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Comprehensive modeling study analyzing the insights of the NO-NO2 

conversion process in current diesel engines  

J. Benajes, J. Javier López, R. Novella and P. Redón*  

CMT-Motores Térmicos, Universitat Politècnica de València 

Abstract: 

Multiple researches have focused on reducing the NOx emissions and the greatest 

results have been achieved when lowering the combustion temperature by employing massive 

exhaust gas recirculation rates (LTC). Despite this benefit, a substantial increase in the NO2 

contribution to the NOx emissions has also been observed, which is the most harmful specie and 

is important for the design and positioning of the after-treatment devices.  To understand how 

NO2 behaves and how it contributes to the total NOx (NO2/NOx), not only under LTC but also for 

CDC conditions, a stepwise computational research study was performed with Chemkin Pro 

software, due to the complexity of isolating the different phenomena studied, to analyze: 1) 

general equilibrium conditions and 2) the influence of typical diesel engine phenomena 

(combustion and cooling effects) under non-equilibrium conditions.   

The results obtained under equilibrium state confirm the theoretical guidelines 

established for the NO2 formation process. When considering a combustion process (HCCI-like 

mode), the previous results were corroborated as well as the fact that only poor or slow 

combustion processes are responsible for the NO2 formation. Additionally, it reflected a cyclic 

process between NO and NO2, or in other words, it is suffice to just concentrate on NO to be 

able to predict NO2. Finally, the results yield after analyzing some cooling effects, inherent to 

how diesel engines work (the expansion stroke, dilution of combustion products with the rest of 

in-cylinder charge and the one caused by wall impingement), reflect that: 1) the dilution effect 

explains the 10% of the NO2/NOx ratio under CDC conditions and 2) the coupling of the dilution 
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Camino de Vera s/n. 46022. Valencia, Spain. Email address: paredlur@mot.upv.es. 
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with the expansion stroke cooling effects can explain the NO2 increase typical of LTC conditions. 

These results were also supported by some experiments performed in a single-cylinder diesel 

engine. Consequently, the cooling effect caused by dilution should be considered when 

modeling the NO2 formation just like the expansion stroke. 

Keywords: Low temperature combustion, conventional diesel combustion, NOx emission, NO2 

formation, 0-D modeling, diesel engines.  

Nomenclature: 

A/F: Air to fuel ratio  CDC: Conventional diesel combustion   

EGR: Exhaust gases recirculation 
 

EPEFE: European Program on Emissions, 
Fuels and Engine Technologies   

Φ: Equivalence ratio  GRI-Mech: Gas Research Institute chemical 
kinetic mechanism   

HCCI: Homogeneous Charge 
Compression Ignition  LTC: Low temperature combustion   

N: Engine speed in rpm  NO: Nitrogen monoxide   

NO2: Nitrogen dioxide  NOini: 
Initial nitrogen monoxide 

composition   
NOx: Nitrogen oxides  P: Pressure  

PCCI: Premixed Charge 
Compression Ignition  

Pinj: Injection pressure 
  

PSR: Perfectly Stirred Reactor  T: Temperature   

Tad: Adiabatic temperature  YO2: Oxygen mass fraction   
 

1.- Introduction: 

Over the past two decades, the amount of exhaust gas pollutants emissions have been 

significantly decreased due to the severe emission legislation imposed in Europe with the well-

known Euro Emission Standards, as it can be appreciated from Table 1. A similar situation can be 

found in other countries worldwide.  
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DIESEL PASSENGER CARS
Emission 
Standard

Date CO 
(g/km)

NOx 
(g/km)

HC+NOx 
(g/km)

PM (g/km)

Euro 1 July ‘92 2.72 - 0.97 0.14
Euro 2 January ‘96 1.0 - 0.7 0.08
Euro 3 January ‘00 0.64 0.5 0.56 0.05
Euro 4 January ‘05 0.5 0.25 0.3 0.025
Euro 5 September ‘09 0.5 0.18 0.26 0.005
Euro 6 September ‘14 0.5 0.08 0.17 0.005

 

Table 1.- Euro Emission Standards for diesel passenger cars. 

Initially, the accomplishment of the standards was fulfilled by using after-treatment and 

engine control devices (by far less sophisticated than current ones) coupled with a fully 

optimized conventional diesel combustion (CDC). Currently, the restriction facing (Euro 5) and 

the next to come (Euro 6), implies the need to change the diesel combustion process itself in 

order to significantly reduce NOx (the sum of NO, NO2 and N2O) emissions.  Analyzing the 

equivalence ratio - temperature map, (see Figure 1 adopted from [1]), where the soot and NO 

formation regions are delimited, it's appreciable that the new research field has to focus on the 

left part of the diagram represented in the Figure. This area corresponds to low local 

temperature combustion and lots of research are now taking place developing and optimizing 

new combustion modes, which includes: homogeneous charge compression ignition (HCCI), 

premixed charge compression ignition (PCCI) and the mixing-controlled low temperature 

combustion (LTC).  
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Figure 1.- Predominant φ-T working conditions for several new combustion modes [1]. 

Under these new combustion modes, interactions between hydrocarbons and NOx are 

promoted due to the use of massive exhaust gas recirculation (EGR), main strategy to reduce 

pollutant emissions by diluting reactants with burnt gases. By doing so, leaner mixtures and 

lower combustion temperatures are reached affecting the NOx formation process and 

composition. Regarding this latter aspect and even though the values differ between 

experimentalists [2, 3, 4], it has been generally observed that the proportion of NO2 engine-out 

emissions increases above the typical range for CDC, i.e: 10% to 30% for different engine loads 

and engine speeds [5].  

In order to understand the reasons of such important increase in the NO2/NOx ratio it is 

necessary to review the most important factors affecting the NO2 formation. The first studies 

were focused on the field of gas turbines, domestic combustion appliances and probing samples 

and the results of these researches established the “guidelines” of the NO-NO2 conversion 

process, which are:  

• Different authors [6-13] reported how the NO2 formation takes place due to a 

radical relaxation process mechanism as a consequence of the rapid cooling of 

hot combustion gas. This process achieves significant NO-NO2 conversion 

throughout the HO2 radical at low temperatures. 
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• Hori et al. [9, 11] and Marinov et al. [12] confirmed the strong temperature 

dependency of the process, especially at low temperatures, and also showed 

that this process was greatly promoted by ultra-lean conditions and by the 

ability of the fuel to produce reactive radicals (O and OH). As the hydrocarbon 

chain gets larger and increases its saturation degree, higher is the conversion 

degree of the NO-NO2 process. 

• Bromly et al. [13] reflected the fact that a small amount of NO promotes the 

oxidation of the fuel at atmospheric pressure and for different gas inlet 

temperatures and different initial concentrations of ethylene, oxygen and NO. 

This phenomenon was named by Bromly et al. as “mutually sensitized oxidation 

of NO and fuel”, and is believed to control the NO2 emissions as a consequence 

of the fuel oxidation.  

Nowadays, due to this substantial increase of the NO2 emissions [14], the interest for 

this phenomenon is high and multiple studies have been developed focusing on exhaust-out [15-

23] and engine-out emissions [24-32]. Concerning this latter group the main influence comes 

from the fuel’s characteristics (i.e: blends and/or composition) and the influence of the 

combustion process. A priori, higher NO2/NOx ratios are expected to be produced by the new 

combustion modes, characterized by lower combustion temperatures, than conventional diesel 

combustions.  

Several authors [24-29] have analyzed the fuel’s effect on the NO2 formation process. To 

do so, they have considered different diesel compositions [24] and diesel blends (with hydrogen, 

injected in the intake manifold, and oxygenated fuels) [25-29]. Generally speaking, it can be 

assumed that fuels with high heating values and/or lower sulfur content will form less NO2. This 

trend can be explained by higher combustion temperatures and higher cetane numbers (caused 

by the hydroprocessing procedure, employed in refineries, to diminish the sulfur content), 
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respectively. Also it has been concluded that the higher the oxygen content available in the fuel, 

lower is the NO2 formation.  

Regarding the combustion process [30-32], the most extended explanation for the new 

combustion mode, characterized by low combustion temperatures, is that such increase in NO2 

is formed by the reaction NO+O2=NO2+O and afterwards this formed NO2 cannot reconvert back 

to NO because of poor mixing and an overall slow combustion process [30-31]. This explanation 

has been contextualized in a HCCI combustion mode scenario. In the case of LTC diffusive 

combustion no further explanations have been developed besides the one proposed, in the 

early stages of the NO2 research, in which it was the result of a mixing process between cold 

air/charge with hot combustion products.  

Finally, it is also worth to mention that the starting point of the NO2 formation relies on 

the production or the presence of NO. Therefore all the guidelines regarding this NO formation 

process [5, 33-36] must be also taken into consideration when analyzing the interactions 

between both species.  

2.- Objectives and Methodology:  

The aim of the present paper is to understand the substantial increase, in comparison 

with CDC, of NO2 in the NOx emissions when operating at LTC conditions. This study will be 

contextualized in HCCI and LTC diffusive combustion scenarios and the authors, with the 

information reviewed previously, will assume as reference values a NO2 content, in the NOx 

emissions, of 10% and 30% for CDC and LTC conditions, respectively. Even though it may seem 

that these values can influence the findings, the authors believe they are a good starting point 

because they are widely described in scientific literature. Nevertheless, the derived results will 

clearly reflect the differences between CDC and LTC conditions despite the reference values 

used, specially when characterizing LTC conditions. 
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For this purpose, two parametric studies (constant and non-constant temperature 

conditions) were performed at constant pressure (P = 10MPa) and assuming equilibrium and 

non-equilibrium (non-steady) states by using the EQUIL and the PSR modules of Chemkin-Pro 

[37], respectively. Finally, some of these results will be validated against real engine 

measurements. 

The constant temperature and equilibrium state analyses were performed to check if 

the employed NOx sub-mechanism captures the main behavior of the NO-NO2 conversion 

process and quantify the NO2/NOx ratio under these unrealistic conditions. The temperature (T) 

will ranged from 1000K to 2400K, the equivalence ratio (Φ) from 0.2 to 1 and two different EGR 

rates (characterized by the oxygen mass fraction; YO2 = 0.23 & 0.1) with two different initial 

concentrations of NO (NOini: 0ppm, and 200ppm) were used. The fact of choosing a YO2 = 0.1 had 

two main purposes. The first of them is to characterize the LTC conditions in coherence with the 

criterion (YO2 = 0.127) used by multiple researchers [38-39] and the second is to analyze the 

effect of massive EGR.  

Note that the selected temperatures describe not only typical LTC combustion 

temperatures but also typical fuel-air mixture temperatures for LTC and CDC conditions. The YO2 

= 0.1 was achieved by diluting the air with combustion products (CO2, H2O and N2) in the same 

proportions as in a stoichiometric oxidation reaction between diesel fuel surrogate and dry air. 

The two different concentrations of initial NO, chosen arbitrarily specially 200ppm, were 

achieved by removing the same amount of N2 as the NO introduced. It is worth highlighting that 

even though these values have been established arbitrarily, the results of the present study will 

reflect that the significance of this parameter is minor, at least, in the authors’ considered range 

(0-200ppm).  

The combination of the YO2 variable with NOini will illustrate realistic and fictitious cases, 

in diesel engines, to help understanding the influence of the different parameters. These are: 
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  Case A.-  Lack of EGR (YO2 = 0.23, NOini = 0ppm) 

  Case B.-  Air doped with NO (YO2 = 0.23, NOini = 200ppm) 

Case C.- Air highly diluted with EGR coming from low NO formation 

operational conditions (YO2 = 0.1, NOini  = 0ppm) 

Case D.- Fictitious EGR (YO2 = 0.1, NOinI  = 200ppm).  

The non-constant temperature and non-equilibrium state simulations were performed 

for several working conditions contextualized in: 1) single-zone homogeneous combustion 

process, which resembles HCCI combustion mode and 2) several cooling effects predominant in 

internal combustion diesel engines. Despite the fact that both scenarios are very distinct, the 

fact that the second of them was considered was due to the conclusions obtained from the first 

one.  

Other variables necessary to be taken into consideration to perform this research study, 

are: a diesel fuel surrogate and the chemical-kinetic mechanisms, which are described in the 

following paragraphs.  

The diesel fuel surrogate chosen was n-heptane mainly due to its similar cetane number 

with typical European diesel fuel [41] but also because it is considered a highly efficient fuel for 

the NO-NO2 conversion process following the Hori reasoning [12]. However, the main drawback 

of using this single component fuel surrogate is the fact that it discards the NO formation 

process by fuel’s nitrogen content and by aromatics contribution. On the one hand, the 

extremely low contents of nitrogen in the refined liquid fuels used nowadays in the automotive 

industry makes this route insignificant. On the other hand, it is well known that a higher 

aromatic content causes an increase in NOx emissions. Nevertheless, the study performed by the 

European Programme on Emissions, Fuels and Engine Technologies (EPEFE) [42] has 

demonstrated, on light duty diesel engines conformed to EU 1996 and based on the complete 
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European driving cycle, that emission limits only experienced a 3.4% reduction of NOx with a 

reduction of aromatic content from 8% to 1%. Taking into account that the maximum threshold 

value for aromatic content in current fuels is 11%, it is presumable that this reduction 

percentage won’t increase significantly. Nevertheless, this reduction was obtained for engines 

operating under CDC conditions and therefore the influence of aromatic content is expected to 

be even lower on the new diesel engines operating at LTC conditions. Consequently, the 

inclusion of aromatics in the present kinetic mechanism would just increase the computational 

cost without making a whole difference.  

The employed chemical-kinetic mechanism was made up of the n-heptane oxidation 

mechanism [41] coupled with the NOx formation sub-mechanism included in the GRI-Mech 3.0 

mechanism [43]. This model describes extensively the NOx formation/destruction process by 

taking into account the most important reactions dealing with the different NOx formation 

pathways. 

3.- Results and Discussion: 

3.1.- NO2/NOx results for constant temperature analyses under equilibrium state  at high 
pressure 

In order to have a general overview of how the NO-NO2 conversion process behaves, a 

parametric study assuming equilibrium state and summarized in Table 2, was performed across 

a wide temperature (1000K < T < 2400K) and equivalence ratio (0.2 < Φ < 1) range and at high 

pressure (P=10 MPa) for the four cases, described in the previous section.  

Equilibrium and Non-Equilibrium states working conditions 
Φ range [-] YO2 [-] Temperature Range [K] NOini [ppm] 

0.2 - 1 0.23; 0.1 1000 – 2400 0 
0.2 - 1 0.23; 0.1 1000 – 2400 200 

 

Table 2.- Description of the different mixtures considered in the present study. 
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The results for Case A (YO2 = 0.23, NOini = 0 ppm) and Case C (YO2 = 0.1, NOini = 0 ppm) 

are plotted in Figure 2a and 2b, respectively, as the percentage ratio between NO2/NOx (grams 

NO2 * 100/grams NOx).  

 

 

        

a)                                                                                       b) 
Figure 2.- Equilibrium results of the NO2/NOx ratio as a function of equivalence ratio and temperature at 

high pressure (10MPa) and with n-heptane as diesel fuel surrogate; a) corresponds to YO2 = 0.23 and NOini = 0, b) 
corresponds to YO2 = 0.1 and NOini = 0 ppm. 

These plots clearly reflect that the temperature is the predominant variable affecting 

the process and, in minor extent, the equivalence ratio. Furthermore, by comparing both 

figures, a reduction in the NO2/NOx ratio when the YO2 variable is reduced can be observed, 

especially at low temperatures (T < 1400K): e.g. at T = 1200 K and Φ = 0.7 a 10% in NO2/NOx is 

obtained for the highly diluted scenario (YO2 = 0.1) instead of a 15% for YO2 = 0.23. At higher 

temperatures the differences remain similar, if relative values are considered, but are 

insignificant if considering absolute values (e.g: the greatest difference at 2000K corresponds to 

Φ = 0.2 and is from 1.5% to 2.3% for EGR and non-EGR conditions, respectively). This shows that 

a reduction in oxygen content reduces the influence of the conversion process either by: 1) 

reducing the production of NO, which further on, will be oxidized to NO2, 2) by inhibiting the 

formation of key specie/s, or 3) a combination of both.  

YΟ2 = 0.23, NOini = 0 ppm YO2 = 0.1, NOini = 0 ppm 
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These same simulations were repeated but in this case with NOini = 200 ppm (Case B and 

Case D, respectively) and the results were plotted under the same axes in Figures 3a and 3b. As 

it can be observed by comparing them with Figures 2a and 2b, no differences are appreciated. 

This reflects that NOini has no influence when considering equilibrium conditions.  

 

      

a)                                                                                    b) 
Figure 3.- Equilibrium results of the NO2/NOx ratio as a function of equivalence ratio and temperature at 

high pressure (10 MPa) and with n-heptane as diesel fuel surrogate; a) corresponds to YO2 = 0.23 and NOini = 200, b) 
corresponds to YO2 = 0.1 and NOini = 200 ppm. 

These preliminary calculations illustrate when considering equilibrium conditions, higher 

NO2/NOx ratios are expected to be yield at lower temperatures and higher oxygen mass 

fractions while the initial concentration of NO has no relevancy. These findings are coherent 

with the NO-NO2 guidelines reviewed in the Introduction section and therefore it can be said 

that this process is well described by the current NOx sub-mechanism included in the GRI-Mech 

3.0 mechanism. In addition the NO2/NOx ratios achieved are substantially lower than the values 

given in [5]: expected 30% NO2 contribution for LTC conditions, where temperatures may range 

from 2000 K up to 2200 K and high amounts of EGR are employed, and 10% for CDC conditions, 

where temperatures are greater than 2200 K without or with minor EGR employment. These 

discrepancies can be easily explained by the fact that the diesel combustion process in internal 

combustion engines (ICE) is far from the equilibrium state.  

YΟ2 = 0.23, NOini = 200ppm YO2 = 0.1, NOini = 200ppm 
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3.2.- NO2/NOx results for non-constant temperature conditions under non-equilibrium 
state 

3.2.1.- Combustion process  

The next step was to check if the combustion process is responsible for the described 

NO2/NOx values. For this purpose, the authors analyzed closely the time evolution of NO2, NO 

and temperature, in four different situations, in the context of a single-zone homogeneous 

mixture combustion process (HCCI combustion mode) and with the following initial conditions: 

two different equivalence ratios (Φ = 0.5 & 0.9) and an initial temperature (Tini) of 1000K. In this 

scenario a third initial NO concentration, NOini = 40ppm, was chosen arbitrary in response to the 

need of analyzing the possible effects of this variable throughout the whole combustion process 

in a non-equilibrium state, see Table 3. The considered simulation time was of 10ms. 

Combustion process simulation 

Φ [-] Tini [K] YO2 [-] NOini [ppm] Nomenclature from Section 2, 
depending on oxidizer conditions 

0.5 ; 0.9 1000 0.23 0 Case A 
0.5 ; 0.9 1000 0.1 0 Case C 

0.5 ; 0.9 1000 0.1 40 ; 200 Case new ; Case D 
 

Table 3.- Description of the different mixtures considered for the simulation of the combustion process. 

In this subsection, the temporal evolution of the two species being studied have been 

plotted in Figures 4a, 4b, 4c and 4d. This will allow the authors to extract more observations 

from the combustion process than just that related with the NO2/NOx ratio.  
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c)      d) 

Figure 4.- Temperature and NO composition time evolution for several operational conditions simulating a 
constant pressure (P = 10MPa) HCCI combustion process at Tini = 1000K: a)Φ = 0.5, YO2=0.23 and NOini = 0ppm, b)Φ = 

0.9, YO2=0.23 and NOini = 0ppm, c)Φ = 0.5, YO2=0.1 and NOini = 0 ppm, d)Φ = 0.9, YO2=0.1 and NOini = 0ppm. 

Despite the influence of the simulation time, it is observed that as the temperature 

increases the NO mass fraction increases while the NO2 remains negligible for all the tested 

cases with the exception of Φ = 0.5, YO2 = 0.1. In this case the amount of NO2 is even higher than 

NO during the rapid temperature increase stage of the combustion process. Nevertheless, 

shortly after the temperature stabilizes, the NO2 concentration starts to diminish rapidly. 

Despite this behavior it is important to note that both concentrations are negligible (< 0.01 

ppm).  

Φ = 0.5, YO2 = 0.23, NOini = 0 ppm 
 

Φ = 0.9, YO2 = 0.23, NOini = 0 ppm 
 

Φ = 0.5, YO2 = 0.1, NOini = 0 ppm Φ = 0.9, YO2 = 0.1, NOini = 0 ppm 
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These results corroborate the ones obtained in the previous scenario and demonstrate 

that it is unlikely that the combustion process could generate the expected NO2/NOx increase 

unless under very poor combustion conditions for current diesel engines.  

In Figures 5a and 5b the influence of the initial NO concentration is plotted. For both 

cases, these corroborate Bromly’s findings [13], as NOini increases so does the ignition delay for a 

given equivalence ratio, and also highlights that the NO-NO2 conversion process is cyclic and 

consisting in two stages: 1) conversion of NO to NO2 and 2) re-conversion of NO2 to NO.  
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a)           b) 

Figure 5.- Temperature and NO composition time evolution for several operational conditions simulating a 
constant pressure (P = 10MPa) HCCI combustion process at Tini = 1000K: a)Φ = 0.5, YO2=0.1 and NOini ≠ 0 ppm, b)Φ = 

0.9, YO2=0.1 and NOini ≠ 0ppm.  

In the first stage, all NOini is converted into NO2 due to the formation of reactive radicals 

involved in the process and promoted at low temperatures. During this period higher NO2 

composition than NOini is achieved. However such increment is not a consequence of an 

additional NO2 formation process, but instead is due to the higher molecular weight of NO2 in 

Φ = 0.5, YO2 = 0.1, NOini ≠ 0 ppm Φ = 0.9, YO2 = 0.1, NOini ≠ 0 ppm 
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comparison with NO. This can be observed in Figure 6 where the time evolution of the molar 

fraction of both species is plotted.  
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Figure 6.- Check of the influence of the molecular weight as the factor behind the greater NO2 composition in 
comparison with NO when representing the mass fraction of NO and NO2.  

 

As time evolves and the temperature increases, due to combustion, the NO2 

concentration diminishes in favor of NO (stage 2). The speed of this re-conversion is related with 

the combustion temperature reached: the higher the temperature, the higher the re-

conversion. The final concentration of NO will strongly depend on the final conditions. 

Consequently, the results from this scenario cannot explain, on its own, the increase 

from 10% to 30%, moving from CDC to LTC conditions, neither the 10% at CDC.  

3.2.2- Effect of cooling processes on the NO-NO2 conversion  

The results from the previous scenarios seem to suggest that the increase in the 

NO2/NOx ratio can be a consequence of the cooling effects inherent to the diesel engine 

operation: expansion stroke, the dilution effect of combustion products with fresh oxidizer 

stream remaining in the combustion chamber and due to wall impingement. Nevertheless, this 

latter effect won’t be analyzed because the mass impinging the walls is so minor that it won’t 

significantly influence the NO2 formation.  

15 
 



To study their influence on the process, two different situations (corresponding to Case 

A and C described in the Objective and Methodology section) were analyzed employing the 

following procedure:  

The influence of the expansion stroke on the NO2 increase will be analyzed for two 

different engine speeds (N = 1000rpm and 2000rpm) using a straight forward procedure. This 

consists in determining the NO2/NOx ratio by using the single zone homogenous internal 

combustion engine module of Chemkin (ICE) and the engine characteristics summarized in Table 

4. This ratio will be plotted as a function of time in concordance with the rest of the plots in the 

present paper.  

Engine’s Characteristic Values 
Stroke [m] 0.15 
Bore [m] 0.12 
Compression ratio [-] 14.4 

 

Table 4.- Engine’s characteristics 

 

Figure 7. Schematic representation of the dilution phenomenon of the combustion products, generated in 
the flame front region, by the oxidizer stream and how it affects temperature, oxygen and fuel mass fraction.   

The dilution effect will be contextualized in the diesel diffusion flame environment (see 

Figure 7) where its relevancy is greater than under HCCI combustion. This process will be 

simplified by considering adiabatic and constant pressure mixing phenomenon between: i) the 

combustion products (determined by assuming equilibrium conditions for Φ = 1 under the initial 
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conditions described by the two cases (A and C, as mentioned above)) and ii) the remaining 

charge stream (assume to have a constant composition and at a substantially lower temperature 

than the flame’s temperature). Both the charge stream temperature and the mixing rate were 

determined using the criterion of having an identical cooling speed than the dilution effect 

(reference cooling curve), calculated using the two-stage Lagrangian model (TSL model) [44], for 

two different injection pressures (Pinj = 500bar and 1500bar) and considering the spray’s 

baseline conditions summarized in Table 5. This 1-D spray modeling software is described in 

great detail in Appendix A. Finally, it is worth to note that the authors are well aware that in the 

flame front region the NO formation hasn’t reached equilibrium. However, by doing so the 

effect of the simulation time on the NO and NO2 formation process is discarded. 

Variables Values 
do [m] 1.4·10-4 
ρf [kg/m^3] 830 
ρa [kg/m^3] 20 
Ta [m] 1000 
Tf [K] 400 
Fuel n-heptane 

 

Table 5.- Spray’s baseline conditions. 

To discard the reduction of NO and NO2 as a consequence of the dilution effect due to 

the entrainment of the charge stream the NO2/NOx ratio will be employed.  

Figures 8a and 8b represent, for the non-EGR situation, the time evolution of the 

temperature and the NO2/NOx ratio for the two studied phenomena: expansion stroke and 

dilution by charge stream, respectively. Generally speaking, it can be observed that lower 

temperatures yield higher NO2/NOx ratio.  
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a)      b) 

Figure 8.- Temperature evolution and NO2/NOx ratio due to different cooling effects typical in diesel 
engines: a) expansion effect at two different engine speeds and b) dilution effects by considering two cooling 

speeds.  

A closer analysis of the two plots reflects that under these conditions the cooling effect 

due to dilution could explain, by itself, the 10% NO2/NOx ratio described in literature. Therefore 

it can be stated that the dilution effect will be the predominant factor to explain the ratio found 

in literature for these conditions. In contrast, it is evident from these plots that the expansion 

stroke is negligible independently of the considered engine speed. 

The next situation resembles the use of high amounts of EGR from very low NO 

formation combustions (LTC) and/or engine working conditions, YO2 = 0.1 and NOini = 0ppm.  

Under these conditions, Figures 9a and 9b, lower combustion temperatures but higher 

NO2/NOx ratios are reached. Therefore, once more, the results confirm that the NO-NO2 

conversion process is strongly enhanced at low temperatures. Additionally, it can be observed 

how the cooling effect due to the expansion stroke (highest engine speed) is not negligible in 

comparison with the rest of the results.  
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a)      b) 

Figure 9.- Temperature evolution and NO2/NOx ratio due to different cooling effects typical in diesel engines: a) 
expansion stroke at two engine speeds and b) dilution effects by considering two cooling speeds. 

In this situation, with massive EGR, the results suggest that the increase in the NO2 

proportion could be explained by the combination of the cooling effects due to dilution and to 

the expansion stroke. 

3.3.- Real engine measurement of NO2/NOx  

Finally, measurements in a real single-cylinder engine were performed to quantify the 

proportion of NO2 in the NOx emissions. The tested operating conditions are detailed in Table 6, 

whereas the engine’s characteristics are described in the already presented Table 4. Regarding 

the operating conditions, it can be observed that a parametric study has been performed, 

changing the following parameters: the initial oxygen mass fraction, the engine speed (to modify 

the speed of the cooling effect associated to the expansion process) and the injection pressure 

(to modify the speed of the cooling effect associated to dilution). 
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  Test # 1 2 3 4 5 6 

O2 [%] 12 12 12 17 17 17 

N [rpm] 1200 1200 1800 1200 1200 1800 

Pinj [bar] 2100 1300 2100 2100 1300 2100 

A/F [-] 19 19 19 19 19 19 

Padm [bar] 2.53 2.53 2.53 1.42 1.42 1.42 

mf [mg/cc] 90 90 90 90 90 90 
 

Table 6. Conditions tested to validate the general trends observed in the present research 

 

These results, plotted in Figures 10 and 11, corroborate the general trend observed 

throughout the research presented previously:  

• For a given A/F ratio, an increase in EGR rate causes lower NO formation but 

greater proportion of NO2 due to a reduction of oxygen content available to 

react.   

• The engine speed is especially relevant for cases with massive EGR, YO2 = 12%. 

An increase of this variable causes an increase in the NO2/NOx ratio. This is due 

to a quicker cooling process. 

•  The injection pressure is not influence by the EGR rate. In both scenarios, the 

ratio is similar. 
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a)                                                             b) 

Figure 10. Quantification of the composition of NO and NO2 in real engine experiments at different injection 
pressure, engine speed and oxygen mass fraction; a) 17%, b) 12%. 

YO2 = 12%YO2 = 17%

   

a)           b) 

Figure 11. Quantification of the NO2/NOx ratio in real engine experiments at different injection pressure, engine 
speed and oxygen mass fraction; a) 17%, b) 12%.   

 

Finally it can be deduced then that high speed engines are prone to form less NOx but 

with a greater NO2 content than other engines. This should be taken into consideration 

especially for the optimization of after-treatment devices.    
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4.- Conclusions: 

After analyzing the results obtained, the conclusions that can be extracted from the 

present study are the following:  

1.- Generally speaking, the NO2 formation is a consequence of a cycling NO-NO2 

process which is strongly influenced by temperature and followed by oxygen mass 

content and simulation time and, to a minor extent, by the initial NO concentration.  

2.- The equilibrium results illustrate that the NO2/NOx ratio are much lower than 

the well accepted range described in multiple combustion textbooks for CDC and for LTC 

combustion modes. However, when performing non-steady state simulations for the 

same working conditions it is appreciable that the NO2/NOx, for T < 1600K, is 

substantially greater than the equilibrium values. This suggests that low efficient 

combustion processes can indeed be responsible for the increase in the NO2 formation.  

3.- The non-equilibrium (non-steady state), non-constant temperature scenario 

confirms that the combustion process, by itself, is not responsible for the increase in 

NO2 formation, from CDC to LTC conditions.  

4.- Cooling effects (expansion stroke, dilution effect by oxidizer stream and wall 

impingement) enhance the NO-NO2 conversion process increasing the NO2 formation 

reaching the values described in the scientific literature.  

a).- For CDC conditions the major contributor to the final NO2/NOx ratio 

is the dilution effect.  

b).- For LTC conditions, the combination of the cooling processes due to 

the expansion stroke and the dilution effect are the main phenomena 

influencing the increase of NO2 formation when moving from CDC to LTC. 

c).- In both scenarios, CDC and LTC conditions, the cooling effect due to 

wall impingement can be discarded due to fact that the mass colliding is so 

minor that it won’t significantly influence the NO2 formation.  

5.- The measurements performed in real engines not only have validated the 

results obtained in this research but also has highlighted that there is a big chance that 

high speed engines, under massive EGR recirculation conditions, are more prone to 
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produce higher NO2 content than conventional engines even though less NOX are 

formed. 

6.- These cooling effects should be taken into consideration when modeling the 

NO2 formation process. 
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Appendix A: Two Stage Lagrangian model calculations 

In this Appendix a detail description of the calculation performed with the TSL model is 

presented. The model requires the input of several variables in order to work, like: the air’s 

composition (specially the initial oxygen mass fraction (YO2ini)), the injection pressure (Pinj), the 

fuel and the air density (ρf and ρa, respectively), the fuel and the air temperature (Tf and Ta, 

respectively), the nozzle orifice diameter (do) and the fuel (n-heptane). All these variables with 

their corresponding values are summarized in Table A.1.  

Variables Values 

do [m] 1.4·10-4 

ρf [kg/m3] 830 

ρa [kg/m3] 20 

Ta [m] 1000 

Tf [K] 400 

YO2ini [mass fraction] 0.23 and 0.1 

Fuel n-heptane 

 

Table A.1.- Summary of the inputs required and their values for the TSL model to work. 

With these values, the equivalent diameter (deq) and the fuel’s speed (uo) is calculated 

applying equation A.1 and A.2, respectively. 

 

    

Afterwards, the mixture’s history along the axis and within time is possible to be 

determined by applying the Ricou and Spalding equation (Eq. A.3), for the entrainment rate for 
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non-reacting turbulent jets, and considering the momentum flux in the jet to be constant (Eq. 

A.4). 

 

            

 With these basic principles of the spray’s theory and dividing the structure in 

two different zones (flame front and flame core), each one characterized by a perfectly stirred 

reactor (PSR), the temperature evolution is easily calculated. In the following plots the evolution 

for the two Pinj (500 and 1500bar), under the non-EGR and EGR situations (YO2ini: 0.23 and 0.1, 

respectively), are represented. 
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Figure A.1.- Temperature time evolution for a diesel spray under the four different working conditions.  

   

 These temperature curves are considered to be the reference cooling speed, 

depicted in discontinuous line in the text, for the cooling effect caused by the dilution of 

combustion products with fresh oxidizer stream.   
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