/1963 487/1513 97/1903 1637/363 563/1437

15 1551/449 334/1666 1478/522 1396/604 151/1849 981/1019 26/1974 1450/550 649/1351

16 651/1349 1141/859 660/1340 415/1585 516/1484 197/1803 1054/946 1782/218 366/1634

17 1888/112 999/1001 1480/520 1667/333 788/1212 1428/572 105/1895 1364/636 1342/658
18 775/1225 214/1786 596/1404 399/1601 25/1975 196/1804 489/1511 1714/286 253/1747

19 973/1027 159/1841 615/1385 1057/943 5/1995 493/1507 26/1974 939/1061 473/1527

20 339/1661 110/1890 228/1772 73/1927 14/1986 62/1938 520/1480 742/1258 145/1855

21 1557/443 1724/276 1297/703 817/1183 680/1320 1030/970 535/1465 249/1751 1025/975
22 1408/592 878/1122 1176/824 1179/821 902/1098 1448/552 275/1725 180/1820 1439/561
23 1268/732 266/1734 874/1126 470/1530 24/1976 207/1793 493/1507 1477/523 324/1676

24 1994/6 1141/859 1859/141 1458/542 809/1191 1202/798 381/1619 779/1221 1164/836
25 1602/398 546/1454 1445/555 1379/621 72/1928 487/1513 283/1717 1840/160 521/1479

26 979/1021 1984/16 1105/895 858/1142 1122/878 643/1357 636/1364 229/1771 654/1346

27 1727/273 679/1321 1860/140 1654/346 787/1213 1222/778 0/2000 1710/290 930/1070

28 1498/502 491/1509 1813/187 1578/422 1211/789 1464/536 1/1999 1948/52 1059/941
29 1492/508 599/1401 1476/524 938/1062 471/1529 974/1026 19/1981 1190/810 686/1314

30 1836/164 674/1326 1350/650 1103/897 615/1385 217/1783 261/1739 870/1130 322/1678

31 1502/498 355/1645 634/1366 940/1060 280/1720 77/1923 94/1906 791/1209 291/1709

32 1950/50 1988/12 1975/25 1010/990 667/1333 1777/223 370/1630 562/1438 1840/160
33 559/1441 1427/573 1997/3 466/1534 987/1013 1738/262 64/1936 284/1716 1655/345
34 1996/4 1170/830 1682/318 821/1179 279/1721 968/1032 307/1693 192/1808 973/1027
35 1997/3 1195/805 1687/313 1158/842 59/1941 816/1184 1153/847 59/1941 819/1181

W 45799 27621 41669 33057 16839 27311 15366 36479 27645
L 24201 42379 28331 36943 53161 42689 54634 33521 42355

R 3.64 5.75 4.23 5.16 7.19 6.02 7.34 4.81 5.99

From the results in Table 11 we have to say that this indirect approach is
not as ill-conceived as it may seem. The results are relatively good for some of
the AC methods and MS with EF. This is surprising, especially because the
T50 and MS methods do not work well. One possible explanation may originate
from the fact that converting a regression problem into a classification problem
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loses the ordinal information and some methods may be more sensitive than
others to this fact.

In the end, the comparison between methods using four classification tech-
niques and methods using five classification is not easy to interpret (and pos-
sibly not meaningful) because it depends on the quality of the five underlying
regression techniques versus the four underlying classification techniques, and
not properly on the quantification method. Nonetheless, we just include it here
to see whether this approach of discretising regression problems could work.

5.7 Discussion and recommendations

As a summary of the results, we can state that the methods based on segmen-
tation and local adjustment clearly surpass the performance of the baseline
method (TT ) and the simple RS method. The statistical significance tests
corroborate this statement. We have also seen that some of the ideas pre-
sented in this paper work well on isolation (such as smoothing) and some
others only work well together (segmentation with adjustment). The results
are quite homogeneous in terms of types of datasets.

So, what is our recommendation when a regression quantification problem
appears? On the one hand, if we already have a regression model, then it is
reasonable to use that model for quantification using a method such as aEF .
As for Table 4, this seems a good bet for almost every indicator. On the other
hand, if we do not have a regression model, we may decide to find a technique
which works well for regression. Here, we can take a look at Tables 6, 8 and
10, and see that M5P will lead to the best results for mean, M5P and SMO
are good for the median and SMO seems better for the whole distribution.
Nonetheless, this cannot be generalised for families of techniques, since there
might be other regression trees, linear regression, Gaussian, kNN or SVM
approaches with better results, or the same techniques by just changing a few
parameters. Also, when there is no regression model, it is an option to dicretise
the problem and see what happens with classification quantification, especially
because the best method for regression quantification using classification seems
to be AC, which is easy to implement.

6 Conclusions

Quantification can be seen as a group of closely related tasks where the goal
is to determine some global indicator or the whole distribution from a set
of (individual) unlabelled examples. Aggregative quantification is the view of
quantification as a problem which is solved by aggregating the predictions
of an underlying predictive model: a classification model if the output value
is categorical, or a regression model if the output value is numerical. Where
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many proposals have been recently proposed for classification quantification,
to our knowledge this is the first paper addressing the problem of regression
quantification, as shaped here.

Quantification is a common problem in many data mining applications:

– Multidimensional hierarchical data. Data warehouses are frequently the
source of minable views. A predictive model learnt at a fine-grained level
may be required to be applied to a different distribution (region, period or
category) or at a different level of aggregation. Quantification techniques
are crucial for this problem.

– Overall estimation. Problems are frequently presented in the form of a
batch, where we need to anticipate (e.g., assign resources) an assessment of
some indicators or the whole distribution for a batch of customers, patients,
complaints, errors, diagnoses, etc., before making any individual decision.

– Distribution shift detection. Clearly a quantifier can be used to determine
when (and of course how much) a distribution is shifting. This may be used
to trigger some revision or re-training of the models, instead of triggering
this by the degradation of the models (which can be originated by other
factors, such as obsolescence, but not necessarily a distribution shift).

– Calibration and cost applications. An interesting application would be to
use quantification methods to calibrate supervised models or to use them
in cost applications, only incipiently explored by Forman (Forman, 2008).
However, the methods introduced in this paper modify all the single predic-
tions, so the model resulting from adjustment, segmentation and spreading
can still be used as a single-instance supervised model (this is not the case,
for instance, with methods such as T50 or MS in classification).

As discussed throughout the paper, the problem becomes really meaningful
when we have an important distribution shift between the training data and
the deployment data. This distribution shift entails a change in the categorical
distribution (class frequencies) in classification problems. In regression, the
distribution shift may involve a change in location, dispersion and shape of
the data distribution. This is in contrast to the classical problem of estimating
the distribution from a small sample, even if there is no distribution shift.

All the above issues have triggered a comprehensive analysis of quantifica-
tion as a group of data mining tasks on its own, which is consolidated by the
new taxonomy we have introduced in this paper. From here, we can see how
much similar the quantification tasks are, what metrics are required for each of
them and the desired detail of the quantification result, as a single indicator or
a whole distribution. Given this taxonomy we have focussed on the two tasks
which, to our knowledge, have not received proper attention in the literature
(in the terms set here). These families of tasks are regression quantification
obtaining the whole distribution and the task focussed on a particular indica-
tor. One of the principles we have followed when looking for solutions for these
problems is that the solutions should be general to any underlying regression
technique.
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We have seen that the direct adaptation of ideas for classification quantifi-
cation to regression does not work. Moreover, the methods based on segmenta-
tion introduced here, especially when each bin is used to do local adjustments,
have shown a very significant improvement. We have seen good results for both
the mean and the median estimation and the whole distribution estimation
(QRI and QRD tasks).

There are also some limitations of the approach presented in this paper.
Aggregative regression quantification still relies on good regression models to
get good quantification. While it is possible to get good quantification from
some poor models, there is still much to be done in order to understand which
regression models (and techniques) are more suitable for quantification. While
some quantification methods excel on average, they can perform worse than
the trivial RS method for some datasets and techniques. Detecting when this
is the case, and using method combinations with this information could lead
to improved results. Also, the results for the whole distribution case QRD can
be improved in terms of shape, since asymmetries and multimodalities may
not be properly identified in many cases.

In the end, this is just a first attempt for regression quantification (as
considered here) and many things can be improved. For instance, we have set
the same value for the parameter α for all techniques and methods in order
to ease the comparison, but we may choose a particular α for each problem,
regression technique and quantification method, or link it to some parameters
of the model on the training set, such as correlation or the variance. Also,
new smoothing methods could be devised as well by reusing the information
from the segmentation. Segmentation could also be done in other ways, by
the use of other clustering methods, sliding windows or kernels, with possibly
overlapping bins.

As a side possibility, we might wonder what learning parameters and met-
rics should be used for training supervised models on purpose for a quantifi-
cation problem. For instance, we have used regression techniques with default
parameters usually aiming at minimising MSE , but we could also use other
techniques with the purpose of being median-unbiased estimators by the use
of the absolute error instead. The approaches using classification may also be
considered. Some of the analysis of existing performance metrics (Ferri et al,
2009; Hernández-Orallo et al, 2012) could be overhauled having quantification
in mind. The use of different loss functions and metrics could also lead to ex-
tensions of the taxonomy, by accommodating ordinal regression, hierarchical
classification, etc.

As mentioned above, quantification is a very common problem, and there
are also many possible scenarios and applications for the regression case. In
fact, the interaction of regression quantification with common hierarchical data
organisations deserves to be explored. In fact, quantification could be applied
in an iterative way. For instance, we may need to calculate the expected total
benefits for a city, then aggregate for regions, then for countries, etc. This
stepwise aggregation may give better results than aggregating the predictions
from the lowest level to the highest one. This, of course, suggests the use of
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(hierarchical) clustering for both the input and the output values. In fact,
many different segmentation methods could be used instead of the EF , EW
and kM methods. All this could also be explored as future work.

All in all, regression quantification may have been approached in many
different (and ad-hoc) ways in the literature and specific applications, but
there has not been a systematic and generalised account of this data mining
task on its own. Given the number of alternatives and the ideas that could
be used for different task variants of the regression quantification problem, we
think this paper is a resolute step in the recognition of this family of data
mining tasks and the everyday application of better suited solutions.
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