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Abstract 

Conversion coatings based on trivalent chromium are more sensitive to the presence of 

zinc and iron impurities than the chromate formulations. This fact contributes to a 

decrease in the quality of passivation and to the generation of a significant amount of 

hazardous liquid waste. Recently, a new eco-innovative process based on Emulsion 

Pertraction Technology (EPT) is being implemented at industrial scale for selectively 

removing Zn and Fe from spent passivation baths in order to enhance the lifetime of the 

Cr (III) baths. In this study, the effect of Zn and Fe removal on the electrochemical 

behaviour of Zn-electroplated steel samples was evaluated by means of polarisation 

curves and electrochemical impedance spectroscopy measurements at open circuit 

potential conditions in 3.5 g/L NaCl solutions. The main objective was to assess the 

benefits brought by EPT using electrochemical methods. Cr (III) passivation baths 

regenerated using the EPT process have been compared to the bath used in a local 

industry as well as to fresh and spent baths. According to the results, the samples 

passivated in the EPT regenerated bath showed a significant improvement in their 

electrochemical behaviour compared to the samples passivated in the spent baths. This 

study concluded the suitability of EPT for regenerating Cr(III) passivation baths. 
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1. Introduction  

 

Chromate conversion coatings based on Cr (VI) chemicals have been widely used for 

many years to protect metals and alloys from corrosion [1, 2], in particular, to provide 

an extra protective film against corrosion and decorative finishing to electroplated zinc 

surfaces [3, 4]. The chemical passivation mechanism consists of the formation of a 

physical barrier between the metal/alloy substrate and the corrosive medium during 

immersion [5]. As a result of this, a passivation layer containing zinc oxides and 

hydroxides, zinc chromate and mixed Cr (III) and Cr (VI) oxides and hydroxides is 

formed.   

However, the use of Cr (VI) compounds is considered carcinogenic for human health [6, 

7] and causes serious environmental pollution; this is the reason why several research 

studies have focused on finding substitutes to Cr (VI) chemicals [1, 8-11].  

Cr (III) passivation baths are used as an alternative to chromate conversion coatings. 

Although the substitutes reduce the toxicity of the used raw materials and of the 

produced wastes, they have several negative effects from the environmental and 

economic perspective [12]. The formulations based on Cr (III) need higher chromium 

concentrations and the presence of cobalt to provide equivalent properties to  

chromate-based passivation coatings. This fact implies a higher consumption of raw 

materials for the baths formulation. In addition, the Cr (III) baths are sensitive to the 

presence of Zn and Fe impurities, causing a decrease in the quality of passivation [13], 

formation of off-specification products and the generation of a significant amount of 

hazardous liquid waste when the passivation bath is replaced.  
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In order to enhance the lifetime of the baths and to improve the environmental and 

economical sustainability of Cr (III) passivation, a new eco-innovative process, is being 

developed based on Emulsion Pertraction Technology (EPT).  EPT is able to separate 

Zn and Fe from the bath allowing Cr (III) and other relevant components such as cobalt 

to remain in the bath, i.e., preventing the loss of passivation properties. EPT combines 

liquid-liquid extraction with hollow fiber membrane contactors to extract and back-

extract targeted compounds from an aqueous solution in one separation step. The 

fundamentals of EPT are explained in detail by Ho and Poddar [14] and Urtiaga et al. 

[15]. The main benefit of the process is that Cr (III) regeneration is conducted during 

passivation. This process for the regeneration of Cr (III) baths is being studied in detail 

at laboratory scale [16-19] and it has already been implemented at industrial scale [12]. 

Its environmental benefits were already assessed in a previous work [20]. However, the 

evaluation of the effectiveness of the EPT process from the corrosion protection 

perspective was lacked. 

 

The main objective of this work is to evaluate the effectiveness of EPT on the 

electrochemical behaviour of Zn-electroplated steel samples by means of polarisation 

curves and EIS measurements. Cr (III) passivation baths regenerated using EPT are 

compared to freshly-made formulations, in-use baths and spent baths. 

 

2. Experimental procedure 

2.1. Material  

Test specimens of 3.9 x 7.9 cm were cut from a Zn-electroplated steel sheet 0.1 cm 

thick. The sheet previously underwent the following surface treatments conducted at a 

local plating industry: chemical degreasing, rinsing in water, pickling, rinsing in water, 
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electrochemical degreasing, rinsing in water, Zn electroplating, rinsing with water, 

neutralising, passivation, rinsing in water and drying. Zn electroplating was conducted 

using 2.6 A dm
-2

 in alkaline media. The passivation step lasted 1 min at pH~1.8.  Four 

passivating baths were tested for comparison: a fresh bath, the bath used at the company 

(in-use bath), spent bath and a bath regenerated using EPT. The fresh bath corresponded 

to a readily prepared formulation. The in use and spent baths were of the same chemical 

formulation as the fresh one and represented different degrees of usage. The bath 

regenerated using EPT resulted from the regeneration of the spent bath using the EPT 

process. The content of impurities was decreased until the Fe and Zn concentration 

levels were similar to the ones presented in the in use formulation. Table 1 indicates the 

composition of the baths in terms of Zn (II), Fe (total) and Cr (III) concentrations.  

 

2.2. Raman Spectroscopy  

Prior to the electrochemical tests, the samples were examined by Raman spectroscopy 

(“Witec 300R
+
 Raman microscope”) in order to determine the presence of chromium 

oxides in the surface film. The samples were illuminated by a 632 nm neon laser with a 

magnification factor of 500x, the intensity of the laser being fixed. Several areas of the 

different samples were examined and the spectra were averaged. 

 

2.3. Potentiodynamic polarisation curves  

The potentiodynamic polarisation curves were determined using a potentiostat 

“AUTOLAB PGSTAT302N”. The tests were carried out in a three-electrode cell. The 

potential of the working electrode was measured against a silver-silver chloride with 

3M KCl reference electrode. The auxiliary electrode was a platinum electrode. The 

polarisation curves were obtained in a naturally aerated 3.5 g/l NaCl aqueous solution, 
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starting from a cathodic potential of – 1100 mVAg/AgCl to 500 mVAg/AgCl at 0.5 mV/s 

sweep rate. 

During the electrochemical test, the surface area in contact with the NaCl solution was 

0.626 cm
2
. 

 

2.4. Electrochemical Impedance Spectroscopy (EIS) Measurements  

The EIS measurements were conducted at open circuit potential (OCP) in the 3.5 g/l 

NaCl solution after 1, 24, 48 and 144 hours of immersion in order to study the evolution 

of the film with time.  The voltage perturbation amplitude was 10 mV in the frequency 

range of 100 kHz to 10 mHz. The temperature of the solution was 25 ºC. 

 

3. Results and discussion 

3.1. Raman spectra   

Figure 1 shows the Raman spectra obtained by spotting a laser beam on the different 

samples. The peak of chromium oxide (540 cm
-1

) [21] can be clearly observed in the 

specimen immersed in the fresh bath. In the other samples there is a decrease in the 

intensity of this peak with the following order: EPT-regenerated bath, in-use bath and 

spent bath. According to Rosalbino et al. [8], about 40% of the chromium in the Cr (III) 

conversion coatings is in the form of Cr(OH)3, while about 60% is in the form of Cr2O3. 

Therefore, it is expected more concentration of Cr2O3 in the samples treated in baths 

with lower concentration of impurities (Zn, Fe). Therefore, the presence of chromium 

oxides decreases with the increase of the concentration of Zn and Fe impurities in the 

passivation bath (Table 1). 

 

3.2. Potentiodynamic polarisation curves 
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The potentiodynamic polarisation curves of the passivated Zn electroplated steel 

samples immersed in the 3.5 g/L NaCl solution are shown in Figure 2. It is noteworthy 

that the surface treatments do not promote the existence of a passive region with 

constant values of anodic current density. Nevertheless, there are differences between 

the polarisation curves, the most important being the value of the anodic current 

densities. The specimen that was immersed in the fresh passivation bath had the lowest 

anodic current density value. Similarly, the anodic current densities of the samples 

treated in the regenerated and in-use baths are lower than when the spent formulation is 

used. These results indicate that the regeneration of the spent bath has a positive effect 

on the protective properties of the surface layer formed on the Zn electroplated sample.  

 

3.3. EIS measurements 

In order to better characterise the electrochemical behaviour of the Zn-electroplated 

specimens passivated with the baths under study, EIS measurements were performed at 

open circuit potential and at different immersion times in the 3.5 g/L NaCl solution. 

 

Figures 3 to 6 show the evolution of the Bode-magnitude and Bode-phase (Figs a), and 

Nyquist (Figs b) plots with immersion time in the NaCl solution. The electrochemical 

impedance spectra reveal that the characteristics of the Cr(III) surface layer were similar, 

presenting a somewhat unfinished capacitive arc which is immersion time dependent. 

This feature is often considered as the response of an inhomogeneous film composed of 

a compact inner layer and a less compact (porous) outer layer [22-25]. However, other 

authors have proposed that the unfinished capacitive arc observed in coatings on 

electroplated steels is mainly due to the presence of a corrosion-resistant coating and a 

diffusion effect [26]. In this way, the modelling of the impedance data using an 
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equivalent circuit is necessary to explain the differences in the structure and corrosion 

resistance of the Zn electroplated steel passivated in the baths under study. 

 

The Bode-phase plots show in general, two time constants, at high- and low-frequencies. 

All phase angles are lower than 90º; such behaviour can be interpreted as a deviation 

from ideal capacitor behaviour. Therefore, the use of a constant phase element (CPE) 

was necessary to account for the non-ideal behaviour of the capacitive elements [27]. 

Impedance of this element is then defined as [28]: 

 

                                                     
)(

1

jQ
ZCPE


                                                        (1) 

 

where Q is the CPE constant,  is the angular frequency (rad/s), j
2
=-1 is the imaginary 

number and  is the CPE exponent. Depending on , CPE can represent resistance (=0, 

Z0=R), capacitance (=1, Z0=C), or Warburg impedance (=0.5, Z0=W). 

 

The equivalent electric circuit (EEC) represented in Figure 7 was used to describe the 

impedance behaviour of a porous coating [3, 26, 29]. In the present work, this EEC has 

been used to model the results of the Zn electroplated steel samples passivated in the 

different baths. The results suggest that the surface film formed on the specimens 

consisted of a porous outer layer and a less defective inner layer inside the pores. The 

physical interpretation of this model may change depending on the used bath and on the 

immersion time, as well. In general, RS is the resistance of the bulk solution, C1 is the 

capacitance of the porous outer layer, R1 is the solution resistance inside the pores of the 

outer layer, and C2 and R2 are respectively the capacitance and the resistance of the 

inner layer, including the possible existence of some defects. With increasing 
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immersion times, the inner layer becomes more defective leading to the appearance of 

pores so the electrolyte is able to reach the underlying metal. Therefore, C2 and R2 

represent the active corrosion process taking place at the metal (Zn) substrate/electrolyte 

interface [30-32]. The diffusion element presented in the equivalent circuit in Figure 7, 

ZW, represents a Warburg impedance inside the defects of the inner layer. The Warburg 

impedance used in the present study models dimensional diffusion of the electrolyte 

through a layer of finite thickness (the pores length) with absorbing boundary condition 

[26], whose equation is: 

 

                                             

 




jB

jBR
Z W

W

tanh
                                                  (2) 

 

where B = δ/(D)
1/2

, D is the diffusion coefficient of the electrolyte through the pores, δ 

is the diffusion layer thickness and RW is the Warburg resistance. 

 

 The schematic representation of the physical model, including the equivalent circuit, is 

shown in Figure 8. At short immersion times (Figure 8a), the inner layer is more 

compact and has small pores that cannot reach the metal surface. In this case, R2 and C2 

are related to the protective properties of this layer. However, with increasing 

immersion times, pores in the inner layer become larger and the electrolyte can 

penetrated through this layer to the underlying metal surface (Figure 8b), so R2 and C2 

represent a charge-transfer process of active corrosion at the metal (Zn) 

substrate/electrolyte interface. In all cases, a Warburg impedance appears as a 

consequence of the electrolyte diffusion inside the pores of the inner layer. 
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The interfacial capacitance (C1) values were calculated using the expression given by 

Brug [27]: 

                                                    1
1

11

1

1

11

   RRCQ s                                                  (3) 

 

And the CPE2 elements, Q2, were converted into a pure capacitance, C2 by means of the 

following expression: 

 

                                                        
 

2

/1

22
2

2

R

RQ
C




                                                    (4) 

 

The electrical parameters were obtained by adjusting the experimental data shown in 

Figures 3 to 6 and are summarised in Table 2 as a function of the immersion time in 

the different passivation baths. In all cases, the resistance at very high frequencies, 

which corresponds to the uncompensated resistance of the solution, Rs, takes values 

between 133 and 189  cm
2
. 

 

Table 2 indicates that the C1 values of the Zn-electroplated samples passivated in the 

different baths are in general very low, of the order of µF cm
-2

 or even lower. This can 

be related to the presence of a thin Cr(III)-based surface film [5, 33, 34]. It can also be 

observed that, in general, the capacitance of the chromium layer (C1) tends to increase 

with immersion time in the NaCl solution. This increase can be related to the water 

uptake of the coating, leading to an increase in the number of pores [30, 35]. The 

resistance of the solution in the porous of the outer layer, R1, gradually decreases with 

the  immersion time in the electrolyte (Table 2), indicating an increase in the number of 

heterogeneities in the coating [30, 35]. The values associated with the charge transfer 
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process taking place at the substrate/electrolyte interface, C2, increase with the 

immersion time for all samples. Although for those samples passivated in the used and 

spent baths, the C2 values are of the order of mF cm
-2

 (Table 2), which is mainly 

associated with the interfacial corrosion processes [30, 36]. Besides, C2 increases 

significantly after 24 and 48 h of immersion in the electrolyte, which indicates an 

increase of the real interfacial area due to the formation of corrosion products on the 

substrate [36]. The decrease of C2 at long immersion times (144 h), specially observed 

in the samples treated in the used and spent baths, may be related to the reduction of the 

interfacial area due to the partial dissolution of the corrosion products. R2 values 

decrease with immersion time in all electrolytes, indicating less resistance to charge 

transfer, which means that the inner film's electrical conductivity increases as a result of 

the corrosion processes. In this sense, the corrosion reaction is assumed to take place at 

the bottom of pores, leading to a decrease in the resistance associated with the inner 

layer and an increase of C2, as a result of enlargement of pores (Figure 8b).  In addition, 

the values of the resistance inner layer R2 are in all cases, significantly larger than the 

values associated with the outer porous layer (R1), which is consistent with the chosen 

physical model (Figure 7). The parameter associated with the Warburg impedance, Rw 

decrease clearly with the immersion time (Table 2). This fact is an indication that the 

protective properties of the surface layer worsen, which is also related to the increase in 

the number of defects within the inner layer. Thus, the increase in the immersion time 

leads to deterioration of the zinc substrate as a consequence of the corrosion process 

taking place at the interface. 

 

In order to compare the corrosion resistance of the samples passivated with the different 

baths, the total polarisation resistance, RP, was obtained as the sum of the resistances R1 
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and R2, as well as Rw in the case of the specimens immersed in the in-use and spent 

baths. Figure 9 shows the development of these values with immersion time in the 3.5 

g/L solution. It can be observed that RP decreases as immersion time increases, 

indicating worse protective properties of the Cr(III) layer as a consequence of corrosion 

attack to the protective coating. The highest RP value corresponds to the sample 

passivated with the fresh bath, followed by the specimens immersed in the in-use and 

regenerated baths; the latter presents higher RP values than the former, this indicates that 

the conduction of the regeneration step tends to improve the corrosion protection of the 

Zn-electroplated steel. Finally, the Zn-electroplated steel passivated with the spent bath 

presents the worst RP value, indicating the poorest corrosion resistance. 

 

The main differences among the passivation baths are related to their content in Zn and 

Fe, as shown in Table 1. Therefore, the presence of these impurities has a strong 

influence on the electrochemical properties of the samples treated in the different baths. 

This fact demonstrates the importance of designing a system capable of continuously 

removing these impurities in order to lengthen the lifetime of the bath and also to avoid 

the generation of off-specification products. 

 

In order to understand how the presence of Zn in the passivation bath can affect the 

formation of the chromium-conversion coating it is important to better understand the 

mechanism of chromium deposition. When a Zn specimen is immersed in Cr (III) 

formulations, the metal undergoes redox reactions induced by the presence of 

microanodic and microcathodic zones on its surface. The formation of the conversion 

layer goes through the following different stages [8, 37]: 
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a) Zinc oxidation: 

Zn  Zn
2+

 + 2 e
-
            (5) 

b) Hydrogen reduction:  

2H
+ 

+ 2 e
-
  H2            (5) 

c) Local pH increase, which leads to the precipitation of chromium and Zn hydroxides. 

 

Hence, the presence of Zn impurities affects the passivation process in two ways: 

decreasing the rate of Zn redox dissolution and increasing the presence of zinc 

hydroxides instead of chromium hydroxides in the conversion coating. Fe impurities 

can also interfere in the process of formation and precipitation of chromium hydroxides. 

These processes lead to a decrease in the corrosion resistance of the samples, as shown 

in Figure 9. Therefore, low concentrations of Zn and Fe in the passivation bath improve 

the properties of the conversion coating.  

 

The presence of impurities also affects the environmental performance of the 

passivation process. The higher the amount of impurities the higher the amount of 

chromium required to obtain the same corrosion protective property. Consequently 

more original formulation is consumed to obtain the passivation bath and more natural 

resources in terms of materials, energy and water are used to produce the Cr (III) 

formulation.  Other negative aspects caused by the presence of impurities in the bath are 

well explained in a the previous work. [20]. 

 

To evaluate the convenience of coupling an EPT step to the passivation bath in order to 

improve the protective properties of the electroplated steel, the ratios (RpEPT/RpSpentBath) 

and (RpInUse//RpSpentBath) have been calculated in Table 3. A reduction of 55% in the 
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amount of Zn used in the passivation bath (Table 1) increases Rp by a factor of 4.12 (0 

hours), 2.90 (24 hours), 3.46 (48 hours) and 3.00 (144 hours). The highest enhancement 

is observed at short immersion times in the NaCl solution. These ratios are higher in the 

sample treated with the regenerated bath than in the sample treated with the in-use bath. 

Hence, according to the ratios shown in Table 3, EPT coupling to the passivation step 

significantly improved the protective properties of the passivated Zn electroplated steel 

compared to the spent bath. EPT regeneration is an eco-friendly, suitable treatment 

since it increases corrosion resistance as compared to the in-use passivation bath.  

 

4. Conclusions 

Emulsion Pertraction Technology (EPT) is an eco-innovative process able to separate 

Zn and Fe from Cr (III) passivation baths while retaining chromium and other relevant 

components. This work demonstrate by means of an electrochemical study, the 

importance of coupling an EPT step to the passivation bath to reduce the Zn and Fe 

impurities and  consequently to improve the protective properties of the layers formed 

on electroplated steels.  

Potentiodynamic polarisation results have shown that the regeneration of the spent bath 

has a positive effect on the protective properties of the surface layer formed on the Zn 

electroplated sample, since the values of the anodic current density are lower in the 

samples treated in the regenerated bath than in the spent bath. Further, the specimen 

immersed in the regenerated bath presented higher values of polarisation resistance (RP) 

than the specimens passivated with the in-use and spent baths. 

This study also shows that the presence of chromium oxides on the samples surface 

decreases with the increase of zinc and iron concentrations in the passivation bath and 

that the presence of Fe and especially Zn impurities have a strong influence on the 
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electrochemical properties of the samples treated in the different baths, leading to a 

decrease in their corrosion resistance.  

Finally, the results have revealed the importance of monitoring Zn impurities in the 

passivation baths. The concentration of Zn (II) in regenerated passivation baths should 

be reduced in the future to achieve conditions equivalent to those found in fresh 

passivation baths. 
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Table 1. Concentration of Cr (III), Zn (II) and Fe (total) in the baths used to passivate 

the Zn electroplated specimens.  

 

Table 2. Electrical parameters obtained by fitting the experimental results of EIS to the 

circuit shown in Figure 7, for the samples passivated with the different baths and 

immersed in a 3.5 g/l NaCl at different times and at 25 ºC. 

 

Table 3. Ratios for the regeneration treatments as function of immersion time in the 3.5 

g/l NaCl solution. RatioEPT = ([RpEPT/RpSpentBath]·100) and  

RatioInUse  = ([RpInUse/RpSpentBath]·100). 

 

 

 

 

 

Figures captions 

 

Figure 1. Raman spectra obtained for the samples treated in the following baths: fresh 

bath, EPT regenerated bath, in-use bath and spent bath.   
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Figure 2. Potentiodynamic polarisation curves of the specimens passivated in the baths 

under study and immersed in solutions of 3.5 g/L of NaCl.  

 

Figure 3. Bode-magnitude and Bode-phase (a) and Nyquist (b) plots for the Zn 

electroplated steel samples passivated with the fresh bath and immersed in the solution 

of 3.5 g/L of NaCl at different times. 

 

Figure 4. Bode-magnitude and Bode-phase (a) and Nyquist (b) plots for the Zn 

electroplated samples passivated with the EPT regenerated bath and immersed in the 

solution of 3.5 g/L of NaCl at different times. 

 

Figure 5. Bode-magnitude and Bode-phase (a) and Nyquist (b) plots for the Zn 

electroplated steel passivated with the in-use bath and immersed in the 3.5 g/L of NaCl 

at different times. 

 

Figure 6. Bode-magnitude and Bode-phase (a) and Nyquist (b) plots for the Zn 

electroplated steel samples passivated with the spent bath and immersed in the solution 

of 3.5 g/L of NaCl at different times. 

 

Figure 7. Equivalent circuit proposed for all the passivation baths used in this work. 

 

Figure 8. Schematic representation of the physical model, including the equivalent 

circuit, used to explained the EIS results obtained for the Zn electroplated steel samples 

at (a) short immersion times and (b) long immersion times. 

 

Figure 9. Polarisation resistance values of the samples passivated in the different baths 

and their development with the immersion time in the 3.5 g/l NaCl solution. 
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 Cr (III) 

(mg/L) 

Zn (II) 

(mg/L) 

Fe (total) 

(mg/L) 

Fresh bath  6729 < 0.3 0.72 

EPT regenerated bath  6363 5824 11 

In use bath 5400 7410 10 

Spent bath  6402 13088 63.4 
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Time RS/Ω cm
2
 C1/µF cm

-2
  R1/Ω cm

2 RW/Ω cm
2
 C2/µF cm

-2
  R2/Ω cm

2
 


x10

-3
) 

Fresh bath 

0h 138 ± 10 0.04 ± 0.01 0.52 ± 0.02 9649 ± 12 51381 ± 12 64 ± 2 0.92 ± 0.02 67041 ± 12 1.3 

24h 189 ± 12 0.74 ± 0.03 0.55 ± 0.03 3046 ± 14 14360 ± 19 1 ± 0.1 0.92 ± 0.05 63989 ± 17 2.2 

48h 186 ± 8 0.80 ± 0.05 0.57 ± 0.02 2798 ± 11 9226 ± 21 9 ± 0.9 0.91 ± 0.03 20153 ± 8 1.4 

144h 165 ± 8 0.41 ± 0.02 0.48 ± 0.03 2074 ± 13 10144 ± 16 24 ± 3 0.95 ± 0.03 4925 ± 7 2.1 

EPT regenerated bath 

0h 165 ± 7 0.33 ± 0.04 0.72 ± 0.01 572 ± 11 6616 ± 12 3 ± 0.5 0.58 ± 0.02 9446 ± 14 0.4 

24h 166 ± 11 8.05 ± 0.3 0.74 ± 0.02 476 ± 15 8055 ± 16 3 ± 0.4 0.92 ± 0.03 2549 ± 9 7.9 

48h 163 ± 9 4.20 ± 0.2 0.84 ± 0.01 218 ± 11 8254 ± 19 36 ± 4 0.74 ± 0.04 2116 ± 20 6.2 

144h 170 ± 6 65.42 ± 3 0.67 ± 0.03 61 ± 9 1959 ± 18 865 ± 11 0.76 ± 0.03 760 ± 8 14.6 

In use bath 

0h 176 ± 12 0.28 ± 0.02 0.59 ± 0.02 324 ± 12 4659 ± 21 0.10 ± 0.02 0.74 ± 0.02 7146 ± 19 2.2 

24h 172 ± 8 0.26 ± 0.04 0.53 ± 0.03 284 ± 10 3866 ± 18 11679 ± 32 1.11 ± 0.15 834 ± 12 0.4 

48h 175 ± 9 0.45 ± 0.01 0.40 ± 0.02 209 ± 4 3458 ± 23 87245 ± 25 1.027 ± 0.08 259 ± 10 1.8 

144h 178 ± 10 0.07 ± 0.02 0.53 ± 0.01 28 ± 2 1419 ± 12 4570 ± 12 1.010 ± 0.05 243 ± 12 0.9 

Spent bath 

0h 168 ± 10 0.11 ± 0.00 0.75 ±0.02 486 ± 11 2244 ± 19 400 ± 12 1.00 ± 0.02 1183 ± 17 0.9 

24h 144 ± 8 0.03 ± 0.00 0.49 ±0.01 196 ± 8 2250 ± 13 1200 ± 21 1.00 ± 0.01 1288 ± 15 0.2 

48h 152 ± 9 0.09 ± 0.00 0.44 ±0.02 124 ± 6 1963 ± 17 1960 ± 24 0.97 ± 0.02 872 ± 14 0.3 

144h 166 ± 6 42.11 ± 2.00 0.50 ±0.03 30 ± 3 401 ± 13 190 ± 13 1.00 ± 0.01 387 ± 11 0.2 
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Time (h) RatioEPT (%) RatioInUse (%) 

0 412 302 

24 290 133 

48 346 132 

144 300 193 
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