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Abstract  

Removal of nine pharmaceutical compounds: acetaminophen, AAF, antipyrine, 

ANT, caffeine, CAF, carbamazepine, CRB, diclofenac, DCF, hydrochlorothiazide,  

HCT, ketorolac, KET, metoprolol, MET and sulfamethoxazole, SMX, spiked in a 

primary sedimentation effluent of a municipal wastewater has been studied with  

sequential aerobic biological and ozone advanced oxidation systems. Ozone, UVA 

black light and Fe(III) or Fe3O4 constituted the chemical systems. During the 

biological treatment, only AAF and CAF were completely eliminated, MET, SMX 

and HCT reached partial removal rates and the rest of compounds were completely 

refractory (HRT=24 h). With any ozone advanced oxidation process applied, the 

remaining pharmaceuticals disappear in less than 10 minutes. The presence of Fe3O4 

or Fe(III) during photocatalytic ozonations also allowed mineralization increases, 

compared to the single ozonation process, from 13% to about 35%. Biodegradability 

of the treated wastewater increased 50% in the biological process and other 150% 

after the ozonation processes. Both untreated and treated wastewater was non toxic 

for Daphnia Magna except when Fe(III) was used in photocatalytic ozonation. In 

this case, the ferryoxalate formed seems to be the reason of toxicity. Kinetic 

information on ozone processes reveals that pharmaceuticals at the very low 

concentrations they are found in urban wastewater are mainly removed through free 

radical oxidation.  
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1. Introduction 

 

Now days the presence of pharmaceuticals and their metabolites in urban 

wastewater, mainly as a consequence of the uptake of medicines, is largely known 

[1-5]. Because of the presence of active biochemical principles in their molecules, 

pharmaceuticals, once released to water environments, present potential hazardous 

effects on humans and aquatic ecosystems [6,7]. Removal of these contaminants 

should be achieved in conventional wastewater treatment plants, mainly through 

biological oxidation, but these systems are not specifically designed for this role. In 

fact, as rule of thumb, emerging contaminants pass unaffected in a great extent 

through the classical unit operations of wastewater treatment plants [8-11]. However, 

because of their persistent and potentially hazardous character, these compounds 

may negatively affect living organisms in the aquatic environment and, 

consequently, more advanced treatments are needed to complete their removal from 

wastewater. In this sense, several researches have shown that ozonation and 

advanced oxidation processes (AOPs) have been successfully used to oxidize these 

contaminants from water [12-14]. Thus, literature has already reported many works 

where laboratory prepared aqueous solutions or biologically treated urban 

wastewater spiked with emerging contaminants (ECs) are successfully treated with 

AOPs. However, results on the combined effect of biological and advanced 

oxidation processes are required in order to check the real improvement in removal 

rates when these contaminants are initially present in the wastewater. Thus, in this 

work, an urban wastewater doped with nine ECs has been biologically and 

chemically treated in two sequential steps with activated sludge and different AOPs, 

respectively. Activated sludge was collected from a secondary biological treatment 

of an urban wastewater treatment plant and ozone, UVA light and iron type catalysts 

(Fe(III) and Fe3O4) were the constituents agents of AOPs applied. The ECs added to 

the wastewater were acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), 
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carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac 

(KET), metoprolol (MET) and sulfamethoxazole (SMX). These compounds are very 

used both for medical or social purposes and are commonly identified in urban 

wastewaters [15-17]. 

 

2. Materials and methods 

 

2.1. Primary wastewater effluent and chemicals 

 

Wastewater from the first sedimentation unit or primary treatment effluent of the 

Rincón de Caya Wastewater Treatment Plant (WWTP) (Badajoz, Spain) was spiked 

with the nine selected pharmaceuticals with an initial concentration of 200 µg L
-1

 

each one. This concentration, although something higher than the actual ones 

encountered in urban wastewater, that usually reach as much as some µg L
-1

 [12,18]  

allowed a more accurate and fast quantitative chemical analysis with our available 

equipments (see below). The physico-chemical characterization of the wastewater 

used is summarized in Table 1. Pharmaceuticals and Fe(ClO4)3.xH2O were 

purchased from Sigma-Aldrich (Spain), and Fe3O4 from Bendix. Other chemicals 

were at least reagent grade and used as received.  

The molecular structures of pharmaceuticals used are shown in Figure 1. These 

contaminants were chosen because they were of different families of pharmaceutical 

compounds: analgesic, beta-blockers, antiepileptic, antibiotic, etc, and are usually 

detected in urban wastewater [15-17]. 

 

2.2. Activated sludge 

 

Aerobic biological treatment was carried out using activated sludge as biomass. This 

biomass was collected from the returning pipe of the activated sludge in Rincón de 

Caya WWTP (Badajoz, Spain).  

 

2.3. Experimental Setup 

 

2.3.1. Biological Treatment 
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Aerobic biological oxidation experiments were carried out in batch mode in a 30 L 

parallelepiped tank provided with mechanical stirring and aerated through several 

diffusers to reach 3.0 mg O2 L
-1

 (see Figure 2). The reactor was charged with the 

primary effluent from the urban WWTP spiked with pharmaceuticals mixtures. The 

activated sludge added varied between 1 and 3 mg L
-1

 of Mixed Liquor Volatile 

Suspended Solids (MLVSS). Hydraulic retention time was between 7 and 24 h. 

Steadily, samples were withdrawn from the reactor and analyzed for contaminant 

concentrations, total organic carbon (TOC), chemical oxygen demand (COD) and 

ultraviolet absorbance at 254 nm (Abs254). Also, biochemical oxygen demand after 

five days (BOD5) was measured at the start and end of experiments. In some 

experiments, the ecotoxicity to Daphnia magna was also determined. Prior to the 

analysis, the solid was removed from samples by a 5415D Eppendorf Centrifuge 

(Hamburg, Germany) and further filtration through a Millex HV filter (Millipore, 22 

μm). 

 

2.3.2. Advanced Oxidation Processes 

Experiments were carried out in semibatch mode in a 1 L cylindrical borosilicate 

glass reactor that was provided with gas inlet (through a diffuser placed at the bottom 

of the reactor) and outlet, mechanical stirring and sampling port (see Figure 3). 

Ozonation experiments were carried out with an ozone-oxygen gas mixture flow of 

35 L h
-1

. Ozone was produced from pure oxygen with a Sander Laboratory Ozone 

Generator.  In experiments requiring UVA light, the aqueous solution was irradiated 

with two 15 W tubular black light (BL) lamps (HQ Power Lamp 15TBL) emitting 

mainly 365 nm radiation. The lamps were installed on opposing walls outside the 

reactor in a closed box. The reactor walls were covered by aluminium foil to enhance 

radiation. Ferrioxalate actinometry was used to determine the incident flux of 

radiation that was found to be 7.05 ± 0.05  10
-5

 Einstein min
-1  

During each experiment, samples were withdrawn from the reactor to analyze 

pharmaceuticals and oxalic acid concentration, TOC, COD, initial and final BOD5, 

Abs254, total iron concentration and dissolved ozone concentration.  

 

2.4. Analytical methods 
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High performance liquid chromatography (HPLC) was applied using LaChrom Elite 

equipment (Hitachi, Spain) to determine the pharmaceuticals concentrations in 

samples. HPLC was provided with a Phenomenex (Spain) Synergi Hydro-RP 

column (250 × 4.60 mm, particle size 4 m, 80 Å), an L-2450 DA detector and EZ 

Chrom software for data treatment. The injection volume was 99 L. The mobile 

phase used in the chromatographic separation consisted of a binary mixture of 

solvents A (Acetonitrile) and B (acidified water with 0.1% formic acid). A non-

isocratic mobile phase gradient program was used: it consisted of 40 min linear 

gradient from 10% to 100% of A with a flow rate of 0.2 mL min
-1

. The separation 

was monitored at different absorbance wavelength as shown in Table 2. Detection 

limit for accurate measurements of concentrations was about 2 µg L
-1

. From standard 

solutions, the analysis was repeated to establish the precision of the method that 

resulted to be 2% while accuracy was 1.3%. 

For oxalic acid concentration, a Supelcogel C-610 column was used. In this case, the 

mobile phase, at a flow rate of 0.75 mL min
-1

, was ultrapure water acidified at pH 

2.5 with phosphoric acid (0.1% concentration). Detection was made with an L-2455 

Hitachi Diode Array detector at 210 nm and injection volume was 40 µL. 

TOC was determined by a TOC-VCSH Shimadzu Analyzer (VWR, Spain). In this 

case, detection limit, precision and accuracy were 50 µg L
-1

, 3% and 1.5% according 

to Shimadzu manufacturer, respectively. COD was measured following standard 

dichromate reflux method in a Dr. Lange spectrophotometer [19] (Precision: 3%). 

BOD was measured following the respirometric method [20] (Precision: 15%). Total 

iron concentration was determined by the ferrozine method [21] that, briefly, 

consisted in the reduction to Fe(II) and further formation of a violet complex with 

the ferrozine reagent. Finally, for the ozonation runs, dissolved ozone concentration 

in aqueous solutions was analyzed by the indigo method [22]. According to the 

authors this method presents 2% precision and a detection limit of 10
-7

 M for 

absorbance measurements in 5 cm cell. In this work, 1 cm cell was used so that 

detection limit was 5x10
-7

 M. Ozone in the gas phase was monitored by means of an 

Anseros Ozomat ozone analyser. The pH was tested with a pH meter (Crison GLP-

21+). Prior to the analysis, the solid was removed from samples by filtration through 

a Millex-HV filter (Millipore, 0.22 μm). 
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2.5. Test organisms 

 

Daphnia magna are freshwater invertebrates of the order Cladocera, more commonly 

known as the water flea. They have a relatively short life (7-8 weeks at 20 ºC) and 

reach sexual maturity within 6-8 d of leaving the brood chamber [23]. Due to their 

size, ease of culture and short life span, D. magna are extensively used as a 

representative freshwater invertebrate species in ecotoxicological studies. 

 

2.5.1. Daphnia acute immobilisation test 

Acute toxicity Daphnia tests were conducted following the commercial test kit 

DAPHTOXKIT F
TM 

(Creasel BVBA; Deinze, Belgium) using the water flea D. 

magna. These tests were performed in accordance with testing conditions prescribed 

by OECD Guideline 202 [24] (Daphnia sp. Acute Immobilisation Test). 

Experiments were run at temperatures of 20±2 ºC and 6000 lux. Twenty daphnids 

younger than 24 h were used for the controls and each assayed solution subdivided in 

four replicates each containing five daphnids. Immobility was observed after 24 and 

48 h with the latter being the endpoint for effect calculation. A Daphnia was 

considered to be immobile if it did not move after 15 s of gentle agitation. 

Immobilisation of the animals leads to their death because of inherent impossibility 

of capturing food.  

A limit test was performed with the solutions in order to demonstrate that the EC50 

(EC50 is the concentration estimated to immobilise 50 per cent of the daphnids within 

a stated exposure period) is greater than the concentration sampled. When the 

percentage of immobilisation is minor or equal 10 % at the end of the test (48 h), it 

can be considered that solution does not show acute toxicity to D. magna. Potassium 

dichromate (K2Cr2O7) was the reference chemical used. 

 

3. Results and Discussion 

 

3.1. Biological treatment 

 

First, a series of biological experiments were carried out. As an example of the 

results obtained, Figure 4 shows the changes with time (up to 24 hours) of the 

remaining dimensionless concentration of the selected pharmaceuticals. As it can be 
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seen, only three compounds: AAF, CAF and MET showed significant removal rates. 

In fact the first two are completely removed in less than 10 hours. The rest of 

compounds were completely refractory to biological oxidation, except SMX and 

HCT that presented less than 25% and 15% conversions in 24 hours treatment.  

It should be noted, that in this work no attempt was made to elucidate the mechanism 

of removal during biological oxidation since two possible ways can develop: 

biological oxidation itself and adsorption on activated sludge. The objective was 

only to check the order of removal to be compared to the further chemical oxidation 

process. In any case, it can be highlighted that previous works report adsorption as 

the main way of pharmaceutical removal from urban wastewater [25-30]. In Figure 

5, on the other hand, the changes observed on TOC with time corresponding to the 

experiment of Figure 4 are presented. Results of COD with time showed a similar 

trend. In this case, there is a deep decrease of COD after about the first 2 hours of 

treatment. After this reaction time, COD was practically unaffected. Regarding TOC 

evolution (see Figure 5), this parameter reduces to reach a conversion of about 55% 

during the first 10 hours of treatment and then slowly reaches 60% elimination after 

24 hours. 

The effect of activated sludge concentration was also studied. However, in this case, 

changes of initial MLVSS loading did not lead to any significant variation of the 

remaining concentration of pharmaceuticals studied and COD and TOC (results not 

shown). 

 

3.2. Advanced oxidation processes  

 

In a second series of experiments, advanced oxidation processes were applied to the 

biologically treated urban wastewater. For these cases, 7 hours laboratory 

biologically treated wastewater was subsequently subjected to advanced chemical 

oxidation technologies. This was due to the fact that the wastewater treatment plant 

of Badajoz has a 7 hour hydraulic residence time (HRT) for the biological operation. 

Then, in these samples concentration of pharmaceuticals was the one they had at the 

end of the laboratory biological process. Thus, the biologically treated wastewater 

only had 7 out of 9 initial pharmaceuticals. The oxidation processes applied were 

ozonation, photocatalytic oxidation and photocatalytic ozonation. Also, direct 

photolysis experiments were carried out for comparative reasons. Two iron catalysts 
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were used, Fe(III) and magnetite (Fe3O4). Photolysis of these iron catalysts leads to 

hydroxyl radicals as has been shown in previous works [31,32]. As expected, direct 

photolysis of any of the 7 remaining compounds did not lead to positive results since 

these compounds do not absorb radiation in the wavelength emitted by the UVA 

lamp used in this work. Also, photocatalytic oxidation with the iron catalysts used 

did not either lead to any pharmaceutical degradation As shown in Figure 6, as 

example, ozone processes were the only ones among those studied here that 

effectively allowed significant or even total elimination of the pharmaceuticals 

studied. This, on the other hand, confirmed previous results of the ozonation of some 

of these compounds in ultrapure water at a much higher concentration [33-35]. It 

should be highlighted; however, that total removal means that pharmaceuticals were 

in water at concentrations below their detection limit of the HPLC method applied 

that was about 2 µg L
-1

. Thus, in Figures 6a,b,c results of the ozone processes 

studied here are shown. As can be seen these figures show, as examples, the changes 

observed with time of the concentrations of three out of seven pharmaceuticals still 

present in the urban wastewater after a 7 hours biological treatment period. These 

compounds are antipyrine, hydrochlorothiazide and ketorolac. The other 4 

compounds show similar results and removal rates. As can be seen from Figures 6 

pharmaceuticals compounds are eliminated in less than 10 minutes, regardless of the 

ozone process applied. On the contrary to the results observed with the 

pharmaceutical compounds, global parameters that measure the organic content or 

the presence of unsaturated groups (benzene rings, carbon double bonds, etc) in the 

biologically treated urban wastewater, that is, TOC or 254 nm absorbance show 

different results depending on the ozone process applied. Thus, Figure 7 depicts the 

time variation of percentage removal of TOC in the three ozone processes 

investigated. 

As it can be seen the single ozone process leads to about 13% TOC reduction after 

30 minutes treatment while about 32 and 36% TOC reductions are achieved with the 

Fe3O4 and Fe(III) photocatalytic ozonation processes, respectively. COD also 

showed similar results. 

In Figure 8, on the other hand, the time changes observed in the 254 nm absorption 

of treated samples is presented. As it can be observed, photocatalytic ozonation 

allowed higher percentage removal of unsaturated compounds than ozonation alone 
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(i.e. after 30 minutes reaction, 60 and 50% removal are achieved in the 

photocatalytic and non photocatalytic ozone processes, respectively). 

 

3.3. Ozone consumption 

 

For the ozonation processes investigated the consumption of ozone per TOC 

eliminated has also been determined following equation (1): 

 
  

 


3 3 3

3

0

· ·

( )·

O in O out O

O

t

m t m dt C V

TOC TOC V
  (1) 

where min and mout represent the ozone molar rates at the reactor inlet and outlet, 

respectively, CO3 the concentration of ozone dissolved in water, V the reactor 

volume, t the reaction time and TOC0 and TOCt values of TOC at the start of 

ozonation and at time t, respectively. Table 3 presents the results obtained.  

As it is observed from Table 3 photocatalytic ozonation processes consume lesser 

ozone amounts than the single ozonation process per mg of consumed TOC. This 

means that regarding the mineralization of organic compounds and economy to 

reduce the costs of ozone production, photocatalytic ozonation is a more 

economically selective process. 

 

3.4. Partial Oxidation Yield 

 

In order to quantitatively establish the oxidation capacity of the systems studied the 

partial oxidation yield, μpartox, was also calculated [36]. This parameter is defined as 

follows: 

  
0

100
partox

partox

COD
x

COD COD
  (2)  

where 

  0

0

partox

COD COD
COD TOC

TOC TOC

 
  
 

    (3) 

The partial oxidation yield indicates the percentage of COD removed that has not 

been mineralized. These parameters were also calculated for the biological process. 

Thus, for this first treatment the partial oxidation yield was 1.1% which means that 

98.9% of COD removed was mineralized. 
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For the ozone processes, results were as follows: In single ozonation 100% 

mineralization of the COD eliminated was achieved in 10 minutes. After this time no 

values can be considered since no further COD reductions were observed (see also 

Figure 7). In photocatalytic ozonation, regardless of the type of catalyst, percentage 

mineralization increases up to 85% of COD eliminated (35%) in the first 20 minutes. 

After this reaction time, remaining COD was unaltered as in the case of single 

ozonation. 

 

3.5. Oxidation State of Carbon 

 

The average oxidation state of carbon, AOSC, is another parameter, based on the 

measurements of TOC and COD. This parameter gives an estimation of the 

importance of oxygenated compounds present in water. It varies from -4 (that 

corresponds to organics such as methane) to +4 (that corresponds to organics such as 

carbon dioxide). In an oxidation process, regarding AOSC, what really matters is the 

increment observed in AOSC during the oxidation process, that is, [AOSC]. Both 

parameters are defined as follows [36]: 

 

 

12
4

32
TOC COD

ASOC
TOC

 
 

   (4) 

 

   0

0

12
4

32

COD COD
AOSC

TOC TOC

 
   

 

  (5) 

For the biological treatment, AOSC varies from -2 for the primary sedimentation 

wastewater (pharmaceuticals included) to +1 for the 7 hours biologically treated 

wastewater, that is, the increment of AOSC observed during the biological period 

([AOSC]) was 3. These results indicate that the biological treatment only lead to a 

partial state of oxidation of the remaining carbon.  

For the ozone processes the results were: For single ozonation no increment of 

oxidation state number was observed while for the photocatalytic ozone processes a 

0.3 increment was reached in 1 hour of reaction. However, it should be reminded 

that these parameters and also the partial oxidation yield have to be taken with 

caution since their values may also be due to the presence of inorganic substances 

that contribute to increase COD.  
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3.6. Biodegradability 

 

The ratio between BOD and COD is often defined as a measure of the 

biodegradability of the wastewater. Here, in this work this parameter has been 

measured at the start and end of the biological and chemical experiments. The results 

are shown in Table 4. 

As it can be seen from Table 4 a 50% increase of biodegradability is reached after 

the biological treatment while adding a further ozonation process leads to another 

100% increase as average. However, if biodegradability of non treated wastewater is 

compared to the one at the end of the sequence of biological plus chemical 

treatments, an average 200% increase of biodegradability is observed. 

 

3.7. Ecotoxicity 

 

For checking the toxicity of the raw wastewater and biological and chemically 

treated wastewaters, D. magna immobilisation tests were carried out. The results are 

shown in Table 5. An EC50 24 h of 1.88 mg L
-1

 was obtained for potassium 

dichromate, which is within range of the 0.6-2.1 mg L
-1

 stipulated in the ISO 6341 to 

ensure test validity. No swimming inhibition was observed in the controls exposed in 

each plate. As it can be seen from Table 5 only wastewater treated with Fe(III) 

photocatalytic ozonation results in a given degree of ecotoxicity. This could be 

attributed to the formation of the ferrioxalate complex during Fe(III) photocatalytic 

ozonation as deduced from Figure 9. Thus, Figure 9 presents the variation with time 

of total dissolved iron concentration during both ozone and ozone-free photocatalytic 

processes study in this work. As it can be seen from Figure 9 during Fe3O4 

photocatalytic runs, regardless of the presence of ozone, there is no iron leaching 

while during Fe(III) photocatalytic runs, the presence of ozone gives rise to a 

decrease of the dissolved iron concentration during the first 30 minutes undoubtedly 

due to the formation of ferryoxalate. Oxalic acid is a usual end product of ozonation 

runs [37-39] that has also been detected in this work. However, in the absence of 

ozone, no decrease of total iron concentration is observed which was due to the 

absence of oxalic acid formation during this run. Toxicity of ferryoxalate complex 

towards D. magna was reported by Trovó et al. [40,41] when they observed this 
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phenomenon during the photo-Fenton oxidation of amoxiciline and paracetamol 

(acetaminophen) with FeSO4 and potassium ferryoxalate as catalysts. These authors 

reported 100% D. magna mobility inhibition in a control run where ferryoxalate was 

present.  

  

3.8. Kinetic aspects 

 

As it can be deduced from this work, ozone-free photocatalytic oxidation processes 

require reaction times longer than 1 hour to observe some significant degradation of 

compounds and TOC. Ozone processes, on the other hand, are complex gas-liquid 

systems involving series-parallel reactions in water, and the kinetics depends on both 

ozone mass transfer and chemical reactions [42]. In order to establish the 

corresponding reaction rate expression, it is first necessary to know the kinetic 

regime where these reactions develop, that is, basically to know if the reactions are 

slow or fast compared to mass transfer rates. For so doing, the Hatta number of these 

reactions has to be determined. The Hatta number, Ha, of a second order gas-liquid 

reaction, as the ones ozone undergo in water, between ozone and a compound M, is 

defined as follows: 

 
3D O M

L

k D C
Ha

k

 
  (6) 

where kD, DO3, CM and kL are the rate constant of the reaction between ozone and 

compound M, the ozone diffusivity in water, the concentration of compound M and 

the liquid phase mass transfer coefficient, respectively. Table 6 shows the values of 

Ha corresponding to the ozone-pharmaceutical reactions at the conditions of the start 

of ozone processes, that is, with values of CM corresponding to those of the 

pharmaceuticals after the biological treatment. It should be noted that due to the lack 

of data found in literature on rate constants of direct ozone reactions at pH 3 most of 

Ha values have been determined with the rate constants at pH 7 and only a few of 

them at the pH of ozone reactions, that is, at pH 3. As it can be seen from Table 6, 

Ha shows values higher than 0.3 except for the cases of HCT and MET ozone 

reactions. According to gas-liquid reaction kinetic theory [48] this means that only 

the ozone-HCT and ozone- MET are slow reactions. In this case, as shown in a 

previous work [50] removal of HCT and MET can be due to the competitive 
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contributions of both their direct ozone reaction and hydroxyl radical reaction. Thus, 

in a semibatch well agitated reactor, as in this work, the mass balance of HCT and 

MET can be expressed as follows: 

 3
M

D O M HO OH M

dC
k C C k C C

dt
    (7) 

where CM and CO3 are the concentrations of HCT or MET and dissolved ozone in 

water, respectively, and kHO is the the rate constant of the reaction of hydroxyl 

radicals and the pharmaceutical compound. For the rest of pharmaceuticals, 

however, both ozone direct reaction and mass transfer through the liquid film close 

to the gas-liquid interphase simultaneously develop so that equation (7) does not 

hold. Accordingly, if pharmaceuticals can be removed in the ozone processes 

through both direct and hydroxyl radical reactions [42] (case of MET and HCT) the 

application of an ozone involving AOP is, a priori, advisable to improve their 

removal from water. For these two pharmaceuticals, the percentage contribution of 

the direct ozone reaction (%DR) for their removal has been calculated with the aid of 

equation (8): 

 3% 100D O M

M

k C C
DC x

dC

dt





 (8) 

Table 7 shows the values of %DC corresponding to the removal of MET and HCT. 

As it can be seen, HCT is mainly removed by hydroxyl radical oxidation regardless 

of the ozone process while some contribution of the direct ozone reaction is observed 

for the case of MET. In any case, the increase of reaction time leads to an increase of 

the contribution of the direct ozone reaction. For example, in the ozone process, after 

10 minutes, remaining concentrations of MET and HCT are 30 and 17 g L
-1

 and 

contribution of the direct ozone reaction was 35.9 and 12.7%, respectively. Similar 

trends are observed for photocatalytic ozone oxidations. According to these results 

some prediction can be made on the removal of the pharmaceuticals in ozone 

processes when present in actual wastewater at very low concentration (i.e. 200 ng L
-

1
). At this concentration, Hatta numbers of any ozone direct reaction are much lower 

than 0.3 (regardless of pH 3 or 7), that is, any ozone-pharmaceutical reaction is slow 

and equation (8) holds. Total accumulation rates (-dCM/dt) and dissolved ozone 

concentration are needed to apply equation (8). Predictions of these rates when the 

pharmaceutical concentration is very low can be made by assuming a pseudofirst 
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order kinetics for these processes. In fact, this assumption holds for the cases of HCT 

and MET ozonation. Thus, predicted pharmaceutical reaction rate would be: 

 'M
M

dC
k C

dt
   (9) 

Least squares analysis of the logarithm of MET and HCT concentration with time 

gives the values of k’ shown in Table 8. As it can be observed, photocatalytic 

ozonation processes lead to higher k’ values than ozonation alone. However, the 

effect on compounds is different. Thus, Fe(III) seems to be more recommended to 

remove MET during photocatalytic ozonation than Fe3O4. The contrary situation is 

observed for HCT with magnetite as the most appropriate catalyst to improve the 

reaction rate. From theses k’ values, for a concentration of 200 ng L
-1

 accumulation 

rates, left term of equation (9), of MET and HCT were calculated. The dissolved 

ozone concentration is also needed to apply equation (8). For this concentration a 

value 10
-7

 M was assumed. This is a reasonable assumption for the start of the 

wastewater ozonation process since at 2 minutes ozonation a value of 5x10
-7

M was 

experimentally determined. With k’, kD, CO3 and CM the contribution of the direct 

reaction was then predicted from equation (8). Results are also shown in Table 8. It 

can be seen that also for very low pharmaceutical concentrations and regardless of 

the ozonation process type hydroxyl radical oxidation is the main way of 

pharmaceutical (HCT and MET) removal. Thus, application of an advanced 

oxidation process such as photocatalytic ozonation that increases the concentration 

of hydroxyl radicals is advisable. 

 

4. Conclusions 

 

From this work, the following conclusions can be derived: 

Aerobic biological oxidation of the utilized urban wastewater spiked with the nine 

pharmaceutical studied only completely removes AAF and CAF in 7 hours retention 

time. Most of compounds remain partially or completely refractory to the biological 

step.  

Application of any ozone processes removes the remaining pharmaceuticals in less 

than 10 minutes. 

Biodegradability of the treated wastewater increases both after the biological and 

chemical oxidation steps in 50% and 100%, respectively. Compared to the untreated 
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wastewater, a total increase of about 200% is observed after the sequence of 

treatments.  

After 30 minutes ozone process oxidation, Fe3O4 photocatalytic ozonation shows the 

lowest ozone consumption per TOC eliminated.   

Parameters measuring the oxidation improve of the wastewater (partial oxidation 

yield or oxidation state of carbon) also increase especially during the ozone 

processes.  

Ecotoxicity to Daphnia Magna resulted negative in all the cases except when Fe(III) 

was used as photocatalyst likely because of the formation of ferryoxalate. 

Application of gas-liquid reaction kinetic concepts to the ozone process results 

indicates that pharmaceuticals in urban wastewater, at low concentration (<g L
-1

) 

are removed from hydroxyl radicals instead of direct reactions. At hundreds of g L
-

1
, however, some pharmaceuticals (SMT, DCF, ANT, KET) are mainly eliminated 

through their direct reactions with ozone. 
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