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Abstract

On-line handwriting text recognition (HTR) could be used asa more natural way of interaction in many interactive
applications. However, current HTR technology is far from developing error-free systems and, consequently, its use in
many applications is limited. Despite this, there are many scenarios, as in the correction of the errors of fully-automatic
systems using HTR in a post-editing step, in which the information from the specific task allows to constrain the search
and therefore to improve the HTR accuracy. For example, in machine translation (MT), the on-line HTR system can
also be used to correct translation errors. The HTR can take advantage of information from the translation problem
such as the source sentence that is translated, the portion of the translated sentence that has been supervised by the
human, or the translation error to be amended. Empirical experimentation suggests that this is a valuable information
to improve the robustness of the on-line HTR system achieving remarkable results.
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1. Introduction1

Since the breakout of tactile smartphones, the number of devices featuring a touch-screen has been increasing2

at a fast pace. The success of tactile smartphones has fostered a new kind of keyboardless technology: the tablet3

computers. They have been presented as a substitute of paper notebooks although the possibilities this new technology4

may provide are still to be unveiled.5

In that context, on-line handwritten text recognition (HTR) can play a crucial role. First, because to input text6

in such devices using a virtual keyboard is far from the efficiency of regular keyboards. Secondly, handwriting is a7

natural way to communicate. Withal, an HTR interface can commit recognition errors. Thus, if the HTR system is not8

robust enough, user experience could be negatively affected hindering its use. In this regard, many works have tried to9

improve HTR accuracy. Primarily focusing on feature extraction and modeling [1, 2, 3]. Other authors have tackled10

the problem of automatically correcting errors from the system output in order to provide a more accurate input to11

higher-level applications. For instance, Quiniou et al. [4] propose a technique to improve the performance of a HTR12

system by obtaining a consensus hypothesis out of a n-best lists, and then, characterizing the errors and correcting13

them. Similarly, Farooq et al. [5] use a translation model to conduct an automatic post-editing. Additionally, Devlin14

et al. [6] used a machine translation system to rerank an OCR n-best list. The idea was that easily translatable options15

would have a better syntax, which in the end resulted in small accuracy improvements. Nevertheless, those works did16

not leverage any contextual information of the specific task at hand, a topic that, in our opinion, has received little17

attention. Following this line of research, Toselli et al. [7] explored the use of on-line HTR for interactive transcription18

of text images. In that work, the user was expected to correct erroneously recognized words by handwriting the19

correction using a tactile display. The authors took advantage of the erroneously predicted word and the previous one20

to improve HTR robustness.21

Inspired by Toselli et al. [7, 8], we address the problem of using an on-line HTR system to correct the errors in a22

machine translation (MT) application. State-of-the-art MT systems usually cannot perform translations to fit quality23

demands by the translation industry. Hence, it is typical to have the automatically produced output documents revised24

by a professional translator. In this manual process, known as post-editing (PE), the human expert can spend hours25

of work to achieve high-quality translations. Interactive machine translation (IMT) [9, 10, 11] was developed to deal26

with this problem. In IMT, a human expert is introduced in the middle of the translation process. This way, she can27

amend errors from the system output and useful feedback is used by the system to automatically improve the part of28

the translation to be revised.29

The usual way to introduce the corrections in IMT is by means of the keyboard where the mouse is used to fix the30

position [12]. However, other interaction modalities are also possible. For example, speech interaction was studied31

in [13, 14, 15]. There, several scenarios were proposed, in which the user was expected to utter aloud parts of the32

current hypothesis along with one or more corrections. Later, we proposed the use of on-line HTR to IMT in [16, 17].33

To our knowledge, our work has been the first approach to on-line HTR in IMT so far. Nonetheless, those works34
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presented very preliminary results explaining simple contextual models and HTR interaction restricted to isolated35

words.36

In this paper we present relevant novelties with respect to previous work that can be summarized in two main37

improvements. First, we introduce a new HTR model that leverages state-of-the-art phrase-based models, whereas38

previous work was based only on word-based translation models. Second, we extend the interaction scheme to allow39

sequences of words (phrases) to be written and not just isolated words. In addition, we propose a method to recover40

efficiently from HTR errors using contextual menus. Finally, a new and exhaustive experimental study is presented to41

evaluate all those novel contributions and preliminary ideas.42

The remainder of this paper is organized as follows. First, the process to produce high-quality translations is43

introduced in Sec. 2. Second, in Sec. 3 several alternatives to incorporate contextual information from the translation44

problem into the HTR decoding will be explored. Section 4 is devoted to the evaluation of the proposed models.45

Finally, conclusions and future work will be discussed in Sec. 6.46

2. Producing High-Quality Translations47

In the last years, machine translation (MT) has become a strategic asset in the translation industry. MT is used48

to speed up the translation process since it enables the automatic translation of large amounts of documents. In this49

context, MT is approached under a statistical framework, due to the fact that statistical MT allows companies to50

build customized, topic-specific MT systems very economically. Here, the problem consists in finding the most likely51

translation t̂ in a target language given a source sentence s in a source language,52

t̂ = argmax
t

Pr(t | s) (1)

which can be modeled in different ways [18].53

2.1. Post-editing a Machine Translation Output54

Although leveraging MT can be very convenient, it is usually the case that the translation quality does not meet55

the user requirements. Thus, the MT output must be revised. The process of revising and amending the system output,56

known as post-editing (PE), consists in deleting, inserting, substituting and swapping text from the MT output to57

achieve the desired quality in the translation. This is an expensive task, since the users should review the whole output58

and correct manually the translation errors. In the cases in which the automatically produced translations are of low59

quality, PE can eventually require more effort than manually translating the source input from the scratch. Moreover,60

in PE, the system does not take advantage of the human corrections.61

2.2. Interactive Machine Translation62

The MT paradigm is shifting slowly but steady towards an interactive MT scenario (IMT). In IMT [9, 10, 11] the63

system goal is not to produce translations in a completely automatic way and then perform a completely unassisted64
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PE. On the contrary, IMT aims at building the translation collaboratively with the user as a professional advisor, so65

that the effort to produce a satisfactory output is minimized.66

A typical approach to IMT is shown in Fig. 1. A source sentence s is given to the IMT system. First, the system67

outputs a translation hypothesis t̂ in the target language, that would correspond to the output of fully automated MT68

system (i.e., based on Eq. (1)). Next, the user analyzes the source sentence and the current hypothesis, and validates69

the longest error-free prefix p finding the first error. Then, the user amends the erroneous word by typing the correct70

word d. Based on this amendment, the system creates a new validated prefix p · d, with · as a concatenation operator.71

With that information, the system is able to produce a new, hopefully improved, translation t̂ that is coherent with the72

information provided, that is, p · d must be a prefix of the new t̂. This process is repeated until the user agrees with73

the quality of the resulting translation. In this work we assume that this protocol is performed left-to-right, but other74

protocols are also possible.75

IMT system
t̂

t̂

user

s

p, d

Figure 1: Diagram of a typical approach to IMT

The iterative nature of the process is emphasized by the loop in Fig. 1, which indicates that, for a source sentence76

to be translated, several interactions between the user and the system could be performed. In each interaction, the77

system produces the most probable translation t̂ that is coherent with the prefix formed by concatenating the previous78

prefix p and the user correction d:79

t̂ = argmax
t:τ(t,p·d)

Pr(t | p, d, s) (2)

where τ(t, p · d) is a function that is true if p · d is a prefix of t. It is worthy of note that the main difference between80

Eq. (1) and Eq. (2) is that, in the second case, t̂ is must be coherent with the validated prefix p·d. Since the probabilistic81

models in Eq. (1) and Eq. (2) are estimated in the same way, Eq. (2) can be considered as a constrained search problem82

of the classical MT problem. In fact, at the beginning, when the user has not validated any prefix, Eq. (1) and Eq. (2)83

are equivalent equations. In addition, adaptive approaches can also be assumed, where the system is able to learn from84

each user interaction to improve the underlying statistical models [19].85

For the sake of a better understanding, a typical translation IMT session is exemplified in Fig. 2. First, the system86

starts with an empty prefix, so it proposes a full hypothesis. Then, the user corrects the first error, not, by typing87

‘is’. Next, the system proposes a new suffix, in which the first word, not, has been automatically corrected. The user88

amends at by typing ‘in’. Finally, as the new proposed suffix is correct, the process ends. Note that 4 operations would89
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have been needed in a PE scenario, whereas only 2 are needed in IMT. In this example, the user types the complete90

wrong word. Nevertheless, it is straightforward to extend this operation to the character level instead of word level.91

SOURCE (s): si alguna función no se encuentra disponible en su red

REFERENCE (r): if any feature is not available in your network

ITER-0 (p)

ITER-1

(t̂) if any feature not is available on the network

(p) if any feature

(d) if any feature is

ITER-2

(t̂) if any feature is not available at the network

(p) if any feature is not available

(d) if any feature is not available in

FINAL

(t̂) if any feature is not available in your network

(t̂ ≡ r) if any feature is not available in your network

Figure 2: Example of an IMT session for translating a Spanish sentence s to an English sentence t. Initially, in

iteration 0, the prefix is empty, i.e., the user has not performed any validation. In iteration 1, the system proposes

a fully automatic translation t̂. Then, the user finds the first error and amends it by introducing the correct word

(d), which is shown in boldface. As a result, the user has implicitly validated a prefix (p), shown in italics. The

concatenation of the prefix and the corrected word constitutes a new prefix for the next iteration (displayed in blue).

The process continues until the user is satisfied with the solution. Note that 4 operations would have been needed in a

PE scenario, whereas only 2 are needed in IMT.

3. Using On-Line HTR to Correct MT Output92

Typically, the correction of MT output is performed using a keyboard and, occasionally, a mouse to position the93

cursor [12]. Professional translators agree that this approach has been proved to be efficient. However, the user needs94

to be in front of a desktop computer which imposes some restrictions regarding where and how the work is to be95

done. Laptop computers can also be used, although arguably performance could be diminished because of the use of96

uncomfortable laptop keyboards and track pads. Thus, although e-pen interaction may sound impractical for texts that97

need a large amounts of corrections, there is a number of circumstances where e-pen interaction can be more suitable.98

For example, it can be well suited for amending sentences with few errors, as the revision of human post-edited99

sentences, or translations where the system has a high confidence that the output is of good quality. Furthermore, it100

would allow to perform such tasks while commuting, traveling or sitting comfortably on the couch in the living room.101
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Now, imagine an application devised to translate documents. On the one hand, there is a text area with the output102

of an automatic machine translation system. As this output may contain errors, the user of the application reads the103

output to locate the first error. The reading is performed in a specific order, left-to-right in most western languages, for104

instance. Let us assume that when the user finds the first error, all the words before it have already been revised and105

validated. Thus, they can be regarded as correct. Once the error has been located, the user introduces the correction106

with a stylus. As a result, the system receives a position where the error is located, a word that is incorrect (the word107

pointed by the position) and a sequence of pen strokes that represent the correct word in that position. On the other108

hand, the source document to be transcribed is shown to the user. There is a strong relationship among the words in109

the source sentence and the words in the target sentence.110

Figure 3 is a mock-up of a possible application on a tablet device for such scenario. The screen is divided in111

two sections. First, the upper part shows the source document, and probably the source sentence being currently112

translated, s, is highlighted appropriately. Second, the lower section contains the current state of the translation, t.113

Since we assume that post-editing is usually performed from left to right, the text which has already been revised and114

validated is highlighted. On the other hand, the text which is to be revised is displayed grayed out. From the sentence115

currently being translated we can identify three parts: the revised prefix of the sentence, p, the error committed by the116

system, e, and the correction proposed by the user introducing strokes with a stylus, x.117

In a scenario as described above, the HTR subsystem should make few errors to make the application usable.118

The aim of this work is to devise a robust HTR system that allows a potential user to revise and correct the output119

of a machine translation system using an electronic pen. To this regard, we assume that the user will introduce the120

corrections by writing over the word or sequences of words (phrases) she judges to be incorrect. Thus, the problem of121

on-line HTR consists in converting a sequence of strokes, x, into a word or phrase in text format, d. The strokes can122

be acquired from a stylus, electronic pen or a touch-screen.123

3.1. System Baseline124

The baseline approach to the problem from a statistical point of view is to obtain the most likely decoding d given125

the strokes x,126

d̂ = argmax
d

Pr(d | x) = argmax
d

Pr(d)Pr(x | d) (3)

where Pr(d) can be represented by a language model and Pr(x | d) by morphological models.127

The morphological models can be modeled by hidden Markov models [2] or neural networks [1]. On the other128

hand, a common and practical approach to model Pr(d) is by means of n-grams [20]. The description of an on-line129

HTR system would end here for most applications. However, our purpose is to take advantage of the information130

available in the IMT application to make on-line HTR more robust. In the remainder of this section, we will introduce131

gradually the different kinds of information sources into the language model. With the addition of each of them, we132

aim to make the on-line HTR system more robust.133

5



methods

strokes,  x

error, e
prefix, p

source sentence, s

translation, t

Figure 3: Mock-up of an interactive machine translation application on a tablet device.

3.2. Discarding the produced error134

In the e-pen enabled IMT interface aforementioned, the user is expected to write the strokes over the erroneously135

translated word, and thus, the system knowns what word the user wants to replace. Therefore, the first and easiest136

approach is to remove the erroneous word e from the list of candidate hypotheses. This way, Eq. (3) becomes137

d̂ = argmax
d6=e

Pr(d)Pr(x | d) (4)

3.3. Exploiting information from the revised translation138

The second sensible approach to take is to add information regarding the revised translation prefix, p. Again, from139

Eq. (3) we can derive an HTR system that takes into account previously validated words:140

d̂ = argmax
d

Pr(d | x, p) ≈ argmax
d

Pr(d | p)Pr(x | d) (5)

under the assumption that Pr(x | d, p) does not depend on p if d is known. In addition, Pr(d | p) is a prefix language141

model, i.e., the probability of d depends on the left-context. Of course, we can also discard the erroneous word from142

Eq. (5),143

d̂ ≈ argmax
d6=e

Pr(d | p)Pr(x | d) (6)
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These techniques can be extrapolated to most post-editing tasks. In fact, Toselli et al. [7] used the erroneous word144

and a 2-gram model to improve the HTR performance for interactive transcription of text images. Next, we will show145

how the information regarding the translation process can be exploited for further improve HTR decoding.146

3.4. Leveraging information from the source sentence147

A specific source of information that can help to improve robustness in the MT scenario is, naturally, the sentence148

in the source language. Since the target sentence conveys the meaning of the source sentence, s, user corrections149

should be restricted somehow to the possible translations of it. Hence, we can formulate the problem as,150

d̂ = argmax
d

Pr(d | x, p, s) ≈ argmax
d

Pr(d | p, s)Pr(x | d) (7)

assuming that Pr(x | d, p, s) does not depend on p and s if d is known.151

Nevertheless, the relationship between the target and the source sentence in Pr(d | p, s) is not trivial to establish.152

Two possibilities are considered in this work. First, word-based models are the basis for modern statistical MT [21].153

Although they cannot provide a good performance when translating complete sentences, they offer a smoothed and154

reliable probability distribution for word models. In addition, they serve as initialization for the second kind of models155

considered: phrase-based models [18]. These models improve word-based models since they are able to translate156

sequences of words (phrases) and constitute the state-of-the-art in MT.157

3.4.1. Word-based translation models158

Brown et al. [21] approached the problem of MT in Eq. (1) from a statistical point of view as a search problem159

of a translation t. In this approach a hidden variable a is introduced that represents the alignment between the words160

in the source and target sentence. Let a be a vector with the length of the target sentence |t|1, where each element ai161

represents an index in the source sentence to whom ti is aligned, i.e., ai means that ti is aligned to sai . In order to162

simplify the notation, from now on we will refer to ai as j so that j indexes source words. Formally, we can model163

the posterior probability of the target sentence t being a translation of the source sentence s by marginalizing over the164

set of all possible alignments between the words in t and the words in s,165

Pr(t | s) =
∑

a

Pr(t, a | s) (8)

Then, Pr(t, a | s) can be decomposed using the chain rule. After taking some strong assumptions, two distribu-166

tions are obtained. First, the alignment model, Pr (j | i, |s|), represents the probability of the target word at position167

i to be aligned with the source word at position j for a source sentence of length |s|. Second, the word translation168

model, Pr(ti | sj), models the probability of the target word at position i to be a translation of the source word at169

1We define the length of a sentence as the number of elements in the sentence. The elements are typically words and symbols, but it depends

on the tokenization.
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position j. The above assumptions are necessary to make model estimation tractable and result in the so-called model170

2 (M2) [21].171

In M2, the alignment probability, Pr (j | i, |s|), can be approximated by the relative frequency of position j in172

the source sentence to be aligned with position i in the target sentence for a source sentence of length |s|. On the173

other hand, the translation probability, Pr(ti | sj), can be approximated by a word-to-word statistical dictionary174

which essentially is the relative frequency of ti being aligned with sj . Nonetheless, these frequencies cannot be175

estimated directly since the real alignments are unknown. Thus, the EM algorithm is needed to reliably estimate176

these probabilities [21]. Model 1 (M1) is a particular case of word-based models where the alignment probability is177

approximated by an uniform probability distribution, Pr (j | i, |s|) ≈ (|s|+ 1)−1.178

Returning to our original problem, we can approach Pr(d | p, s) in Eq. (7) with word-based translation models179

with some assumptions. First, from the prefix p we can obtain the position of the erroneous word to be corrected,180

i = |p|+ 1 ignoring the rest of the words in the prefix,181

Pr(d | p, s) ≈ Pr(d | i, s) (9)

Then, we can introduce the alignment between d and the words from the source sentence by summing for every182

possible position j in s,183

Pr(d | i, s) =
|s|∑

j=1

Pr(d, j | i, s)

=

|s|∑

j=1

Pr(j | i, s)Pr(d | j, i, s) (10)

Finally, if we assume, in a similar way to M2, that Pr(j | i, s) does not depend on s but on |s|, and that Pr(d |184

j, i, s) does not depend on the whole s but just the word aligned to d, sj with j, then we can approximate Eq. (10) as185

Pr(d | i, s) ≈
|s|∑

j=1

Pr(j | i, |s|)Pr(d | sj) (11)

where Pr(j | i, |s|) is an M1 or M2 alignment model and Pr(d | sj) is a statistical dictionary.186

To clarify the role of the alignments and the dictionary, observe Fig. 4. The source sentence is shown in the187

middle. Each word has its corresponding position, j, as a subscript. Above each word, there is a list of its most188

probable translations using the dictionary. Grey levels are proportional to the probability of the dictionary. On the189

other hand, in the bottom, there is a possible translation, which has an error in position i = 4. Below that, the user190

is trying to correct that mistake by introducing the word . Each link between a source word and the target word in191

position 4 represents the alignment probability. The stroke boldness is proportional to the M2 alignment probability.192

Note that for an M1 model, all alignments would have had the same thickness.193

If we focus on the possible candidate transcriptions of , we realize that there are two possibilities that could194

create confusion to the decoder: ‘if’ as translation of ‘si1’ and ‘in’ as translation of ‘en8’ due to the fact that the195
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si1 alguna2 función3 no4 se5 encuentra6 disponible7 en8 su9 red10

if1 any2 feature3 not4 is5 available6 on7 your8 network9

if
for

whether

is
located
found

available
unavailable

possible

network
networking
share }

}
translation dictionary. Grey levels
are proportional to the probability
of being a translation of the source
sentence, Pr (d|sj).
aligments. The aligments link
source words with the target word
being corrected. Link boldness is
proportional to the alignment prob-
ability, Pr (j|i, |s|).

sj =

ti =

your
its
the

in
on
at

is
are
it

not
do

does

feature
function

is

any
a

below

Figure 4: Visualization of alignments and translation dictionary.

strokes for ‘is’, ‘if’ and for ‘in’ can be very similar. Both can compete with the correct transcription ‘is’. The first, has196

a high probability in the dictionary, Pr(if | si1) = 0.88, whereas Pr(is | se5) = 0.46, Pr(is | encuentra6) = 0.34197

and Pr(in | en8) = 0.40. Then, since the M1 model has a uniform alignment probability, it would assign a higher198

probability to ‘if’ than to ‘is’. However, ‘si1’ actually has a lower probability of being aligned with ‘not4’. Therefore,199

the M2 model is able to solve this shortcoming thanks to the alignments with high probability to the correct words. In200

this case, Pr(5 | 4, 10) = 0.38 and Pr(6 | 4, 10) = 0.12, whereas Pr(1 | 4, 10) = 0.04.201

3.4.2. Phrase-based translation models202

Word-based translations provided a basis for MT. However, their performance regarding translation quality was203

not sufficient. Their limitation resides in that they cannot model properly context information [22]. Phrase-based204

models aim at reducing this problem by translating phrases (fragments of sentences) instead of single words. These205

models were popularized by Och and Ney [23], who established the state-of-the-art phrase-based log-linear models.206

Phrase-based models offer a great opportunity to estimate Pr(d | p, s). However, we cannot use these models directly,207

as we did with word-based models. One limitation of phrase-based models is that their probabilities are ‘peaky’ and,208

usually, they cannot model all possible translations. As a result, it is possible that Pr(d | p, s) is 0 for a user209

established prefix like it would be the case in IMT. Then, it is necessary to smooth theses probabilities. For instance,210

we can generate n-gram-like models from the hypotheses in a word graph (WG) of a MT system [24].211

Word graphs contain a set of the most likely translations of the source sentence. They can encode a large number212

of translations in a more efficient way than n-best lists. Although one may think that the WG could be directly used,213

there are some details that must be taken into account. First, WGs do not contain all the possible translations since, in214

practice, many pruning techniques must be used to generate the translations efficiently. Second, phrase-based models215

are not good dealing with long distance alignments due to the introduction of heuristic length constrains, and thus,216

WGs do not present sentences with long distance reorderings. In those cases, a user validating a prefix p that is not217

contained in the WG would obtain a zero probability in Pr(d | p, s). Hence, it is interesting to smooth the probability218

distribution encoded in the WGs. To do so, WGs can be simplified in the way that language modeling is typically219

approached: we make each word to depend only on the preceding n − 1 words instead of depending on the whole220

9



if:1 any:1
feature:0.4

feature:0.6

cannot:0.4 be:0.4 found:0.4 on:0.4 the:0.4

web:0.62

is:0.24

is:0.15

is:0.21

not:0.24

not:0.15

not:0.21

available:0.24

available:0.15

available:0.21

at:0.24

in:0.15

in:0.21

the:0.24

your:0.15

your:0.21

web:0.15

network:0.21

N (feature cannot)

N (feature is)

qi

qf

web:0.15

detail of link, l

begin node, b(l) end node, e(l)

word, w(l) Pr(Ul | s), f(l)

1.0

0.4

0.6

Pr(Uq | s)

Figure 5: Word graph with posterior probabilities. It represents a subset of hypotheses of the hypothesis space of a

state-of-the-art translation model for the source sentence ‘si alguna función no se encuentra disponible en su red’. On

the left, in blue the set of links considered when computing the average count of the bi-gram ‘feature is’ whereas in

orange the link considered for the bi-gram ‘feature cannot’.

prefix. As a result, Eq. (7) can be rewritten as221

d̂ ≈ argmax
d

Pr(d | pi−1i−n+1, s)Pr(x | d) (12)

where pi−1i−n+1 are the words in the prefix from position i − n + 1 to position i − 1, i.e., Pr(d | pi−1i−n+1, s) only222

takes into account the latest n − 1 words from the prefix. Note that Pr(d | pi−1i−n+1, s) is very similar to a n-gram223

language model except for the dependency on s. We used a similar approach for dictation of handwritten historical224

documents [25, 26] and speech interaction to IMT [13]. Khadivi and Ney [14] presented a closely related approach for225

generating n-gram-like models from n-bests lists instead of WGs. The advantage of the n-gram-like prefix modeling226

assumption is that the models only take into account a limited size of the history, and thus, can provide a smoother227

probability distribution.228

Formally speaking, a WG L is a directed, acyclic, weighted graph with an initial node qi and a final node qf .229

A link l is defined as any edge between two nodes; each link has associated a begin node b(l), an end node e(l), a230

hypothesized word w(l), and a score f(l); each link can be considered as a hypothesis w(l) between the nodes b(l)231

and e(l) with score f(l). Any path from qi to qf forms a translation hypothesis t. In MT, f(l) is the score of the232

log-linear phrase based model for that particular link. An example of WG is displayed in Fig. 5.233

Let Pr(Uq | s) be the posterior probability of all the paths that use the node q and let Pr(Ul | s) be the poste-234

rior probability of all the paths that use the link l. These probabilities can be efficiently computed with a forward-235

backward-based algorithm [27]. Then, the average counts of word sequences for a given source sentence can be236

estimated efficiently as in [28]. For a given n-gram length:237

C∗(dii−n+1 | s) =
∑

ln1∈N (dii−n+1)

∏n
j=1 Pr(Ulj | s)∏n
j=2 Pr(Ub(lj) | s)

(13)

where N (dii−n+1) is the set of all the sequences of concatenated links in L that produce the sequence of words238

dii−n+1.239
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An example of such sets on a simplistic WG is shown in Fig. 5 for the 2-grams ‘feature cannot’ and ‘feature is’.240

Then, C∗(feature cannot | s) and C∗(feature is | s) can be computed as241

C∗(feature cannot | s) = 0.4 · 0.4
0.4

= 0.4

C∗(feature is | s) = 0.6 · 0.24
0.6

+
0.6 · 0.15

0.6
+

0.6 · 0.21
0.6

= 0.6

That is, ‘feature is’ appears 0.6 times in average in the possible set of translation, whereas ‘feature cannot’ only242

appears 0.4 times. Note that if a sequence of words appears more than once in a sentence, the average counts might243

exceed 1.244

Now, n-gram-like probabilities from the WG with posterior probabilities can be calculated after a proper normal-245

ization:246

Pr(di | di−1i−n+1, s) =
C∗(dii−n+1 | s)
C∗(di−1i−n+1 | s)

(14)

Then, Eq. (14) can be used directly in Eq. (7) to approximate Pr(d | p, s). In other words, given a sequence247

of words dii−n+1, Pr(di | di−1i−n+1, s) can be estimated by summing up the posterior probabilities of all sentences248

containing the sequence dii−n+1.249

The estimation in Eq. (14) presents the problem that many n-grams are not seen in the WG. Then, they will have250

zero probability, and the HTR system will fail to recognize them. A common approach is to rely on simpler models to251

account for unseen events using back-off models [29]. As the estimated counts are not real counts (they vary from 0252

to the number of times the n-gram occurs in a sentence), typical discount methods cannot be applied [30]. However,253

absolute discount can be used [31], which consists in subtracting a constant, ε, from C∗.254

Furthermore, only words present in the WG are included into the model (which implies a high number of out-of-255

vocabulary words (OOV), since WGs only contain the words of the most likely hypotheses). The OOV problem is256

solved by distributing the discounted mass from the unigram among the remaining words of the vocabulary.257

Finally, to improve the estimation of unseen events, n-grams from the WG can be interpolated linearly with the258

standard n-gram model:259

Prγ(d | p, s) = γPr(d | p, s) + (1− γ)Pr(d | p) (15)

This way, the words that were not used by the MT engine are assigned a meaningful probability.260

3.5. Integrated HTR and IMT decoding261

Previous models assume a two-step process, in which the strokes are first decoded into a word or phrase, and then,262

the decoded word is used to correct the output of the IMT system. However, this decoding can be performed in an263

integrated way by marginalizing over every possible decoding d in Eq. (2):264

t̂ = argmax
t

∑

d

Pr(t, d | p, x, s) (16)
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Note that Eq. (16) sums over all possible values of d, but we also are interested in the result of the decoding. Then,265

we can decompose Eq. (16) using the chain rule. Approximating the sum by the maximum, and assuming that266

Pr(t | p, x, d, s) does not depend on x if d is known,267

t̂ ≈ argmax
t

max
d

Pr(d | p, x, s)Pr(t | p, d, s) (17)

where d̂ can be obtained as a byproduct of the decoding of t̂.268

The first term in Eq. (17) can be approximated as in Eq. (3),Eq. (4), Eq. (5), Eq. (11) or Eq. (12). The second term269

is a prefix conditioned translation model as in Eq. (2). This probability forces d not just to be a good translation of s270

but to form part of a sentence that is good translation of it. Hence, the decoding of d is benefiting from a new source271

of information.272

4. Experiments273

In this section, we present a set of experiments to assess the performance of the MT specific HTR systems de-274

scribed in the above sections. Two kinds of experiments were conducted. First, the word-based experiments assume275

that the user only writes one word at a time. Second, in the phrase-based experiments the user writes a set of consec-276

utive erroneous words. Additionally, two corpora were generated from the Xerox corpus, one with Spanish phrases277

from translations of English sentences and the other one with English phrases from translations of Spanish sentences.278

The details of how the two corpora were generated are given in Sec. 4.3.279

4.1. IMT corpus: Xerox280

The Xerox corpus, created in the TT2 project [32], was used for the experiments, since it has been extensively281

used in the literature to evaluate IMT systems. It consists of a collection of technical manuals in English, Spanish,282

French, and German. The English version is the original document, while the others are professional translations of the283

original. The English and Spanish versions were used in the experiments. The training data was used to generate the284

translation models. Examples of sentence pairs are shown in Fig. 6. The corpus consists of 56k sentences of training285

and a development and test sets of 1.1k sentences. The development set was used to find the tuning parameters that286

were used in test. Test perplexities for Spanish and English are 35 and 51, respectively. In addition, the Spanish287

test set has 0.7% out-of-vocabulary running words, whereas the English test set has 0.6% out-of-vocabulary running288

words.289

4.2. HTR corpus: Unipen290

For on-line HTR, the UNIPEN corpus [33] was used. The training data was composed of symbols, digits and the291

1000 most frequent English and Spanish words. The words were generated by concatenating different instances of292

characters from the same writer, with a total of 17 different writers. Overall, 68 character classes and a total of 23.5k293

unique character instances were used to generate all the 43.8k training samples. The feature extraction and modeling294
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Figure 6: Examples of paired sentences in Spanish and English extracted from the Xerox corpus.

Spanish English

use este botón para am-

pliar la búsqueda de dis-

positivos xerox.

use this button to expand

the search for xerox de-

vices.

la búsqueda puede

ampliarse para incluir

otros nombres de comu-

nidades de snmp que se

han agregado a la red.

the search may be ex-

panded to include addi-

tional snmp community

names that have been

added to your network.

Figure 7: Examples of pen strokes from the UNIPEN database used for the simulation of HTR. The words were

obtained by concatenating random character instances from the corresponding user.

user another recursos

User 1

User 2

User 3

we used was based on Pastor et al. [2]. Basically, the strokes were preprocessed by eliminating pen-up points and295

consecutively repeated points. Then, a low pass filter was applied to reduce noise by replacing each point with the296

mean of its neighbors [3]. From the resulting trajectory, 6 features were extracted:297

• the vertical position is normalized by scaling and translating it to [0, 100] keeping aspect ratio.298

• the first and second derivatives for the vertical and horizontal position.299

• the curvature, which is the inverse of the radius of the curve in each point.300

Next, these feature vectors were used to train the morphological models, which were represented by left-to-right301

continuous density Hidden Markov Models (HMM) [34] with Gaussian mixtures and variable number of states per302

character. Three users were separated from the training process to produce the words from concatenated characters303

for the development sets, which were used to find the optimal tuning parameters, and test sets. Examples of generated304

word in Fig. 7.305
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4.3. Procedure306

For the word-based experiments, the simulation of the user interaction was performed in the following way. First,307

the publicly available IMT decoder Thot [35] was used to run an off-line simulation for keyboard-based IMT. To do308

this, we translated each test source sentence. Then, we obtained the longest correct prefix comparing to the reference.309

Next, we took the word that followed that prefix as the word the user would introduce as a correction. Finally, we310

used the prefix, and the correct word to obtain a new translation. This was repeated until the reference was obtained.311

As a result, a list of words that the system failed to predict was obtained. Supposedly, this would be the list of words312

that the user would correct with handwriting.313

Then, from UNIPEN corpus, three writers were selected to simulate the user interaction. For each writer and for314

each of the words in the list of corrections, the handwritten words were generated by concatenating random character315

instances from the user’s data to form a single stroke. Finally, the generated handwritten words were decoded using316

the proposed systems with iAtros decoder [36]. The 3-gram perplexities for the generated words are 205 and 226317

for development and test, respectively, in Spanish, and 242 and 336 for English. It is worthy of note these high318

perplexities, when for the whole dev and test sets the perplexities are 35 and 51. The word lists were extracted from319

the erroneous translations that were generated with a decoder using the very same n-grams models used to compute320

the perplexity. Hence, it is reasonable to assume that if the decoder failed to translate these words it was in part321

because the language probabilities were low enough, i.e., these probabilities were not well estimated, resulting in a322

high perplexity. Finally, the number of words in the development sets are 2767 for Spanish and 2398 for English, and323

in the test sets 2248 and 2102, respectively.324

For the phrase-based experiments, the development and test sets were constructed in a similar way. In this case,325

from the word lists aforementioned, we concatenated the strokes of the words that were consecutive in the original326

text to form strokes of phrases. For instance, if the MT system had translated ‘lista de impresoras’ to ‘list of printers’327

when the user preferred ‘printer list’, in the word-based scenario we would have generated the word ‘printer’ and the328

word ‘list’. In the phrase-based scenario, as both errors are consecutive, we would have concatenated them in a single329

phrase as ‘printer list’. Figure 8 illustrates a box-and-whisker diagram of the phrase lengths in the different sets. We330

can observe from the whiskers that the majority of the phrases are less than 3 words for Spanish and 6 for English,331

whereas for the outliers the lengths reach a maximum at 12 and 18, respectively. Note, however, that the interquartile332

range is between 2 and 3, meaning that half of the phrases are reasonably short. Finally, the number of phrases in the333

development sets are 941 for Spanish and 896 for English, and in the test sets 1268 and 1130, respectively.334

4.4. Evaluation measures335

The performance of the word-based HTR system has been assessed with the classification error rate (CER). CER336

is the ratio between the number of misrecognized words and the total number of words. On the other hand, the337

phrase-based HTR system has been assessed with the word error rate (WER), which can be computed as the number338
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Figure 8: Box-and-whisker plots of the phrase lengths obtained from consecutive errors. In Spanish (es), the system

commits typically between 1 and 3 consecutive errors although in rare cases it can commit up to 12 errors. In contrast,

up to 6 consecutive errors can be considered normal in English (en). In this case, rare sentences contain at most 18

consecutive errors.

of substitutions, deletions and insertions needed to transform the hypothesis into the reference, normalized by the339

number of words in the reference. The results present the average error of the three users.340

4.5. Results341

In this section, we will compare the performance of the proposed systems. In order to make the references easier,342

we will name the different systems as follows:343

HTR. The baseline HTR system as defined in Eq. (3).344

ERR. The baseline HTR system after removing the erroneous word, Eq. (4).345

nPREF. In Eq. (5), the latest n words of validated prefix in the target sentence are taken into account.346

M1. In Eq. (11), information regarding the dictionary is used, but the alignment probabilities are uniform.347

M2. In Eq. (11), the dictionary and the alignment probabilities are used.348

nWG. In Eq. (12), the system uses an n-gram that has been extracted from the translation WG.349

Furthermore, if the decoding is performed in an integrated way, the system will be marked with +IMT. Besides,350

several of the proposed systems can be combined by linear interpolation as in Eq. (15). In this case, we will use +351

symbol to mark which models were interpolated. The interpolation parameters were obtained in the development set352

to optimize the accuracy.353

In addition, the proposed language models were encoded as n-grams. The aim of this is two-folded. First, we354

would like to leverage current HTR systems without custom software modifications. Second, since the new sources355

of information are added early in the HTR system, we expect to reduce the error cascade produced in post-processing356
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error correcting systems. However, although all the proposed models can be trivially encoded as 1-grams for the case357

of word-based recognition, some of them cannot be encoded efficiently for n-grams as such and require special search358

algorithms. As these cases are out of the scope of the current paper, such models will not be evaluated for phrase359

recognition. Nevertheless, these models could also be applied in a post-processing rescoring stage. For instance, both360

M1 and M2 models can be easily encoded as a 1-gram for word-based recognition. As there is just one possible361

value for i and s, the 1-gram can be built by computing Eq. (11) for each word of the vocabulary. In contrast,362

M2 models cannot be encoded as n-grams for phrase recognition since the probability depends on the position i of363

the hypothesized word, and then, i should be stored in the search algorithm for every word hypothesis. Luckily,364

M1 models assume independence of the position i so they can be encoded as a 1-gram even for the case of phrase365

recognition.366

Finally, as it is typical in modern HTR and IMT models, the different probability distributions must be scaled,367

particularly the language model. Here, the optimum language model scaling factor, λ, was chosen to optimize the368

average CER or WER in the development set of the three writers with the downhill simplex method [37]. There were369

not significant differences in the optimum parameters obtained separately for each writer. Therefore, the estimation370

of these parameters seems rather robust to the variability of writers.371

Regarding the results for the word-based experiments, Fig. 9 shows the test CER for different values of λ for the372

most relevant systems. First, it must be pointed out that the optimum λ from the development set approximated quite373

well the test optimum, i.e., the estimation of λ does not present much overfitting. The only exception was the 2WG374

system for which an extra error reduction of 0.5% absolute points could have been achieved.375

Second, we should note the effect of adding ERR to the system on the error rate. A small improvement can be376

noticed in Spanish. However, the curves in English overlap. The explanation for this is a bit involving. Note that377

Spanish is a more inflected language than English. For example, ‘both’ (in English) can be translated by ‘ambos’ or378

‘ambas’ (in Spanish), depending on the gender, and having very similar writings. In contrast, ‘añade’ (in Spanish)379

can be translated by ‘adds’ (in English). Thus, we can see how translating from a less inflected language to a more380

inflected language introduces extra ambiguity. Furthermore, the possible translations of ’both’ present also a similar381

spelling. Conversely, the ambiguity is reduced in the opposite direction. Table 1 shows the 5-best list of the HTR382

scores for the words ‘ambos’ and ‘adds’. In the first case, ‘ambas’ and ‘ambos’ are the two most likely words in the383

HTR system, which differ in just one character and have similar HTR scores. Now, imagine that the IMT engine384

mistranslates ‘both’ to ‘ambas’, by changing the gender of the word. Then, by saying that ambas is not correct with385

the ERR model, we give the system the opportunity to amend the error himself. However, in the English case, none386

of the words are synonyms of the word to recognize, and thus is more difficult to find the mistranslated word at the387

top of the n-best list. As a consequence, it is very unlikely that ERR achieves much improvement when translating388

from Spanish to English.389

With respect to the nPREF models, only 4PREF has been displayed in the plots. The improvement over the base-390

line is consistent and significant. The experiments were run on 2PREF, 3PREF and 5PREF as well. However, only391
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Figure 9: Development CER when modifying the λ scale factor. The x axis represents the variation of the normalized

scale factor λ. The y axis shows the classification error rate (CER). At top, the comparison of the basic models

described in Sec. 3.1, Sec. 3.2 and Sec. 3.3. At bottom, the most relevant translation models described in Sec. 3.4.

2PREF for English performed slightly worse than 4PREF. Longer prefixes achieved almost the same performance.392

With respect to the systems using the translation models in Fig. 9c and Fig. 9d, we can see that these systems393

usually outperform the best basic system, 4PREF+ERR. The exception for this is 2WG for English, which shows a394

small performance degradation with respect to 4PREF+ERR. Still, 2WG systems do not seem to improve the basic395

systems significantly. Although several nWG systems were tested, any of them showed improvements over 2WG. On396

the other hand, M2 systems achieve good improvements, although they are simpler than 2WG. A reason for that is397

17



both→ ambos añade→ adds

word HTR score word HTR score

ambas 651.6 aids 137.9

ambos 646.9 cities 105.6

cambios 390.7 cycles 91.6

amplias 384.1 adds 90.7

campos 344.4 circles 85.8

Table 1: 5-best list for the words ambos and adds, which have been misrecognized. The cursive word is the word the

IMT system mistranslated and the user is amending.

that M2 models have a smoother distribution probability and nWG systems need some sort of hypothesis pruning. In398

fact, the average number of candidates with probability greater than zero is 292 for M2 while it is 38 for 4WG. IMT399

suffer even more from this problem with 2 candidates average.400

A summary of the different alternatives studied for the word-based experiments is shown in Table 2. First, with401

only the basic information, 4PREF+ERR clearly outperforms HTR. Second, using translation models we can achieve402

further improvements. Since M2 performs much better than M1 we can deduce that alignment information is crucial403

for the translation models. On the other hand, nWG performance is worse than word-based translation models. As it404

has been explained before, that might be due to the poorly smoothed probability distribution. Another reason might405

be that, in the process of obtaining n-gram models, information regarding alignments is lost as a result of the n-406

gram assumptions. When interpolating with 4PREF, M2 models do not show significant improvements. In fact, for407

Spanish, the system presents over-fitting, since performance in development improves but in test decreases. However,408

4PREF smooths 2WG distribution achieving close results to word-based models. Next, by introducing IMT, small409

improvements can be obtained. Not surprisingly, IMT suffers from the same problems than nWG, but even more410

prominent. Finally, including all systems we can observe the best results overall, except for the over-fitting in the411

Spanish test set. Thus, 2WG seems to contribute slightly to improve the final model accuracy.412

Table 3 shows the WER for phrase-based recognition. First, it must be noted that the results for ERR, M2, and413

IMT are not shown, since they would require a different search engine. In addition, it is worth of mention that the414

baselines for phrase-based HTR have almost the double error rate than the word-based baselines. This is caused415

primarily because the segmentation for the words in the phrases are unknown. Then, it is the search algorithm that416

must find the most likely segmentation. As a result, segmentation errors are propagated to word errors. If we look at417

the results regarding the nWG models, they perform unexpectedly bad when used alone. However, when interpolated418

with 3PREF they show a good improvement. As in word-based recognition, word-based translation models show the419
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System Spanish English

HTR 11.1 9.9

4PREF+ERR 9.9 9.5

2WG+ERR 9.8 9.4

M1+ERR 9.4 9.0

M2+ERR 8.6 7.7

2WG+4PREF+ERR 9.2 7.9

M2+4PREF+ERR 9.0 7.5

2WG+4PREF+ERR+IMT 9.2 7.9

M2+4PREF+ERR+IMT 8.9 7.5

ALL 8.9 7.4

Table 2: Summary of the CER results for word-based recognition. The results show various language modeling

approaches for the test sets. In boldface the best systems.

System Spanish English

HTR 16.8 18.6

3PREF 16.3 18.0

2WG 18.9 19.7

M1 17.0 17.4

2WG+3PREF 16.2 16.6

M1+3PREF 15.2 15.5

M1+2WG+3PREF 15.2 15.5

Table 3: Summary of the WER results for phrase-based recognition. The results show various language modeling

approaches for the test sets. In boldface the best systems.

best results, especially when interpolated with other models.420

To sum up, all the proposed systems significantly outperform the baseline recognizer. Basic models obtain a421

good improvement over the baseline. However, adding information from the translation may achieve remarkable422

results. Although more complex translation models suffer from smoothing problems, they can also contribute when423
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interpolated with the rest of the models.424

4.6. Error Analysis425

An analysis (Table 4) of the results for the best word-based model shows that 49.2% to 54.4% of the recognition426

errors were produced by punctuation and other symbols. To circumvent this problem, we proposed a contextual427

menu in [16]. With such menu, errors would have been reduced (best test result) to 4.4% in Spanish and 3.5% in428

English. Out-of-vocabulary (OOV) words plus zero probability (P0) words (the words for which the decoder assigned429

zero probability or were pruned out) also summed up a big percentage of the error (40.3% and 28.9%, respectively).430

Finally, the rest of the errors were mostly due to one-to-three letter words, which can be basically a problem of431

handwriting morphological modeling.432

On the other hand, phrase recognition presents a different error distribution. First, note that two new classes of433

errors have been introduced: deletions and insertions. The former account for the words in the reference that have434

been omitted, whereas the latter account for words inserted in the output hypothesis but do not correspond to any word435

in the reference. Both contribute to generate hypotheses with lengths different to their respective references, since the436

HMM models is not able to perform an accurate segmentation. Then, as a result, the proportion of recognition errors437

from the ’others’ category increases from 3 to 20. In contrast, the proportion of errors regarding punctuation symbols438

decreases. Finally, it is to be remarked how the errors for short words have increased, probably because of small439

insertions or deletions.440

4.7. Reducing Effort Correcting HTR errors441

In case an HTR error is committed, the user may fall back to the virtual keyboard and type the correct word. The442

problem with this kind of keyboards is that typing is slow. To minimize this problem, we propose a contextual menu443

with a list of the n-best candidates (excluding the erroneous word). The aim is to reduce the number of clicks needed444

to obtain the correct word with respect to a conventional virtual keyboard. As a baseline, for each HTR mistake, we445

count the number of clicks needed to input the correct word as: one click to pop up the keyboard, plus the number446

of characters in the word, plus on click to close the keyboard. For the Spanish test set, the average number of clicks447

per word amounts to 9.3, while for English it is 9.1 for the best word-based models in Table 2. This values can be448

surprisingly high, since it is known that the average word length is 4.5, i.e. the average number of clicks per word 6.5.449

However, it must be noticed that longer words are also more difficult to recognize. Thus, the average word length in450

the erroneous words is higher.451

If the contextual menu is used, we count: one click for opening the menu plus one for choosing a word. If the452

correct word cannot be found in the n-best list, then we add: one count for the keyboard, plus the number of characters,453

plus a closing click. In Fig. 10, we can see, on the left axis, the CER for a given size of the n-best list. Clearly, the454

error almost reduces to a quarter, around n = 5, with respect to the baseline. Between 10 and 15, the error stabilizes.455

Note that from 5 to 10 is still a reasonable amount of candidates to be shown in a circular menu. For more than 15,456

20



word-based phrase-based

class words es (%) en (%) es (%) en (%)

punct. ., ,, :, ;, *, (, ), — 49.2 54.4 14.0 18.6

1-char a, e, y, o, u 4.1 0.9 8.3 2.3

2-char of, if, la, by, on, is, . . . 1.8 7.1 4.4 3.4

3-char for, off, los, may, . . . 0.0 4.3 2.1 4.9

numbers xxvii, xxvi, xxiii, . . . 2.3 0.9 2.1 2.3

OOV + P0 termina, luz, . . . 40.3 28.9 20.2 13.6

others latin, flash, fsma, . . . 2.3 3.4 20.3 18.6

substitutions 100 100 71.5 63.8

insertions − − 3.0 4.6

deletions − − 25.5 31.6

Table 4: Detailed analysis of the word-based and phrase-based recognition errors. Five classes have been identified

to produce the most amount of recognition errors. The second column shows samples of misrecognized words for

these classes. Columns three and four are the percentage of these classes among the total number of misrecognized

words for Spanish (es) and English (en), respectively. Columns five and six are the percentages for the phrase-based

experiments. In this case, the percentage of substitutions, insertions and deletions is also shown.

the CER almost equals the error for OOV+P0, since they cannot be found in n-best lists. On the right axis, we can457

observe the average number of clicks per word necessary to correct the mistakes. For n = 1 the number of clicks is458

reduced to 2.0. A trade-off can be found at n = 7 with 1.83 (80% relative improvement w.r.t. the baseline) and 1.82459

(78% relative improvement), for Spanish and English, whereas the lower bounds are 1.75 and 1.73, respectively.460

5. Final Thoughts and Recommendations461

While the techniques addressed in this paper have been focused on correcting machine translation output, in re-462

ality some of them can be generalized to the correction of other automatically generated outputs. In particular, ERR463

and nPREF can be used to improve HTR accuracy for any tasks in which n-grams can be used for language mod-464

eling, e.g., [7]. Obviously, M1 and M2 are MT specific, but nWG can be used for many other structured prediction465

problems where a word graph can be generated as an output. In fact in a similar way to this work, nWG has been suc-466

cessfully used for speech-enabled user interfaces for IMT [13] and for dictation of historical documents [25, 26]. In467

the same way, integrating HTR with interactive systems is possible for other applications as far as nWG is available.468

Nonetheless, using more specific techniques, such as M2, although less general, have proven to be more effective.469
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Figure 10: Reduction of CER and number of clicks as a function of the n-best list size.

Finally, we recommend that the integration of contextual information in the decoding is performed in an early stage of470

the decoding process, avoiding cascade errors. More importantly, if the techniques can be encoded as n-grams, as the471

techniques presented here, it will allow practitioners to improve their HTR systems without modifying their preferred472

HTR engines.473

6. Conclusions and Future Work474

In this paper we have described a task specific on-line HTR system to operate with an IMT application. We have475

shown that a tight integration of the HTR and IMT decoding process can produce significant HTR error reductions. It476

is worth of note that all the proposed systems significantly outperform the baseline recognizer. Basic models obtain477

a good improvement over the baseline. However, translation models achieve remarkable results. Although more478

complex translation models suffer from smoothing problems, they also contribute when interpolated with the rest of479

the models. We also have introduced a new method for correcting HTR mistakes that consists on a contextual menu480

with the n-best candidates. The results show that a list with as few as 7 candidates allows to correct the HTR mistakes481

with just 1.83 clicks per word.482

On the other hand, the analysis of the results has shown two important issues to be tackled. First, the system should483

be able to decode unknown words since they are a clear limitation to system performance. A solution for this might484

be to use character language models instead of word language models, a technique that has achieved promising results485

in other areas. Second, phrase-based models could benefit from better smoothing methods. Alignment information486

should be also taken into account more explicitly in these models. Furthermore, other alternatives could also be487

explored, as more advanced word-based translation models (such as HMM, M3, M4 or M5) that cannot be used as488

n-grams in phrase-based decoding. These models could be used instead in the rescoring of the HTR WGs. Finally, if489
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the rescoring of WGs shows promising results, it would be interesting to directly implement the more advanced MT490

models into the HTR search algorithm.491

Acknowledgements492

The research leading to these results has received funding from the European Union Seventh Framework Pro-493

gramme (FP7/2007-2013) under grant agreement no 287576 (CasMaCat), from the EC (FEDER/FSE), and from494

the Spanish MEC/MICINN under the MIPRCV ”Consolider Ingenio 2010” program (CSD2007-00018) and iTrans2495

(TIN2009-14511) project. It is also supported by the Generalitat Valenciana under grant ALMPR (Prometeo/2009/01)496

and GV/2010/067.497

References498

[1] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A Novel Connectionist System for Unconstrained499

Handwriting Recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 31:855–868, 2009.500

[2] M. Pastor, A. Toselli, and E. Vidal. Writing speed normalization for on-line handwritten text recognition. In Proceedings of the Eighth501

International Conference on Document Analysis and Recognition, 2005, page 1131–1135, 2005.502

[3] Stefan Jaeger, Stefan Manke, Jrgen Reichert, and Alex Waibel. Online handwriting recognition: the NPen++ recognizer. International503

Journal on Document Analysis and Recognition, 3(3):169–180, 2001.504

[4] S. Quiniou, M. Cheriet, and E. Anquetil. Error handling approach using characterization and correction steps for handwritten document505

analysis. International Journal on Document Analysis and Recognition, 15:1–17, 2011.506

[5] F. Farooq, D. Jose, and V. Govindaraju. Phrase-based correction model for improving handwriting recognition accuracies. Pattern Recogni-507

tion, 42(12):3271–3277, 2009.508

[6] J. Devlin, M. Kamali, K. Subramanian, R. Prasad, and P. Natarajan. Statistical Machine Translation as a Language Model for Handwriting509

Recognition. In Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference on, page 291–296, 2012.510

[7] A.H. Toselli, V. Romero, M. Pastor, and E. Vidal. Multimodal interactive transcription of text images. Pattern Recognition, 43(5):1814–1825,511

2010.512

[8] A. H. Toselli, E. Vidal, and F. Casacuberta, editors. Multimodal Interactive Pattern Recognition and Applications. Springer, 1st edition513

edition, 2011.514

[9] S. Barrachina, O. Bender, F. Casacuberta, J. Civera, E. Cubel, S. Khadivi, A. L. Lagarda, H. Ney, J. Tomás, E. Vidal, and J. M. Vilar. Statistical515

Approaches to Computer-Assisted Translation. Computational Linguistics, 35(1):3–28, 2009.516

[10] P. Koehn and B. Haddow. Interactive Assistance to Human Translators using Statistical Machine Translation Methods. In Proceedings of the517

MT Summit XII, page 73–80, 2009.518

[11] G. Foster, P. Isabelle, and P. Plamondon. Target-Text Mediated Interactive Machine Translation. Machine Translation, 12:175–194, 1998.519

[12] G. Sanchis-Trilles, D. Ortiz-Martı́nez, J. Civera, F. Casacuberta, E. Vidal, and H. Hoang. Improving Interactive Machine Translation via520

Mouse Actions. In Proceedings of the conference on Empirical Methods in Natural Language Processing (EMNLP’08), page 485–494, 2008.521
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