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Abstract. We propose a holographic correspondence between the action integral I describing
the mechanics of a finite number of degrees of freedom in the bulk, and the entropy S of the
boundary (a holographic screen) enclosing that same volume. The action integral must be
measured in units of (i times) Planck’s constant, while the entropy must be measured in units
of Boltzmann’s constant. In this way we are led to an intriguing relation between the second
law of thermodynamics and the uncertainty principle of quantum mechanics.

1. Introduction
There are compelling reasons to believe that quantum mechanics must be an emergent
phenomenon [2, 10, 11, 14, 15, 18, 19, 20, 21, 23, 24]. Actually not just quantum mechanics, but
also gravity and spacetime appear to be emergent phenomenona as well (for a comprehensive
review see [31] and refs. therein). The guiding principle in all emergent theories is the fact
that they provide a coarse–grained description of some underlying theory [9]. Due to our
ignorance of a full microscopic description, emergent phenomena are in principle amenable to a
thermodynamical description.

It is the purpose of this contribution to develop an approach to emergent quantum mechanics
from the entropic point of view presented in ref. [1]. We take the view that, apart from other
important reasons [3, 16, 25, 26, 28, 29, 32], quantum theory must be an emergent phenomenon
also because the spacetime it is defined on is an emergent concept. There exist in the literature
a number of different approaches to account for the emergent nature of spacetime, too numerous
to quote here in detail. Here we will follow the holographic [22, 34] proposal presented in
ref. [35]. Thus gravity and quantum mechanics share the common feature of being effective,
thermodynamical descriptions of their respective underlying theories.

We should point out that quantum mechanics can be recast in thermodynamical terms
[30], although without making use of the properties of emergence and holography used here.
On the contrary, our approach hinges crucially on the notions of emergence and holography.
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Altogether, our approach will provide us with a holographic, entropic picture of emergent
quantum mechanics.

2. The correspondence
2.1. The main result
Our main result can be summarised in the holographic correspondence

(bulk)
iI

h̄
↔ S

kB
(boundary). (1)

This correspondence can be explained as follows. Let a finite 3–dimensional volume V be given,
such that it is bounded by a closed 2–dimensional surface S (a holographic screen, see [35]). Let
a finite number of quantum–mechanical degrees of freedom be defined within V, described by
the action integral I. The screen S is assumed to carry N information bits. These bits encode
the holographic projection, onto S, of the degrees of freedom within V. Since we do not know
the specific mechanism whereby the holographic principle projects the mechanics within V onto
its boundary S = ∂V, we assign the screen an entropy S, which measures our ignorance about
the specific nature of the degrees of freedom on the surface. Thus I describes a mechanical
system in the bulk, while S describes its corresponding thermodynamics on the boundary. In
this setup, space merely plays the role of a storage device for information; space has already
emerged within S, while it does not yet exist outside S [35]. It will be observed that each side
of the dimensionless correspondence (1) is measured in units of the corresponding quantum—
the quantum of action (Planck’s constant h̄) on the mechanical side, the quantum of entropy
(Boltzmann’s constant kB) on the thermodynamical side. Finally, there is a relative factor of i,
whose origin will be elucidated presently. For the moment we note that the semiclassical limit
h̄ → 0 in the bulk corresponds to letting kB → 0 on the boundary. Last but not least, the two
quantities I and S separately obey a corresponding extremum principle. Eqn. (1) differs from
an ana! logous correspondence, presented in [1], by a factor of 2, to be explained later.

2.2. A quantum of entropy
The starting point in ref. [35] is a classical point particle of mass M approaching a holographic
screen S, from that side of the latter on which spacetime has already emerged. At a distance
from S equal to 1 Compton length, the particle causes the entropy S of the screen to increase
by the amount

∆S = 2πkB, (2)

where kB is Boltzmann’s constant. The above can also be understood as meaning that 2πkB is
the quantum by which the entropy of the screen increases, whenever a particle crosses S. The
factor 2π on the right–hand side is conventional. Relevant is only the fact that the entropy
increase of the screen appears quantised in units of kB.

2.3. Two thermodynamical languages
Thermodynamics can be conveniently expressed in either of two equivalent languages,
respectively called the energy representation and the entropy representation [8]. Any given
thermodynamical system can be completely described if one knows its fundamental equation.
The latter contains all the thermodynamical information one can obtain about the system. The
fundamental equation can be expressed in either of two equivalent ways, respectively called the
energy representation and the entropy representation. In the energy representation one has a
fundamental equation E = E(S, . . .), where the energy E is a function of the entropy S, plus of
whatever additional variables may be required. In the entropy representation one solves for the
entropy in terms of the energy to obtain a fundamental equation S = S(E, . . .).
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Here we will argue that quantum mechanics as we know it (i.e., on spacetime) corresponds
to the energy representation, while quantum mechanics on a holographic screen (i.e., in the
absence of spacetime) will correspond to the entropy representation. Our goal is to describe the
laws of entropic quantum mechanics, that is, the thermodynamical laws on the boundary S that
correspond to the quantum mechanics within S = ∂V.

One must bear in mind, however, that standard thermodynamical systems admit both
representations (energy and entropy) simultaneously, which representation one uses being just
a matter of choice. In our case this choice is dictated, for each fixed observer, by that side of
the screen on which the observer wants to study quantum mechanics. For example there is no
energy variable beyond the screen, as there is no time variable, but an observer can assign the
screen an entropy, measuring the observer’s ignorance of what happens beyond the screen. This
notwithstanding, the analogy with thermodynamical systems we have just sketched can be quite
useful.

2.4. A (classical) holographic dictionary
Assume that we are give a foliation of 3–space by 2–dimensional holographic screens Sj :
R3 = ∪j∈JSj , where the index j runs over some (continuous) set J . For reasons to be explained
presently we will restrict our attention to potentials such that the Sj are all closed surfaces; we
denote the finite volume they enclose by Vj , so ∂Vj = Sj .

One can formulate a holographic dictionary between gravitation, on the one hand, and
thermodynamics, on the other [35]. Let VG denote the gravitational potential created by a total
mass M =

∫
V d3V ρM within the volume V. Then the following two statements are equivalent:

i) there exists a gravitational potential VG satisfying Poisson’s equation ∇2VG = 4πGρM , such
that a test mass m in the background field created by the mass distribution ρM experiences a
force F = −m∇VG;
ii) given a foliation of 3–space by holographic screens, R3 = ∪j∈JSj , there are two scalar
quantities, called entropy S and temperature T , such that the force acting on a test mass m is
given by Fδx =

∫
S TδdS. The latter integral is taken over a screen that does not enclose m.

Moreover, the thermodynamical equivalent of the gravitational theory includes the following
dictionary entries [35]:

1

kB
S(x) =

−1

4h̄cL2
P

VG(x)A(VG(x)), (3)

2πkBT (x) =
dVG
dn

, (4)

kB
2

∫
S

d2a T = L2
PMc2. (5)

In (3), (4) and (5) we have placed all thermodynamical quantities on the left, while their
mechanical analogues are on the right. As in ref. [35], the area element d2a on S is related
to the infinitesimal number of bits dN on it through d2a = L2

PdN . We denote the area of
the equipotential surface passing through the point x by A(VG(x)), while dVG/dn denotes the
derivative of VG along the normal direction to the same equipotential. The above expressions
tell us how, given a gravitational potential VG(x) and its normal derivative dVG/dn, the entropy
S and the temperature T can be defined as functions of space.

Specifically, eqn. (3) expresses the proportionality between the area A of the screen S and
the entropy S it contains. This porportionality implies that gravitational equipotential surfaces
get translated, by the holographic dictionary, as isoentropic surfaces, above called holographic
screens S.
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Equation (4) expresses the Unruh effect: an accelerated observer experiences the vacuum of
an inertial observer as a thermal bath at a temperature T that is proportional to the observer’s
acceleration dVG/dn.

Finally, eqn. (5) expresses the first law of thermodynamics and the equipartition theorem.
The right–hand side of (5) equals the total rest energy of the mass enclosed by the volume V,
while the left–hand side expresses the same energy content as spread over the bits of the screen
S = ∂V, each one of them carrying an energy kBT/2. It is worthwhile noting that equipartition
need not be postulated. Starting from (4) one can in fact prove the following form of the
equipartition theorem [1]:

kB
2

∫
S

d2a T =
A(S)

4π
U(S), A(S) =

∫
S

d2a. (6)

Above, U can be an arbitrary potential energy, subject only to the requirement that its
equipotential surfaces are closed. We will henceforth mean eqn. (6) when referring to the first
law and the equipartition theorem. In all the above we are treating the area as a continuous
variable, but in fact it is quantised [35]. If N(S) denotes the number of bits of the screen S,
then

A(S) = N(S)L2
P . (7)

However, in the limitN →∞, when ∆N/N << 1, this approximation of the area by a continuous
variable is accurate enough. We will see later on that letting N → ∞ is equivalent to the
semiclassical limit in quantum mechanics.

3. The emergence of quantum mechanics
We intend to write a holographic dictionary between quantum mechanics, on the one hand, and
thermodynamics, on the other. This implies that we will need to generalise eqns. (3), (4) and
(6) so as to adapt them to our quantum–mechanical setup. Thus we will replace the classical
particle of [35] with a quantum particle, subject to some potential energy U of nongravitational
origin, but we will take (2) to hold for a quantum particle as well. We will assume U to be
such that its equipotential surfaces Sj are closed, in agreement with our assumptions about the
foliation. Let H = K +U be the classical Hamiltonian function on R3 whose quantisation leads
to the quantum Hamiltonian operator Ĥ = K̂ + Û that governs our quantum particle.

3.1. A (quantum) holographic dictionary
Inside the screen, spacetime has already emerged. This gives us the energy representation of
quantum mechanics—the one we are used to: a time variable with a conserved Noether charge,
the energy, and wavefunctions depending on the spacetime coordinates. We have the uncertainty
relation

∆Q̂∆P̂ ≥ h̄

2
. (8)

Expectation values are computed as functional integrals, with a density function dI given by

dI = exp

(
i

h̄
I

)
. (9)

Above, I =
∫

dtL is the action integral satisfying the Hamilton–Jacobi equation.
We can now posit the quantum–mechanical analogues of eqns. (3), (4) and (6). In the energy

representation these analogues read, respectively,

1

kB
Ŝ(x) =

1

4h̄cLP
A(U(x))|Û(x)|, (10)
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2πkBT̂ (x) = LP
dÛ

dn
, (11)

kB
2

∫
S

d2a T̂ =
A(S)

4π
Û(S). (12)

3.2. Emergence of the holographic correspondence
It is well known, in the theory of thermodynamical fluctuations, that the probability density
function dS required to compute expectation values of thermodynamical quantities is given by
the exponential of the entropy [8]:

dS = exp

(
S

kB

)
. (13)

Comparing (13) with (9) we arrive at the holographic correspondence (1)

iI

h̄
↔ S

kB
(14)

between the energy representation and the entropy representation.
We would like to point out that an analogous correspondence has been given in [1], the

only difference being a factor of 2 in the denominator on the right–hand side. This factor of
2 is easy to account for. In [1], one compares the semiclassical wavefunction in the energy
representation, given by ψ = exp (iI/h̄), with the square root of the probability density function
dS in the entropy representation, given by

√
dS = exp (S/2kB). Instead, here we are equating

the probability densities dI and dS rather than the wavefunctions. See refs. [4, 5] for specific
instances of the correspondence (14).

3.3. Emergence of the wavefunction
The equation U(x1, x2, x3) = U0, where U0 is a constant, defines an equipotential surface in R3.
As U0 runs over all its possible values, we obtain a foliation of R3 by equipotential surfaces.
Following [35], we will identify equipotential surfaces with holographic screens. Hence forces will
arise as entropy gradients.

Assume that ψ is nonvanishing at a certain point in space. Consider an infinitesimal cylinder
around this point, with height LP and base area equal to the area element d2a. Motivated by
the proportionality between area and entropy, already mentioned, we postulate that there is an
infinitesimal entropy flow dS from the particle to the area element d2a:

dS = C 2πkBLP |ψ|2d2a. (15)

Here C is a dimensionless numerical constant, to be determined presently. A closed surface Σ
receives an entropy flux S(Σ):

S(Σ) = C(Σ)2πkBLP

∫
Σ

d2a |ψ|2. (16)

The constant C(Σ) will in general depend on the particular surface chosen; the latter may, but
need not, be a holographic screen. The key notion here is that the integral of the scalar field
|ψ|2 over any surface carries an entropy flow associated. When the surface Σ actually coincides
with a holographic screen S, and when the latter is not a nodal surface of ψ, the constant C(S)
may be determined by the requirement that the entropy flux from the particle to the screen
equal the quantum of entropy (2). Thus

1

C(S)
= LP

∫
S

d2a |ψ|2. (17)
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Let us now read eqn. (17) in reverse, under the assumption that one knows the proportionality
constants C(Sj) for a given foliation R3 = ∪j∈JSj . This amounts to a knowledge of the
integrands, i.e., of the probability density |ψ|2 within the surface integral (17) on each and
every Sj . From these tomographic sections of all probability densities there emerges the complete
wavefunction ψ on all of R3, at least up to a (possibly point–dependent) phase eiα.

Thus the integrand of (17) gives the surface density of entropy flow into the holographic screen
Sj , and the wavefunction ψ becomes (proportional to) the square root of this flow. The collection
of all these tomographic sections of ψ along all possible screens amounts to a knowledge of the
complete wavefunction. Hence a knowledge of the different surface densities of entropy flux
across all possible screens is equivalent to a knowledge of the quantum–mechanical wavefunction
ψ. This is how the quantum–mechanical wavefunction ψ emerges from the holographic screens.

4. The Unruh equation of state
In this section we will rewrite the dictionary entries (10), (11) and (12), postulated to hold in the
energy representation of quantum mechanics, in the entropy representation. For this purpose
we first need to solve the eigenvalue equation Ŝφ = Sφ on the screen, so the latter will be kept
fixed. That is, we will not consider a variable surface Sj of the foliation, but rather a specific
surface corresponding to a fixed value of the index j. Observe also a difference in notation: φ
instead of ψ. This is to stress the fact that, by (10), entropy eigenstates φ cannot be eigenstates

of the complete Hamiltonian Ĥ, but only of the potential energy Û . Once we have solved the
eigenvalue equation

Ûφ = Uφ, (18)

then the same φ diagonalise Ŝ:

Ŝφ = Sφ, S =
kB

4h̄cLP
A(S)|U(S)|. (19)

Thermodynamical quantities will now arise as expectation values of operators in the entropic
eigenstates φ(S).

We first deal with (10). Clearly its reexpression in the entropy representation will be the
thermodynamical fundamental equation S = S(A), since the extensive parameter corresponding
to the holographic screen is the area A. Then we have

〈Ŝ〉 =
kB

4h̄cLP
A(S)|U(S)|. (20)

Availing ourselves of the freedom to pick the origin of potentials at will, let us set |U(S)| =
h̄c/LP . Thus

〈Ŝ〉 =
kB

4L2
P

A, (21)

which is the celebrated Bekenstein–Hawking law. It arises as a thermodynamical fundamental
equation in the entropy representation.

Our holographic screen is treated thermodynamically as a stretched membrane, so the
generalised force conjugate to the extensive parameter A is the surface tension σ. Then the
equation of state corresponding to (21) is

σ =
kB〈T̂ 〉
4L2

P

. (22)

Rewrite the above as 2πkB〈T̂ 〉 = 8πL2
Pσ and recall that σ is the normal component of force

per unit length on the screen. Since force is proportional to acceleration, the above equation of
state turns out to be equivalent to the Unruh law.
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Finally we turn to the first law of thermodynamics and the equipartition theorem. Taking
the expectation value, in the entropic eigenstates φ, of the operator equation (12), produces the
thermodynamical expression for the equipartition theorem:

kB
2

∫
S

d2a 〈T̂ 〉 =
A(S)

4π
〈Û(S)〉. (23)

5. The second law of thermodynamics, revisited
The second law of thermodynamics,

∆S ≥ 0, (24)

has been related to the Heisenberg uncertainty principle in ref. [30]. In ref. [13] it has been
argued that the second law of thermodynamics has a quantum–mechanical reexpression in the
Bell inequalities. In ref. [1] we have established a link between (24) and the Hilbert space of
entropic quantum mechanics. Here we would like to propose yet another quantum–mechanical
interpretation of the second law, one that combines the uncertainty principle with the notion of
emergence.

From eqn. (2) one derives the obvious inequality

∆S ≥ πkB (25)

which looks like some refinement of the second law (24)—the latter would be recovered in the
semiclassical limit kB → 0. Therefore let us, for the sake of the argument, consider eqn. (25)
as a more precise statement of the second law than (24). As such (25) is reminiscent the
uncertainty principle (8) of quantum mechanics. However the left–hand side of (25) contains
just one uncertainty, instead of a product of two uncertainties as usual. This reflects the fact
that the variable on the left, S, is selfconjugate—its dimension equals that of the quantum kB
on the right–hand side1. We can include a dimensionless formal parameter! τ in the left–hand
side that will make (25) resemble the uncertainty principle in its standard form. This can be
done as follows.

Let N denote the total number of bits on S. Whenever a quantum particle hits the screen
we have ∆N = 1, and the ratio ∆N/N will be small if N is large enough. In this limit we can
treat N as a continuous variable, that we re-denote by τ in order to interpret it as a continuous,
dimensionless parameter:

τ := N, when
∆N

N
<< 1. (26)

This is the limit N →∞ referred to in (7). Compatibility with all the above requires this limit
to correspond to kB → 0 or, equivalently, to h̄ → 0. In other words, the large area limit for a
holographic screen corresponds to the semiclassical approximation in quantum mechanics.

We have ∆τ ≥ 1, the inequality allowing for the possibility of more than just one particle
hitting S. Thus multiplying the two inequalities ∆τ ≥ 1 and ∆S ≥ πkB together we arrive at
the following uncertainty principle on the holographic screen:

∆S∆τ ≥ πkB. (27)

The fact that kB, though small, is nonvanishing, leads to the impossibility of having strictly
reversible processes; reversibility is possible only in the limiting case of a vanishing value for

1 Compare this situation with (q, p) and (H, t), which are conjugate pairs: the product of the two components of
each pair has the dimension of h̄. Angular momentum L is selfconjugate, in the sense that it carries the dimension
of h̄, but one writes the corresponding uncertainty principle as ∆L∆ϕ ≥ h̄/2, where the dimensionless variable ϕ
is an angle.
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the quantum kB. We conclude that quantisation appears as dissipative mechanism. The notion
that information loss leads to a quantum behaviour lies at the heart of the notion of emergence
[6, 7, 14, 15, 18, 19, 20, 21, 23, 24, 33].

We have derived the uncertainty principle (27) starting from the second law of
thermodynamics (24). Let us now prove that the reverse path is also possible: from the
uncertainty principle to the second law of thermodynamics. We start from (8) in the bulk
rewritten as ∆I/h̄ ≥ 1, where I =

∫
pdq is the action. On the boundary, the correspondence (1)

allows to reexpress the above inequality as in (25). Along the way we have dropped irrelevant
numerical factors.

Altogether, we have an equivalence between the uncertainty principle of quantum mechanics
(either in the bulk (8) or on the boundary (27)), and a refined version of the second law of
thermodynamics, one that includes a small but nonvanishing value of the corresponding quantum
(h̄ or kB) on the right–hand side. This is in agreement with the results of [30]—now with the
added bonus that our equivalence has the properties of emergence and holography.

6. Discussion
The entropy representation of quantum mechanics, as presented here, is a holographic projection
of the energy representation of the same theory, as defined on spacetime. Our central claim,
summarised by eqn. (1), expresses this holographic property.

There is, however, one additional property of quantum mechanics that is deeply encoded in
eqn. (1); as such it is not immediately recognised. Namely, quantum mechanics is an emergent
phenomenon also because quantum mechanics is defined on spacetime, and spacetime itself is
an emergent phenomenon. Let us analyse this latter point in more detail.

Any model of emergent gravity must ultimately account for the laws governing the motion
of material bodies. Thus, e.g., the proposal made in [35] allows for a (somewhat heuristic)
derivation of Newton’s law of motion, F = ma, and of the relativistic generalisations thereof, as
emergent, thermodynamical laws. Moreover, the intriguing presence of Planck’s constant h̄ [12]
in the purely classical setup of ref. [35] makes one suspect that quantum mechanics also has a
role to play in that setup. On the other hand, it is well known that Newton’s law F = ma can be
recovered in the semiclassical limit of quantum mechanics, as being satisfied by the expectation
values of certain operators (Ehrenfest’s theorem). Last but not least, thermodynamics is the
paradigm of emergent phenomena.

All these different pieces of evidence point toward one and the same conclusion—viz., that if
classical mechanics follows from the emergence property of spacetime, then the same should be
true of quantum mechanics. Here and in ref. [1] we have exploited this point of view. We would
like to stress that this conclusion is ultimately independent of the precise mechanism whereby
spacetime emerges. Thus, although the holographic dictionary presented in previous sections
hinges crucially on the emergence mechanism being precisely that of ref. [35], the holographic
correspondence (1) is independent of that mechanism. As such, the holographic correspondence
(1) should hold just as well in any other specific model for the emergence of spacetime (say, loop
quantum gravity or any alternative thereto such as [17, 27]).

Acknowledgments
J.M.I. heartily thanks the organisers of the 5th International Heinz von Foerster Congress:
Emergent Quantum Mechanics, Vienna, Nov. 11-13, 2011, for the opportunity to present this
talk, and for providing a congenial environment for scientific discussions. This work has been
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