Document downloaded from:

http://hdl.handle.net/10251/49599

This paper must be cited as:

Martí Vargas, JR. (2013). Bond Performance in Self-Consolidating Concrete Pretensioned Bridge Girders. American Concrete Institute. doi:10.14359/51685840.

The final publication is available at

http://dx.doi.org/10.14359/51685840

Copyright

American Concrete Institute

- 1 Bond Performance in Self-Consolidating Concrete Pretensioned Bridge Girders.
- 2 Paper by Young Hoon Kim, David Trejo, and Mary Beth D. Hueste

3

- 4 ACI Structural Journal, V. 109, No. 6, November-December 2012, pages 755-765
- 5 MS No. S-2010-329.R3
- 6 Title No. 109-S65

7

- 8 Discussion by José R. Martí-Vargas
- 9 Associate Professor
- 10 ICITECH, Institute of Concrete Science and Technology
- 11 Universitat Politècnica de València, Valencia, Spain

12

- 13 The discussed paper presents an interesting study on the potential application of high-early-strength
- 14 self-consolidating concrete in precast, prestressed bridge girders. The authors should be
- 15 congratulated for providing comprehensive information on the bond characteristics and prestress
- losses of prestressed concrete girders. The discusser would like to offer the following comments
- and questions, mainly about transfer and development length.
- 18 1. As stated by the authors, it seems that ACI 318 provisions for transfer length have differed over
- 19 the years. The reader believes that: a) a transfer length of $50d_b$ is specified by ACI 318-02; b) the
- 20 50d_b transfer length requirement is not referred to in ACI 318-08; c) ACI 318-08 recommends a
- transfer length of $(f_{pe}/3)d_b$. However, the $50d_b$ transfer length requirement in the ACI 318-02 shear
- provisions (Section 11.4.3) is also referred to in ACI 318-05 (Section 11.4.4), in ACI 318-08
- 23 (Section 11.3.4) and in ACI 318-11 (Section 11.3.4) –ACI 318-11 was first printed in August 2011
- 24 and is not included as a reference in the paper—. On the other hand, current ACI 318 provisions on
- 25 transfer length first appeared in ACI 318-63 and remain to date as $(f_{se}/3000)d_b$ (ACI 318-11, the
- 26 first part of Eq. 12-4).

- 1 2. Eq. (1) is presented using l_{tf} (final transfer length according to the footnote of Table 1), whereas
- 2 this equation is applicable immediately after transfer (Mitchell et al. 1993). However, Eq. (1)
- 3 (which considers stress in prestressed reinforcement immediately after prestress transfer) was
- 4 proposed by Barnes et al. (2003) as an upper bound for the long-term transfer length. Can the
- 5 authors explain these inconsistencies?
- 6 3. The constant 10 in. in Eq. (2a) [254 mm in Eq. (2b)] should be replaced with 5 in. [127 mm] in
- 7 accordance with Eq. (9) proposed by Lane (1998). Besides, some details of references about
- 8 AASHTO LRFD BDS should be clarified: the text mentions the years 1996, 2004, 2006 and 2008,
- 9 whereas the years included in the references section are 2005, 2006 and 2008.
- 4. Several strand bond equations (Martí-Vargas et al. (2007, 2012b)) can be used in the analysis for
- 11 comparisons. An evaluation of these equations for SCC beams is available in Floyd et al. (2011).
- 12 5. Some references on bond of prestressing strands in SCC have been neglected; for example,
- 13 Martí-Vargas et al. (2006) and Larson et al. (2007). In particular, Martí-Vargas et al. (2006) report
- findings on similar transfer lengths in SCC and CC, and greater development lengths in SCC when
- using cement contents of the order of those considered in the mixture proportions used by the
- authors. This tendency has been followed for only girders R2. More findings on the effects of
- cement content on transfer length are reported in Martí-Vargas et al. (2012a).
- 18 6. Both the initial and final transfer lengths are determined from the Type II embedded concrete
- strain gauges. The discusser's opinion is that there are few gauges and that there is a considerable
- distance between them (for example: the first gauge is located at 5 in. (127 mm) from the beam end,
- 21 however a transfer length of 3.3 in. (84 mm) is reported; also several transfer length values are
- 22 under 10 in. (254 mm) -the location of the second gauge from the beam end-). This fact has
- 23 influenced the quality of the test results and adjustments..
- 7. The Type I strain gauges were attached to the side faces with 10 in. (254 mm) intervals. Only the
- locations at 10 in. (254 mm), 20 in. (508 mm), and 70 in. (1780 mm) coincided with the locations of
- 26 the Type II gauges. The surface and embedded measurements were very similar. Did the authors

- determine the transfer lengths from the Type I gauges? As the transfer of the prestress from the
- 2 strands to the concrete requires a certain length, why is there no difference between the concrete
- 3 strains from the side faces in relation to the concrete strains at the centroid of the tension strands?
- 4 8. Regarding Fig. 4: in cases (a) and (b), it seems that embedded gauges are placed at 18 in. (457
- 5 mm) instead of at 20 in. (508 mm); in case (a), the 10 in. (254 mm) gauge shows a high initial
- 6 value, and a more logical expected transfer length value of around 15 in. (380 mm) should be
- 7 obtained instead of 8 in. (203 mm) –consequently, the discusser believes that girder SCC-R also has
- 8 shorter (instead of similar or shorter, as the authors state) initial and final transfer lengths if
- 9 compared to girder CC-R-; in case (c) a tentative initial transfer length could be 20 in. (508 mm)
- instead of 28 in. (710 mm) –precisely, this girder is the only one showing underestimated values
- from some predictions—; in cases (c) and (d), it seems that the adjustments in the plateau zones
- should show measured values both above and below the best fit lines for the final transfer length.
- 13 How did the authors make the adjustments?
- 9. Table 2 should be improved: both ends should be identified (live or dead end, End (I) or (II)
- according to Fig. 7, R1 or R2 according to Table 3; What is the correspondence between them?);
- the ratios are measured/predicted instead of predicted/measured; these ratios were obtained for only
- the measured final transfer length (but there is no indication of this); ACI 318-02 should be replaced
- with ACI 318-11 [50 d_b]; ACI 318-08 should be replaced with ACI 318-11 [$(f_{so}/3000)d_b$]; in
- 19 AASHTO (2008), there should be details of the use of $60d_b$ or $[4d_bf_{bpt}/f'_c 21$ (ksi, in.)] in
- accordance with Lane (1998); the concrete compressive strength (specified at 28 days, measured at
- 90 or 91 days, measured at 128 or 130 days) and strand stress (f_{pi} or f_{pe}) used in each prediction
- should be detailed.
- 23 10. Can the authors report the measured strand end slip at prestress transfer from the 10 LVDTs
- 24 used?
- 25 11. It is worth remarking that transfer length can change over time. A transfer length model with a
- 26 factor accounting for transfer length changes with time is presented in Caro et al. (2012). However,

- 1 changes in strand stress (influenced by concrete creep and shrinkage and strand relaxation) are not
- 2 directly related to changes in transfer length, which seems a contradiction: based on some
- 3 references, the authors state that "Creep, shrinkage and relaxation around the transfer region were
- 4 reported to increase transfer length" -these phenomena cause prestress losses (strand stress
- 5 diminishes)— and the authors also state that "High effective stresses f_{pe} result in a longer transfer
- 6 length". Therefore, strand stress diminishes and transfer length increases with time. Can the authors
- 7 explain this?
- 8 12. The discusser believes that the bond failure for girder SCC-R1 indicates that development
- 9 length is greater than 70 in. (1780 mm) and that this information should be included in Table 3.
- 10 13. The Type II gauges were also used to measure prestress losses. The last gauge is located at 70
- in. (1780 mm) from the beam end, and this location is not midspan. However, Fig. 7 shows concrete
- compressive strains at the midspan and at both ends of each girder. How did the authors measure
- these compressive strains at the midspan? Were the values at both ends obtained from the gauges
- within the transfer length?

22

- 15 14. In Fig. A, did the authors illustrate the compressive strains due only to the applied load? The ε'_c
- values are greater than ϵ_{c1} and ϵ_{c2} at the first point in case (c), and there is also an initial constant
- plateau for ε'_c with greater values than ε_{c1} and ε_{c2} in case (d). Can the authors explain this or
- provide some information on cracks within the transfer length?
- 19 15. Finally, the discusser suggests using the actual perimeter of strands $(\pi d_b 4/3)$ instead of the
- 20 nominal perimeter (πd_b) to obtain average bond stresses. This fact does not affect the bond ratio
- values obtained by the authors, and it reports more realistic bond stress values.

23 REFERENCES

- ACI Committee 318, 1963, "Building Code Requirements for Reinforced Concrete (ACI 318-
- 25 63)," American Concrete Institute, Detroit, MI.

- ACI Committee 318, 2005, "Building Code Requirements for Structural Concrete (ACI 318-05)
- and Commentary," American Concrete Institute, Farmington Hills, MI.
- 3 ACI Committee 318, 2011, "Building Code Requirements for Structural Concrete (ACI 318-11)
- 4 and Commentary," American Concrete Institute, Farmington Hills, MI, 509 pp.
- 5 Caro, L.A.; Martí-Vargas, J.R.; and Serna, P., 2012, "Time-dependent Evolution of Strand
- 6 Transfer Length in Pretensioned Prestressed Concrete Members," Mechanics of Time-Dependent
- 7 *Materials*, 2012, DOI: 10.1007/s11043-012-9200-2.
- 8 Floyd, R.W.; Howland, M.B.; and Hale, W.M., 2011, "Evaluation of strand bond equations for
- 9 prestressed members cast with self-consolidating concrete," Engineering Structures, V. 33, pp.
- 10 2879-2887.
- Larson, K.H.; Peterman, R.J.; and Esmaeily, A., 2007, "Bond Characteristics of Self-
- 12 consolidating Concrete for Prestressed Bridge Girders," *PCI Journal*, V. 52, N° 4, pp. 44-57.
- Martí-Vargas, J.R.; Serna-Ros, P.; Arbeláez, C.A.; and Rigueira-Victor, J.W., 2006, "Bond
- 14 Behaviour of Self-Compacting Concrete in Transmission and Anchorage," Materiales de
- 15 *Construcción*, Vol. 56, No. 284, pp. 27-42.
- Martí-Vargas, J.R.; Arbeláez, C.A.; Serna-Ros, P.; Navarro-Gregori, J.; and Pallarés-Rubio, L.,
- 17 2007, "Analytical Model for Transfer Length Prediction of 13 mm Prestressing Strand," Structural
- 18 Engineering and Mechanics, V. 26, No. 2, pp. 211-229.
- Martí-Vargas, J.R.; Serna, P.; Navarro-Gregori, J.; and Bonet, J.L., 2012a, "Effects of Concrete
- 20 Composition on Transmission Length of Prestressing Strands," Construction and Building
- 21 *Materials*, V. 27, pp. 350-356.
- Martí-Vargas, J.R.; Serna, P.; Navarro-Gregori, J.; and Pallarés, L., 2012b, "Bond of 13 mm
- 23 Prestressing Steel Strands in Pretensioned Concrete Members," *Engineering Structures*, V. 41, pp.
- 24 403-412.