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Carlos Garćıa-Meca1 and Michael M. Tung2

1Valencia Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
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Abstract

Transformation optics specializes in the engineering of advanced optical devices, and in
combination with differential geometry it allows to control electromagnetic fields with arti-
ficial media in an unprecedented manner. In this work, we model transformation optics in
an inherently covariant fashion starting with a fundamental Lagrangian function. As an ap-
plication, we present the construction of a flat reflectionless immersion lens whose superior
performance is important to applications in bio- and nano-technology.
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1 Introduction

Transformation optics is an emergent field of engineering with a great impact on recent devel-
opments in advanced optical devices. With the help of differential geometry, transformation
optics allows us to fully control electromagnetic fields in a previously unknown manner [1, 2].
Through a geometric reinterpretation of Maxwell’s equations, this technique provides a way to
engineer curved spaces for light by using suitable media. On the other hand, variational princi-
ples mathematically describe in a concise and elegant way a great variety of natural phenomena,
independently of a particular choice of coordinate system. In this work, we extend this concept in
a differential-geometric framework to formulate transformation optics in an inherently covariant
and coordinate-independent form by postulating a Lagrangian function for the most fundamen-
tal description of the optical system. As an application of transformation optics, we present the
construction of a novel immersion lens of potential relevance to bio- and nano-technology. In
particular, we focus on improving the shape and reflection properties of such optical devices.

The paper is organized as follows. Section 2.1 first introduces the mathematical groundwork,
presenting the compact covariant formulation of Maxwell’s theory, which is most suitable for a
description of electrodynamic phenomena in curved space with arbitrary coordinates. Section 2.2
explains the differential geometric apparatus for finding the appropriate Lagrangian which is to
model electrodynamics in media. In Section 2.3 we construct such a Lagrangian, examining all
its underlying symmetry properties. We then derive via a variational principle the corresponding
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equations of motion (Maxwell’s macroscopic equations). Next, we arrive at general expressions for
transformation optics from this variational principle. As a practical example, Section 3 outlines
the construction of an immersion lens with improved features by using a suitable transformation
within the elaborated framework.

2 Mathematical basics of transformation optics

2.1 Classical and curved spacetime electrodynamics

Modern optics in its conventional approach is invariably based on Maxwell’s macroscopic equa-
tions in differential form, describing the electric and magnetic fields produced by matter of charge
density ρ and current density j:

∇×E+
1

c

∂B

∂t
= 0, ∇ ·B = 0, (2.1)

∇×H− 1

c

∂D

∂t
=

4π

c
j, ∇ ·D = 4πρ, (2.2)

where c denotes the speed of light and we have chosen Gaussian units for practical purposes [3].
As usual, symbols in bold represent vector quantities, whereas symbols in italics represent scalar
quantities. The resulting fields are the electric field E, the electric displacement D, the magnetic
field H, and the magnetic induction B. Eqs. (2.1) represent the source-free (homogeneous)
equations and Eqs. (2.2) the source (inhomogeneous) equations of the electromagnetic field. As
an integrability condition for Maxwell’s equations, the equation of continuity has to be satisfied

∂ρ

∂t
+∇ · j = 0. (2.3)

In four-dimensional form, this condition can readily be generalized to any curvilinear coordinate
system

jµ;µ =
1√
−g

(√
−gjµ

)
,µ

= 0, (2.4)

where jµ = (cρ, j) is the contravariant current four-vector and g < 0 is the determinant of the
underlying pseudo-Riemannian metric gµν with indefinite signature (−,+,+,+). Here and in
the following, the Einstein summation convention is implied for equal upper and lower indices
with µ = 0, 1, 2, 3, denoting by zero the temporal component and the remaining three indices
corresponding to the spatial components. We also employ the standard comma and semicolon
notation for partial and covariant derivatives, respectively.

Because of Eqs. (2.1), one can also introduce a scalar potential ϕ and a vector potential A,
which both combine to the electromagnetic four-potential Aµ = (ϕ,A). In many aspects the
four-potential Aµ or Aµ = gµνA

ν describes the electromagnetic field at a more fundamental level
than the electric and magnetic field strengths themselves [4]. Its definition is however not unique,
but the same physical situation may also be identified by any other field of the form

A′
µ = Aµ + ψ, µ (2.5)

where ψ is an arbitrary scalar field. This essential symmetry property is the so-called gauge
invariance [5] and also a guiding principle for conceiving a physical model for electrodynamics
in media and thus transformation optics based on a variational approach. In such a model,
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expressions with AµA
µ cannot occur due to their lack of gauge invariance. Notwithstanding, the

electromagnetic field-strength tensor or Faraday tensor

Fµν = 2A[µ;ν] = Aµ;ν −Aν;µ = Aµ,ν −Aν,µ = 2A[µ,ν] (2.6)

is easily shown to be gauge-invariant. Moreover, definition Eq. (2.6) makes explicit that Fµν is
antisymmetric as is indicated by the usual bracket notation for the anti-symmetrization operator.
Any antisymmetric four-tensor of rank 2 has six independent components. In this case, the
Faraday tensor just accommodates all six electromagnetic field components:

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 (2.7)

such that

Ei = Fi0 and Bi = 1
2 ϵijkF

jk. (2.8)

Latin indices only run over spatial values and ϵijk denotes the completely antisymmetric three-
dimensional Levi-Civita symbol.

With Eq. (2.6) it is a straightforward exercise in tensor analysis to prove that

F[λµ;ν] = 0. (2.9)

Note that by substituting Eq. (2.8) into Eq. (2.9), one recovers the two source-free Maxwell
equations. Hence, Eq. (2.9) is just the covariant form of Eq. (2.1).

The remaining Maxwell equations, which link the sources to the electromagnetic fields, are
given by

Fµν
;ν =

1√
−g

(√
−gFµν

)
,ν

=
4π

c
jµ (2.10)

and are the covariant form of the inhomogeneous equations (2.2), representing Gauss’s and
Ampère’s law together succinctly. Again, this equivalence may be checked by direct substitution
of Eq. (2.8) into Eq. (2.10).

In summary, Eqs. (2.9) and (2.10) comprise Maxwell’s equations in an inherently covariant
manner and permit to describe electromagnetic phenomena on pseudo-Riemannian manifolds
independent of the choice of coordinate frame. Differential-geometric methods provide the ideal
framework to recast transformation optics in such a compact and elegant way. In the following
subsections we set up the necessary mathematical groundwork for modelling phenomena in the
domain of transformation optics.

2.2 Lagrangian framework

In order to describe electromagnetic processes, we introduce the four-potential Aµ on a smooth
four-dimensional manifoldM endowed with a Lorentzian metric g with mixed signature (−,+,+,+),
where x0/c ≥ 0 will denote the time and xi ∈ R, i = 1, 2, 3, will be the parameters to specify
the location. A non-vanishing Faraday Fµν tensor is the driving force of the free electromagnetic
field and the current jµ is related to interaction with charged matter, if present.

Following the terminology of Marsden et al. [6], we further identify base space B =M , which
constitutes standard spacetime, and ambient space P , given by the four-potential Aµ : B →M .
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Then, N = B × P is the configuration space with coordinates (x0, xi, A0, Aj) ≃ (ct,x, ϕ,A), so
that any particular constellation or state of the system is uniquely determined by the mapping
B → N .

We seek a general principle to find the evolution of Aµ on the given manifold (M,g). In
geometric mechanics [7], the Lagrangian function L completely governs the behaviour of a deter-
ministic system, and it suffices to define L on a tangent bundle TM , which is identical with the
corresponding phase space. The tangent bundle TM consists of the manifold M and its tangent
spaces TpM for all p ∈M .

In this case, however, we will require the partial derivatives of a configuration with respect to
all spacetime coordinates. This generalization leads to the jet bundle J1N = B×TP , see e.g. [8]
and references therein. The corresponding Lagrangian function in the jet-bundle description of
first-order classical field theories will therefore be a mapping

L : J1N → R. (2.11)

2.3 Hamilton’s principle and transformation optics

We now proceed with the construction of a feasible Lagrangian function L which will enable
us derive Maxwell’s macroscopic equations. In the case of electromagnetism, the theory not
only has to possess gauge invariance (charge conservation), but also has to possess invariance
with respect to time and space translation (energy-momentum conservation). This imposes a
considerable constraint on L, and with the additional assumption that we deal with a local field
theory, no second- or higher-order derivatives of the field variable Aµ can appear.

Hamilton’s principle states that the dynamics or field dynamics of a physical system is gov-
erned by a simple variational principle (see e.g. Refs. [9, 10] in the case of diffusion), whose
solutions of equations of motion are determined by the extremum of the action functional A. For
electrodynamics the variation of the following action integral must vanish:

δA = δ

∫
Ω

d4x
√
−g L(Aα, Aα;β) = 0. (2.12)

The invariant volume element is d4x
√
−g = dx0dx1dx2dx3

√
−g, indicating that integration oc-

curs over spacetime. We let Ω ⊂M be a bounded, closed set of spacetime [7].
The Lagrangian should contain a quadratic term in Fµν , generally regarded as the ‘kinetic

energy’ of the field. It will also contain the usual ‘interaction term’ between field and charged
matter. Considering the simplest possible form of the Lagrangian satisfying all of the aforemen-
tioned constraints, we then postulate the following form for the Lagrangian density

L =
√
−g L =

√
−g

(
− 1

32π
XµνρσFµνFρσ − 1

c
jαAα

)
(2.13)

where the coefficients are chosen for later convenience, and Xµνρσ denotes the so-called consti-
tutive tensor, which couples linearly the field to yield the kinetic term. It contains the total
dependence of permittivity ε, permeability µ and bianisotropy tensor κ for the macroscopic
medium in the most general linear form. On the other hand, it can be interpreted geometrically,
which establishes the key concept of transformation optics.

As outlined before, the Faraday tensor Eq. (2.6) by itself is already gauge-invariant under
transformation Eq. (2.5), so Xµνρσ can be assumed to be independent of the field Aα. It is not
obvious that the interaction term jαAα be gauge-invariant. It will, however, provide a correct
gauge-invariant contribution to the action Eq. (2.12) by requiring the source jµ to vanish on
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the boundary ∂Ω and following the standard procedure of integration by parts, which eventually
gives a zero surface integral.

It is customary to also introduce the excitation tensor defined by

Gµν = 1
2X

µνρσFρσ. (2.14)

The six independent equations provided by expression (2.14) are called the (linear) constitutive
relations for macroscopic media.

By inspecting Eq. (2.13), the constitutive tensor evidently has pairwise antisymmetry

Xµνρσ = X [µν][ρσ] (2.15)

and block symmetry

Xµνρσ = Xρσµν . (2.16)

The cyclic symmetry property is best seen in void space where

Xµνρσ = gµρgνσ − gµσgνρ. (2.17)

This can be verified by substituting (2.17) into (2.13), which results in the well-known La-
grangian for electrodynamics in vacuum. Eq. (2.17) immediately yields X [µνρσ] = g[µρgνσ] −
g[µσgνρ] = 0 and by general covariance in any reference frame it must hold

X [µνρσ] = 0. (2.18)

Note that these symmetries were also found in Ref. [11], but not directly derived from a fun-
damental Lagrangian as in our approach. Some properties and restrictions of the Lagrangian
density are also addressed, although without giving a complete explicit expression and not in the
context of transformation optics. Taking into account all symmetry properties Eqs. (2.15)–(2.18),
allows for exactly 20 independent components of Xµνρσ in spacetime, similar to the Riemann
curvature tensor. This already hints at the fact that Xµνρσ bears some non-trivial geometric con-
tent. It is common practice to absorb the metric determinant of the volume element in Eq. (2.12)
into the following quantities to yield tensor densities of weight +1:

χµνρσ =
√
−g Xµνρσ (constitutive tensor density) (2.19)

Jα =
√
−gjα (current density) (2.20)

Gα = 1
2χ

µνρσFρσ (excitation tensor density) (2.21)

Observe also that in completely analogous manner to Eq. (2.8), we introduce

Di = Hi0 and Hi = 1
2 ϵijkG

jk, (2.22)

after exploiting all symmetry properties of Xµνρσ in Eq. (2.14). This readily gives in matrix
form for the excitation tensor density

Gµν =
√
−g Gµν =

√
−g


0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

 . (2.23)
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After outlining the physical and geometrical meaning of the macroscopic fields relevant to elec-
trodynamics in media, we now proceed by substituting the chosen Lagrangian density Eq. (2.13)
into Eq. (2.12) to obtain the following variational principle

δA = δ

∫
d4x

(
− 1

32π
χµνρσFµνFρσ − 1

c
JαAα

)
= 0, (2.24)

where again the variation only takes places in the field, namely δAµ. The solution is provided by
the corresponding Euler-Lagrange equations, which in combination with Eq. (2.9) fully control
the dynamics of the underlying physical system. As is well known, they can be determined by
computing the associated functional derivative and requiring it to be zero:

δL
δAα

=
∂L
∂Aα

−
(

∂L
∂Aα,β

)
,β

= 0. (2.25)

The explicit calculation is lengthy but straightforward and based on the following partial results
using definitions Eqs. (2.20) and (2.21) to yield

∂L
∂Aα

= −1

c
Jα and

∂L
∂Aα,β

= − 1

4π
Gαβ . (2.26)

Inserting Eqs. (2.26) into Eq. (2.25), one finally arrives at the covariant source expression

Gαβ
,β =

4π

c
Jα (2.27)

which are just the two inhomogeneous Maxwell equations for optics in macroscopic media, dis-
playing a structure similar to the vacuum case, Eq. (2.10).

Now we are in the position to derive the fundamental expressions of transformation optics
from the Lagrangian formalism we have established. First, imagine some virtual space charac-
terized by a metric g′, in which light propagates as desired. For simplicity, we assume that this
space is void (the procedure can be straightforwardly extended to non-empty virtual spaces), so
that the constitutive tensor is given by Eq. (2.17). Thus, its corresponding Lagrangian density
reads

L′ =
√
−g′

[
− 1

32π

(
g′µρg′νσ − g′µσg′νρ

)
F ′
µνF

′
ρσ − 1

c
j′αA′

α

]
. (2.28)

On the other hand, Eq. (2.13) represents the physical space we live in. We want light to propagate
in physical space as it does in virtual space. For this, we reinterpret the coordinates of virtual
space as those of physical space (in exceptional cases they may coincide from the onset) and
take advantage of the fact that both Lagrangians (and therefore the resulting solutions for the
fields) are formally identical,1 provided that we fill physical space with the following media and
sources:2

Xµνρσ =

√
−g′√
−g

(
g′µρg′νσ − g′µσg′νρ

)
and jα =

√
−g′√
−g

j′α. (2.29)

This way we are implementing the desired geometry for light in physical space by using the
appropriate medium and sources. This powerful theory allows us to realize both, curved-space

1Note that L and L′ could differ by a boundary term on ∂Ω in Eq. (2.12) without having any physical
consequences.

2Xµνρσ will reverse sign for coordinate transformations that do not preserve orientation.
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metrics (e.g., that of black holes) in a flat physical space, and/or any deformation caused by
coordinate changes [1,2]. Naturally, for deformations arising exclusively from transformations, g
and g′ represent the same geometry expressed in different coordinate systems. We will use this
last approach in the next section. Expressions similar to (2.29) were obtained in [12] starting
from Maxwell’s equations instead of from a variational principle. It is worth mentioning that
there is an erroneous extra factor of 1

2 in the expression for Xµνρσ in [12].

3 Flat reflectionless immersion lens

An immersion lens made up of a dielectric medium with refractive index n can improve the
diffraction-limited resolution of free space by a factor of 1/n, see Ref. [13]. The usual geometry
of an immersion lens is that of a hemisphere, although other curved surfaces can be used. Thus,
one side of the system is flat, while the other one is curved. For some applications, it would
be desirable that both surfaces were flat. In addition, there appear reflections at the boundary
of the lens with free space due to the difference in the refractive indices of both media. We
want to overcome both drawbacks. Our aim is to use the far-field optical system to reconstruct a
certain electromagnetic field distribution in vacuum, for instance in the plane z = 0 (in Cartesian
coordinates), far away (in terms of wavelength) from the optical system. The spatial resolution of
our system will be limited to approximately the free-space wavelength λ0. However, if the whole
system were immersed in a dielectric medium with refractive index n1,the limiting resolution
would be the wavelength in that medium λ0/n1. We would like to transfer this higher resolution
power to free space in such a way that we can use our external optical system to produce an
image with that resolution. We will limit ourselves to a TE (transverse electric) two-dimensional
problem (invariant in the y-direction along which E is polarized), in which E and H are then
completely determined by Ey(x, z). Let us consider two different cases. In the first one we

have a certain field distribution E
(1)
y (x, 0) in free space. In the second, we have a distribution

E
(2)
y (x, 0) in a dielectric medium with index n1, which is a compressed version of E

(1)
y such that

E
(2)
y (x, 0) = E

(1)
y (n1x, 0). We can use the angular spectrum decomposition to express Ey in any

z-plane as a superposition of plane waves [14]:

Êy (kx, z) =

∞∫
−∞

dxEy (x, z) e
−ikxx, Ey (x, z) =

∞∫
−∞

dkxÊy (kx, z) e
ikxx, (3.1)

where kx is the transverse component of the wave vector k, with modulus |k| = k = k0n, with
k0 being the free-space wavenumber. At a distance z = d, the disturbance in Fourier space is
given by Goodman [14]:

Êy (kx, d) = Êy (kx, 0) e
i
√

k2−k2
xd. (3.2)

With the help of Eqs. (3.1)–(3.2), it can be deduced that

E(2)
y (x, d/n1) = E(1)

y (n1x, d) . (3.3)

If we could stretch by a factor of n1 the field E
(2)
y (x, d/n1) of the dielectric, it would be equal

to that resulting from the propagation of a distance d of E
(1)
y in free space. Transformation

optics provides a way to design the required medium to achieve this field deformation and obtain

E
(2)
y (x/n1, d/n1) from E

(2)
y (x, d/n1). Specifically, we will employ the transformation

t′ = t, x′ = x/(1 + Cz), y′ = y, z′ = z, (3.4)
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where C is a constant, and use (2.29) to calculate the properties of our device (note that
jα = 0 in our case). Primed and unprimed coordinates correspond to virtual and physical space,
respectively. Moreover, it has been shown that squeezers based on transformation optics are
reflectionless for TE waves if the output medium is a dielectric with a refractive index equal to
the compression factor [15]. Following a similar reasoning, it can be proved that an expanding
device is reflectionless if the medium to be expanded has a refractive index equal to the expansion
factor and the output medium is free space. In fact, for TE waves, the reflection coefficient for
arbitrary input (the background media to be expanded) and output media, characterized by
relative constitutive parameters εin, µin, and εout, µout is

RTE =
µout

√
k20εinµinF 2

x − k2x − µinFy

√
k20εoutµout − k2x

µout

√
k20εinµinF 2

x − k2x + µinFy

√
k20εoutµout − k2x

, (3.5)

where Fx and Fy are the compression factors in the x and y directions, respectively. In our case,
Fx = 1/n1 = 1 + Cd (inverse expansion factor in the x-direction), Fy = µin = µout = εout = 1,
and εin = n21. As a consequence, the device is reflectionless (RTE = 0). With all the previous
results in mind, the idea is as follows. We have a certain electromagnetic field distribution that
we want to image in the far field with a resolution of λ0/n1. For instance, two illuminated
punctual objects separated by a distance of λ0/n1 in the x-direction. We put this object very
near from (or embed it in) a medium with a refractive index of n1, where the limiting resolution
is λ0/n1. Now we modify a section of this medium, which will be adjacent to air, in order to
expand the fields by a factor of n1 at a distance z = d/n1 away from the source. We cut the
modified dielectric medium exactly at this point z = d/n1, where we have the expanded fields,
leaving free space on the right side of the device. We know that there will be no reflections at
this interface, since we used the adequate expanding factor. Thus, the fields exiting the device
are the same as those that two punctual sources in free space separated by a distance of λ0 would
generate. This way, we can obtain a magnified image (with a magnification factor n1) of the two
original sources with our optical system, whose resolution is limited to λ0. This magnifying lens
is flat and reflectionless.

To verify our theoretical predictions, we performed numerical calculations with COMSOL
Multiphysics. Specifically, we designed a lens with a magnifying factor n1 = 3. To test the device,
two sources separated by λ0/2 are placed inside a medium with n1. When the fields radiated by
these sources directly exit to air, viz. Figure 1(a), reflections appear. In addition, the radiation
pattern in air is that of two sources separated by λ0/2. When we use the magnifying lens
between the medium with n1 = 3 and air, no reflections appear and the radiation pattern is that
of two sources separated by 1.5λ0, viz. Figure 1(b). By using air’s inverse transfer function for
propagating waves, we can calculate the fields that our external optical system would reconstruct
for the cases with and without lens (ETO lens and Eno lens, respectively), see Figure 1(c). In the
first case the two sources can be clearly observed, while in the second one, some components
are lost and we only detect a broad unique source. Note that in the image obtained with the
lens there is a magnification factor of 3. This is equivalent to having the two sources in air
and separated by a distance of 1.5λ0. We verified this by comparing the image reconstructed
from the analytically calculated fields radiated by two sources separated by 1.5λ0 (Eanalytic) with
ETO lens, observing an excellent agreement. We also include the fields we would reconstruct if
we used a classical hemispherical immersion lens (Eclassical lens), whose amplitude is lower than
that of ETO lens due to reflections. Finally, we show in Figure 1(d) the effect of separating the
sources from the lens origin. Clearly, this does not affect the performance of the lens based
on transformation optics, while the classical lens introduces some distortion, even though the
sources are only 1µm away from the origin. Note that, when used in the reverse direction, the
proposed immersion lens works as a perfect coupler from free-space to a dielectric medium of
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(d)

d/n1

d/n1

Figure 1: Electric field generated by two sources embedded in a dielectric with n = 3 (a) without
and (b) with the designed lens between the dielectric and air (n = 1). (c) Reconstructed field
amplitude for different cases. (d) Same as in (c) but with the sources 1µm away from the lens
centre. The working free-space wavelength is λ0 = 1.5µm.

index n1. In this sense, it could be used to compress wide light beams and couple them to
high-index nanophotonic waveguides.

4 Conclusions

We have developed a conceptual framework to represent macroscopic electrodynamics in media
by a Lagrangian on a pseudo-Riemannian manifold, which straightforwardly allows to identify
any virtual space possessing especially designed optical properties with real, physical space. This
novel approach encompasses all previous formulations of transformation optics in a compact and
elegant way. We applied this technique to design an immersion lens with superior properties for
possible application in bio- and nano-technology.
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