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We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP
scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making.
Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and
access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable
AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system
is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of
the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained
adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In
addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable
variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing
RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared
with representatives of the prediction approaches.

1. Introduction

Promising applications provided by emerging wireless net-
works are preferable as long as they can offer uninterrupted
service during mobile node’s (MN) roaming between access
networks. Besides, the support of an efficient mobility man-
agement is considered one of very important issues for
the future generation of wireless and mobile networks and
services [1]. As expected, the production of wireless networks
IEEE 802.11 which is known as wireless fidelity (WiFi) devices
reached nearly 1.1 billion in 2011, which is also predicted
to be doubled by 2015 [2]. Therefore, it is quite challeng-
ing to provide Internet connection with high quality-of-
service (QoS) as a way to supply the running applications
such as video, voice-over-IP (VoIP), navigation, and traffic

monitoring. Normally, whenMN roaming among access link
candidates which offer different QoS level, MN must be able
to chose the most appropriate network candidate to camp
on. This can be achieved by obtaining the good network
prediction technique with low handover delay which can
support the desired QoS of ongoing applications [3–5].

Basically, network access link prediction is performing
its processes during the time of handover decision making
(wireless channel scanning period). This process started by
performing the passive and active scanning and then select-
ing one network candidate as a way to perform the han-
dover. In handover decision making system, the link layer
handover process is required to be completed by the time
known as a link layer delay. Thus, the handover signaling
processes that are used for obtaining the new IPv6 address
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from visited network (network layer handover procedure)
must wait until the link layer handover has performed its
own process. Accordingly, the initiation time is increased
afterwards, the overall latency will be increased as well. This
can be considered as a main reason of degrading the QoS in
WLANs [6, 7]. Therefore, the accurate handover prediction
based on link quality and mobility aspects is challenging to
achieve a seamless mobility with low handover delay [4, 8–
12].

For this reason, there is a pressing need to develop
an adaptive prediction technique in order to predict the
most qualified AP. An adaptive fuzzy logic system has been
proposed in order to address the issues of handover processes
within wireless networks. Thus, the handover in link layer
can be performed in predictive mode with low delay. The
elaboratedmetrics, including received signal strength,mobile
node relative direction towards access points in the vicinity,
and access point load, are considered inputs of the fuzzy
decision making system in order to select the best prefer-
able AP around wireless local area network (WLAN). The
obtained handover decision, which is based on the calculated
quality cost using fuzzy inference system, is based on adaptive
instead of fixed coefficients. In other words, the mean and
standard deviation of the normalized fuzzy inference system’s
input metrics are applied as statistical information to adjust
or adapt to the coefficients. In addition, this paper proposes
an adjustable weight vector concept for inputmetrics in order
to cope with the continuous, unpredictable variation in their
membership degrees. Furthermore, handover decisions are
performed in each MN independently after RSS, direction
toward APs, and AP load are determined.

2. Related Work

One of the essential issues in wireless communications is
the handover delay. Hence, many studies have tried to come
out with appropriate solution to decrease the associated time
delay during handover processes. For this reason, the pre-
diction of next wireless network link with best QoS is highly
required, which can be achieved by decreasing the handover
delay issue. A number of studies that have been published
earlier proposed several handover prediction techniques for
WLANs. Some of these techniques are based on link quality
aspects, whereas the mobility aspects are considered in the
other techniques in order to obtain the handover decision.
Therefore, this section tries to present the related works that
were elaborated to improve the handover prediction for AP
selection in WLANs.

In order to achieve the desirable QoS of ongoing appli-
cations, a handover decision making process based on pre-
dictive decision concept is proposed by [13]. A fuzzy logic
based handoff decision algorithm was proposed in this
study for maintaining the handover decision within wireless
networks. The decision making parameters were data rate,
RSS, and mobile speed which have been selected as inputs
for the proposed fuzzy-based system as a way to select the
best candidate AP. A handover scenario was introduced to
be performed between WiFi and global service for mobile
(GSM). The output of the proposed fuzzy algorithm in this

method was setted to be a parameter called AP candidacy
value (APCV). Afterwards, APCV was defined as a real
number in order to rank the value of the candidacy level of
the APs in scanning range.

However, the proposed fuzzy logic algorithm in [13] did
not cover some other aspects that can improve the handover
decision accuracy. For instance, when an AP is overloaded
with many associated MNs, this can lead to a handover
failure.Moreover, the authors did not consider the adaptation
concept of membership functions of the input parameters
in their method, which plays effective roles to maintain the
handover decision under different circumstances of wireless
network quality changing. In other words, the adaptable
membership functions in the proposed fuzzy logic algorithm
were not considered to maintain the adaptability in fuzzy
handover system. Furthermore, in the proposed fuzzy logic
inference system, the authors did not maintain a weight
vector technique giving more impact to the parameter
that has more variance behaviour compared to the other
inputs.

The authors in [14], introduced dual-mode handsets
and multimode terminals that are generating demand for
solutions that enable convergence and seamless handover
across heterogeneous access networks. Besides, the fuzzy
logic approach has been proposed by [15], in order to
handle the handovers betweenWLANs and universal mobile
telecommunication systems (UMTS). The current RSS, Pre-
dicted RSS, and the bandwidth have been fuzzyificated and
normalized to be used in handover decision making. This
proposed fuzzy logic system reduced the number of han-
dovers between WLANs and UTMS during MN roaming.
Yet, in [15], the performance evaluation criteria such as han-
dover delay, AP load, MN related direction towards each AP,
and MN velocity are not addressed as key parameters in the
proposed fuzzy logic system. In other words, by considering
such key parameters, the probability of handover success will
increase.

In contrast, the authors in [2] proposed a predictive
fuzzy logic controller to reduce the channel scanning pro-
cess. The proposed fuzzy system was designed based on
Mamdani-type as a way to predict the next AP from a group
of available APs obtained from scanning processes. Two
input parameters utilized by the proposed fuzzy system are
the average signal intensity (ASI) and the signal intensity
variation (SIV). The ASI input is calculated at two-second
intervals from the time beacon signal received by the MN,
which is normally broadcasted by APs with an interval of 100
milliseconds.

However, the proposed predictive scheme basically relies
on ASI metric that is normally used by MNs to estimate
the need of performing the handover with available APs.
Moreover, the SIV is elaborated to demonstrate the behaviour
of the direction of MN towards available APs. Therefore,
it can be observed that the obtained handover prediction
using proposed scheme by [2] totally relies on the intensity
of received signal from available APs.Thus, the probability of
experiencing unnecessary and wrong handover prediction is
high due to unpredictable movements and different channel
propagation aspects. For instance, by the time the ASI and
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SIV are calculated and the handover decision has been trig-
gered with an AP having the maximum values, the direction
ofMN is changed.This can yield connection breakdownwith
the new obtained AP due to the new movement direction
that is unrelated to this AP; then ASI and SIV values started
decreasing. To this end, the author in [2] could not efficiently
address the issue of handover prediction within IEEE 802.11
WLANs.

Whereas, in [16], the authors proposed the Doppler
frequency and a fuzzy logic system in the handover decision
algorithm called the Adaptive Fuzzy Logic Based Handover
Algorithm for Hybrid Networks, their approach supposes
that if the MN speed is high, then triggering handover time
will be decreased. Thus, avoid handover latency which is
belonging to handover procedure. On the other hand, when
MN speed is low, the trigger handover time will be increased
to get more suitable networks. On the contrary, the proposed
algorithm does not consider MN speed suitability to the next
APs with different wireless technologies.Therefore, when the
speed is high, the handover will fail. Moreover, the algorithm
does not consider the load of each AP which leads to a
handover failure as well.

In [17], the authors focused on the handover in AP
dense 802.11 networks. Through this study, the AP scanning
process has been highlighted in order to achieve an improved
scan technique for 802.11 networks. Two key features, probe
response arrival time and AP signal quality, were discovered
in this study in a way to reduce the active probing time.
Moreover, an improved version of D-Scan has been pro-
posed by the aforementioned authors. The authors focused,
in the first stage, on the probing wait time which is the
MaxChannelTime. The authors decreased the active probing
time by identifying the correlation between probe response
arrival time and RSS quality. In this proposed approach, the
handover is triggered based on the link quality of the current
associatedAP. It also performed a regular detection of the link
quality of current AP. Whenever the current link quality of
associated AP is poor enoughwhichmeans that the handover
is needed, that is, RSSI < HANDOFF-THRESHOLD, an
actual handover process is enforced. Otherwise, if it is lower
than a certain threshold (SCAN-THRESHOLD), the network
interface card (NIC) is started to perform the background
prescan. Eventually, all obtained APs are stored in a local AP
database. Thus, the scan process was trying to find a certain
number of APs with acceptable RSSI (>−75 dBm). When
D-Scan process cannot find good Aps’ RSSI quality on the
current channel, it is switched to the next channel to scan
until the whole frequency has been searched. Afterwards, the
handover will be initiated with the AP that has more signal
quality compare with others.

However, the authors in this study did not consider a
smart prediction technique in the proposedD-Scan approach
which can give high impact in handover process. Moreover,
the D-Scan approach relies on the link quality of associated
AP by monitoring the RSSI that cannot be reliable in
APs-dense wireless networks due to fluctuations normally
occurring during MN movement. Thus, the RSS value of
collected APs independently changes; then, the handover

decision obtained based on one metric (RSS quality) will be
inaccurate.

3. Proposed AHP Scheme Overview

Fuzzy logic basedmechanisms performwell in decisionmak-
ing systems, control, estimation, and prediction processes.
For instance, in [18], Shih et al. proposed a production
inventory model to precisely estimate seasonal demand and
total demand. Other researchers in [19] utilized fuzzy logic
in parallel interference cancellation (FLPIC) for frequency-
selective fading channels in wireless CDMA communication
systems. In addition, in [20], the authors used fuzzy logic
in geographical routing when making packet forwarding
decisions. In light of these applications, fuzzy logic has been
applied in this study to select the most qualified AP in terms
of RSS, MN direction, and AP load based on WLAN.

Figure 1 illustrates the systematic architecture of AHP
design, implementation, and evaluation phases of the AHP
scheme. It can be seen that the AHP’s process begins with
the collection of fuzzy inference’s input parameters. In other
words, in the first turn, the GPS set-up process will be
performed in each MN in order to obtain the 𝑥-axis and
𝑦-axis of each AP in the simulated scenario along with
updatedMN’smovement vectors. From the obtained data, the
direction angle can be calculated in such a way as to observe
the current MN’s direction in relation to each AP in the
roaming area. It should be noted that RSS monitoring is on
whenever theWLAN’s interface is “on” in order to ensure the
highest quality of each available AP.This process is performed
via wireless channel’s passive and active scanning for the
three nonoverlapped IEEE 802.11b channels (Channels 1, 6,
and 11).

Furthermore, the current load of each AP is calculated
and broadcasted via beacon frame. The RSS and AP load
values will be extracted from the beacon frame of each AP
within scanning range. After MN measures the received RSS
of the current associated AP, the value RSS𝐶 is compared
with threshold value 𝑇. When RSS

𝐶
is less than 𝑇, the

AHP algorithm begins the process of obtaining the handover
decision for the next predicted AP candidate.

Therefore, the proposed AHP’s fuzzy inference engine
was utilized to obtain the quality cost of each collected AP
𝐹𝑢𝑧𝑧𝑦-𝑄-𝐶𝑜𝑠𝑡

𝑖
. After the defuzzification process, the AHP

checked whether 𝐴𝑃-𝑄-𝐶𝑜𝑠𝑡 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑃-𝐹𝑢𝑧𝑧𝑦-𝑄-
𝐶𝑜𝑠𝑡
𝑖
> ℎ; if 𝑦𝑒𝑠, the handover was initiated with selected

AP
𝑖

and the 𝐶𝑢𝑟𝑟𝑒𝑛𝑡-𝐴𝑃-𝑄-𝐶𝑜𝑠𝑡 was replaced with
𝐹𝑢𝑧𝑧𝑦-𝑄-𝐶𝑜𝑠𝑡

𝑖
. ℎ is the identified unnecessary handover

restriction threshold which represents a quality cost thresh-
old value. Should the obtained 𝐹𝑢𝑧𝑧𝑦-𝑄-𝐶𝑜𝑠𝑡

𝑖
exceed

this value, the handover is not needed and afterwards
restricted. Hence, based on AHP processes, the handover
decision is taken with the AP with highest QoS, with
consideration given at the same time to restrict unnecessary
handovers.

3.1. Fuzzification of AP Selection Input Metrics and Output.
As discussed previously, the selection criterion is one of the
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Beacon frame is received and RSSC < T

Association response received

Figure 1: Flowchart steps of the proposed AHP scheme.

most challenging areas in the handover process, essentially
affecting the handover delay inWLANs.Handover procedure
should support always-best-connected (ABC) and always-
best-satisfying (ABS) when selecting the target access station.
Therefore, the lack of precise evaluation of the QoS metrics

of the available WLAN candidates could be responsible for
many of the drawbacks of ABC and ABS. For example,
handover decisions which rely only on the quality of RSS
for each AP selection process regardless of MN’s direction
in relation to each AP can actually increase the number
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Figure 2: The adaptive membership functions of normalized RSS
input metric.

of unnecessary or incorrect handovers. Similarly, when the
selectedAP currently servingmany of theMNs is overloaded,
handover failure phenomena may result. In other words,
when the association request from the newly reached MN
arrives at the overloaded AP, the probability that the associ-
ation request will be discarded is quite high. Hence, in the
following subsection, a fuzzy logic input metrics based AHP
algorithm is discussed.

3.1.1. Received Signal Strength RSS. Received signal strength
RSS is one of the most common metrics used in handover
decision making [10, 17, 21]. By monitoring RSS, the quality
and distance of each AP in the range can be analyzed.
When MN moves away from or towards an AP (ping-
pong movement), the RSS for the AP will either increase or
decrease. Therefore, during the passive scanning phase, the
RSS in AHP scheme for each available AP will be captured
and entered into the fuzzy inference system to be fuzzified.
The range of RSS membership functions is considered to
be in adaptive form. In other words, in order to achieve
adaptivemembership functions for RSS inputmetric, the RSS
value to be distributed is to be between identified RSSMin
and RSSMax normalized values. When the RSS for each
AP in MN’s scanning range has been collected during the
passive scanning process, the RSS values are normalized and
categorized using (1), (2), and (3).

Figure 2 shows the membership functions for RSS input
metric. There are three RSS levels, identified as Weak, Aver-
age, and Strong, and the range of them was identified using
the aforementioned assumed variables. By using variables,
𝐴 th threshold value of Average membership function, 𝑊Max
maximumvalue ofWeakmembership function, 𝑆th threshold
value of Strong membership function, and 𝐴Max maximum
value of Average membership function in addition to mini-
mum and maximum values of RSS RSSMin and RSSMax, the
piecewise linear membership functions could be obtained
as shown in (1), (2), and (3). By expanding these equations,
the degrees between (0 to 1) of RSS’s membership values

are calculated, respectively, as shown in the vertical axis in
Figure 2. Consider
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Therefore, the proposed adaptive fuzzy system is used
in the AHP scheme whereby the membership functions are
identified adaptively.The RSSMin, RSSMax,𝐴 th,𝑊Max, 𝑆th, and
𝐴Max coefficients are designed in a way which can be set
up by the user; thus, the membership’s coefficients can be
obtained adaptively. For instance, after identifying the value
for each of the aforementioned coefficients (supposing −130,
−10, −85, −70, −50, and −40 dBm, resp.), when the collected
RSS value of an AP is −75 dBm, this value will be checked
to identify which membership function it belongs to. Based
on Figure 2 and after substituting the supposed values of
each particular coefficient, the value −75 dBm is allocated in
the triangle with rib of (𝐴 th, 𝑊Max). In other words, when
𝐴 th = −85 and 𝑊Max = −70, (−85 ≤ −75 ≤ −70), hence,
(1) is applied to range between 0 and 1. Thus, by substituting
numerical values in |(RSS − 𝐴 th)/(𝑊Max − 𝐴 th)|, it will be
|((−75) − (−85))/((−70) − (−85))| = 0.66. This obtained value
utilizing (1) implies that the collected RSS value of −75 dBm is
allocated inside the weak membership function of RSS input
metric and conflicts with medium membership function as
well, so the degree of weak value is 0.66. Accordingly, the
considered membership value is adaptively calculated for the
input values neither totally inside nor outside any particular
membership function.

3.1.2. Relative Direction between MN and AP. The second
fuzzy input metric is the related MN direction towards each
AP. Basically, when an MN starts roaming across different
Aps, it could determinemore than one APwith a high quality
RSS.On the other hand, this identifiedAPmaynot be situated
in the same direction as the MN. In other words, the MN
movement direction is not towards this particular AP. This
scenario shows that the MN can obtain the wrong handover
decision if the AP does not share the related direction with
the MN. Therefore, the related MN direction towards each
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Figure 3:The adaptivemembership functions of normalized related
MN direction towards each AP input metric.

AP has been assigned as an inputmetric in the proposedAHP
adaptive fuzzy inference system.

In simulation experiment scenario, the MN is equipped
with a GPS system in order to obtain the updated 𝑥-axis
and 𝑦-axis with every movement, in addition to the current
MN’s movement vector. The location of all APs in simulation
scenario is defined as fixed positions in advance. When MN
is in the first round, all AP positions will be collected through
GPS navigator map, and the coordinates of these APs will
be saved inside its own basic service set ID (BSSID). Thus,
each time an MN roams through the network, the updated
GPS map will be downloaded automatically from the server
with 𝑥-axis and 𝑦-axis for all APs in the range and its own
current position as well. With this process, the MN is aware
of its own position in relation to themovement vector and the
positions ofAPs in the range,which enables us to calculate the
direction angle between the current MN position and each
AP.

Formula (4) is used to calculate the direction angle’s
degree for each AP from the current MN position during
its movement. Suppose that the current MN position is
(MN𝑋1, MN𝑌1), the position of AP is (AP𝑋2, AP𝑌2), MN𝑥
and MN𝑦 represent the current position of the MN. Formula
(4) describes how the direction angle has been calculated.
The obtained crisp angle degree value will be entered to the
fuzzy inference system as a second input parameter to be
fuzzified with the other two inputs. Figure 3 demonstrates
the membership functions of related MN direction towards
each AP input metric distributed as Less-Directed, Medium-
Directed, and High-Directed.

The bearing angle (𝜃) between a MN and AP can be
calculated as follows:

cos 𝜃 =

MN𝑥1 ⋅ AP𝑥2 +MN𝑦1 ⋅ AP𝑦2

√MN2
𝑥1

+MN2
𝑦1

⋅ √AP2
𝑥2

+ AP2
𝑦2

. (4)

The range of membership function for directions selected
to be between 𝐷Min which equals −1 reflects an MN directed
less to one particular AP up to 𝐷Max which equals 1 and
is highly directed towards AP. On the other hand, the
variables LDMax Low-Directed membership function’s max-
imum value, MDth Medium-Directedmembership function’s
threshold, MDMax Medium-Directed membership function’s

maximum value, and HDth High-Directed membership
function’s threshold are identified in order to achieve adap-
tive direction membership functions. Using these identi-
fied variables, the coefficients of membership functions for
direction input metric are obtained in an adaptive way.
Utilizing (5), (6), and (7), the degrees of membership’s
values of direction metric are calculated based on identified
coefficients.

For instance, when the identified coefficients in Figure 3
are set as 𝐷Min = −1, 𝐷Max = 1, MDth = −0.4, LDMax =
−0.2, HDth = 0.6, and MDMax = 0.7, the obtained 𝐷 value
using (4) is 0.69 degree of 𝜃. It is obvious that the 𝐷 value
of 0.69 is allocated in the highlighted triangle with the
rib of (HDth, MDMax) in horizontal axis in Figure 3 which
is considered to be a conflict area between medium and
high directionmembership functions.Therefore, by applying
(7) (HDth ≤ 0.69 ≤ MDMax), the degree of high direction
membership function is thus calculated to be in the range of
0 < MembershipDegree < 1. Accordingly, by substituting
the given coefficients in |(HDth − 𝐷)/(𝐷Max − HDth)|, the
obtained degree is |(0.6 − 0.69)/(1 − 0.6)| = 0.225 High-
Directed membership degree.

3.1.3. AP Load. In order to achieve an accurate handover
decision, a third input metric, the load in each AP, has
been considered in the proposed adaptive fuzzy inference
system of AHP. In some cases, the handover decision making
mechanism could assign high quality cost to one AP which
has a good RSS and is with a high direction angle’s degree
𝜃 towards this AP. On the other hand, the selected AP
might be overloaded. In other words, based only on the
two aforementioned metrics with this particular AP and
regardless of the number ofMNs that are currently associated
with it (by sending and receiving the traffic), the obtained
handover decision is considered inaccurate. The implication
is that when a new MN intends to establish a new handover
process with an AP, the handover might fail due to the high
load currently borne by that AP. For this reason, the AP
load has been assigned as an additional input metric in the
proposed adaptive fuzzy inference system of AHP in order to
support an accurate handover decision.

To identify the membership function’s range of AP load
metric, a simulation experiment has been conducted. The
outdoor campus of 500 ∗ 500m is utilized to simulate the
conducted wireless network scenario. In addition, the AP’s
transmit power and data rate are set at 60 milliwatt and
11Mbps, respectively. Voice-over-IP traffic has been gener-
ated between MNs in the simulation area in order to test
the load in the AP with real time applications. In order to
precisely identify the maximum number of MNs that an AP
can serve with reasonable throughput, the number of MNs
is increased gradually in the simulated network area and the
throughput has been collected in the AP side.

The simulator experiment has been conducted four times
and the AP’s throughput is collected as shown in Figures 4(a),
4(b), 4(c), and 4(d). The AP throughput has been captured
each time that MN’s number increased. Figure 4(a) shows
that when the number of MNs was 12, the AP throughput
after 105 seconds reached 96000 bits/sec with constant value
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Figure 4: Analyses of the impact of increasing MNs number on AP’s throughput.

until end of simulation. On the other hand, in Figure 4(b),
the AP throughput was 192000 bits/sec when the number of
MNs increased to 27. When the number of MNs reached
40 in Figure 4(c), the AP throughput after 110 seconds
increased to 527424 bits/sec but rapidly decreased after 5
seconds to between 192768 and 145536 bits/sec. However, in
Figure 4(d), when the number of MNs increased to 43, the
AP throughput continued to decrease to the range of 192 to
1920 bits/sec. From this experiment, it can be concluded that
the AP throughput with real-time traffic begins to decrease
sharply when the number of associated MNs reaches 40.
Consider
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or (𝐷 < MDth) ,
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=

{
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{
{

{

0, (−1 ≤ 𝐷 ≤ HDth) ,









HDth − 𝐷

𝐷Max −HDth










, (HDth ≤ 𝐷 ≤ MDMax) ,

1, (MDMax ≤ 𝐷 ≤ 1) .

(7)

Therefore, the AP load input metric range has been
assigned to between 𝐿Min = 0 and 𝐿Max = 40 which represents
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Table 1: The Modified AP load element in beacon frame.
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Figure 5: The adaptive membership functions of normalized AP
load input metric.

the number of associated MNs. In other words, no MN
currently associated with the AP indicates that the AP is
currently with 0 load and is now “preferred.” On the other
hand, when the number of MNs reaches 40, the AP currently
with maximum load is “not-preferred.” The load range is
normalized to be between 0 and 1 using the adaptation
process for membership functions. Elaborating the received
𝑆Count value from each AP, which is the Station Count
collected from AP load elements in the beacon frame, the
normalized AP load is obtained via adapted membership
degree.

Basically, the APload value which consists the 𝑆Count
(number of associatedMNs) is periodically broadcast viaAP’s
beacons in the wireless network area. The AP load element
in the AP beacon frame has been modified by adding a
predetermined number ranging between 0 and 40. Table 1
shows the modified AP load element in the beacon frame in
each particular AP. Thus, when MN receives this amount of
AP load, the adaptation process is applied in order to obtain
the membership functions’ degree of load input metric.

Figure 5 shows the adaptive membership functions of
normalized AP load input metric categorized as Low,
Medium, and High. It can be seen that the variables MLth
medium load membership function threshold, LLMax low
load membership function maximum value, HLth high load
membership function threshold, and MLmax medium load
membership function maximum value are identified in a
way that allows for the calculation of the degree of each
membership function. Equations (8), (9), and (10) are applied
as a piecewise linear function to calculate the degree for each
Low, Medium, and High membership function.

Similarly, a numerical example is illustrated in this
paragraph in order to present the process of obtaining the
membership functions’ degree for AP load input metric.
Suppose that MLth = 0.35, LLMax = 0.4, HLth = 0.73, MLmax =
0.73, and the collected 𝐿 value from an AP’s beacon frame
is 0.5. When the given value 0.5 is compared among the

identified coefficients as presented in (8), (9), and (10), the
appropriate membership function is subsequently selected.
Thus, using (9), it can be observed that (LLMax < 0.5 < HLth)
which implies that the given 𝐿 value is completely under
the Medium membership function. Therefore, based on the
preceding equation, the value 1 is given as the input value of
the medium membership function degree of 0.5𝐿.

3.2. Design of Adaptive Fuzzy Logic for Handover Prediction
System. The first step in designing a fuzzy inference system
is to determine input and output variables and their fuzzy
set of membership functions. An adaptive process is applied
in order to obtain the degree of membership functions for
each input metric. In addition, the adaptive weight vector
is obtained by calculating the weight impact caused by the
variance of each input metric and then determining the
vector which helps to obtain the final fuzzy quality cost for
each AP. This is followed by designing fuzzy rules for the
system. Furthermore, a group of rules are used to represent
the inference engine (knowledge base) to express the control
action in linguistic form. The adaptive input metrics of the
fuzzy inference system which are elaborated in AP selection
and prediction process are presented in Section 3.1. Consider

𝜐
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{
{

{
{
{

{

1, (0 ≤ 𝐷 ≤ MLth) ,
𝐿 −MLth

LLMax −MLth
, (MLth ≤ 𝐿 ≤ LLMax) ,
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(8)
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1, (LLMax ≤ 𝐿 ≤ HLth) ,
MLth − 𝐿

MLMax −MLth
, (MLth ≤ 𝐿 ≤ LLMax) ,

or (HLth ≤ 𝐿 ≤ MLMax)

0, (𝐿 > MLMax) or (𝐿 < MLth) ,
(9)

𝜐
High
𝐿

=

{
{
{

{
{
{

{

0, (0 ≤ 𝐿 ≤ HLth) ,
HLth − 𝐿

𝐿Max −HLth
, (HLth ≤ 𝐿 ≤ MLMax) ,

1, (MLMax ≤ 𝐿 ≤ 40) .

(10)

3.2.1. Adjustable Weight Vector for Input Metrics of Fuzzy
Inference Engine in AHP. In this section, the process of
obtaining the weight vector 𝑊 which was calculated via (13)
is presented. Taking into account various conditions, the
values of each RSS,𝐷, and 𝐿 in addition to their membership
degrees continuously vary in an unpredictable manner. In
order to achieve the best handover decision under different
conditions, the following features have been considered to
obtain adaptable weight vector.

(1) The weight vector for each input metric should not be
fixed, meaning that it must be adjustable according to
varying conditions.
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(2) The input metric whose value varies to a greater
degree compared with other metrics, this metric is
considered to be more important and it must have a
higher weight.

For instance, assume that the RSS candidate value (MN
1
,

MN
2
, . . . ,MN

𝑛
) has the maximum variance compared to the

variance in the value of other metrics 𝐷 and 𝐿. Therefore,
it will be adjusted to the largest value in terms of weight
vector. Equation (11) shows the calculation of the weight
vector adjustment process for fuzzy input metrics. In this
case, 𝐴RSS, 𝐴𝐷, and 𝐴

𝐿
are the adjusted values of each input

metric (RSS,𝐷, and 𝐿), and 𝜎RSS, 𝜎𝐷, and 𝜎𝐿 are the standard
deviations of each input metric, respectively. Consider

𝐴 = (𝐴RSS, 𝐴𝐷, 𝐴𝐿) = (

𝜎RSS
𝑖
𝜎𝑖

,

𝜎𝐷

𝑖
𝜎𝑖
,

𝜎𝐿

𝑖
𝜎𝑖
) ,

𝑖 ∈ {RSS, 𝐷, 𝐿} .

(11)

The standard deviation of the membership values have
been normalized in (11), where the𝜎

𝑖
is the standard deviation

of 𝜐
𝑖,1
, 𝜐
𝑖,2
, . . . , 𝜐

𝑖,𝑛
and 𝑀

𝑖
is their mean calculated utilizing

the following equations (12). Consider

𝑀
𝑖
=

1

𝑛

𝑛
𝑗=1

𝜐
𝑖,𝑗
, 𝑖 ∈ {RSS, 𝐷, 𝐿} ,

𝜎
𝑖
=

1

𝑛

𝑛
𝑗=1

(𝜐
𝑖,𝑗
−𝑀
𝑖
)

2

, 𝑖 ∈ {RSS, 𝐷, 𝐿} .

(12)

In addition, the RSS is considered a basic input metric
for decision making in the handover process; thus, it should
be highlighted that low variance of RSS metric should not be
reflected in a decrease in its own weight vector. For instance,
when the overall average of 𝜐RSS,𝑗 (𝑗 = 1, 2, . . . , 𝑛) is low, the
adaptation of membership degree of input metric RSS must
be tackled more seriously. For this reason, the weight vector
of RSS input metric, 𝑊RSS, should be given a higher weight
value among the other two input metrics (𝐷 and 𝐿).Thus, the
link-breakdown probability is reduced by ensuring that the
handover decision based on RSS parameters during the time
of link quality is weak, ranking value is in overall average.
On the other hand, when the mean value of RSS 𝜐RSS,𝑗 is
high in overall average, the effects of its weight vector will be
moderated among the other two input metrics (𝐷 and 𝐿).

Moreover, a weight vector,𝑊, is identifiedwhich presents
the weight of input metrics, RSS,𝐷, and 𝐿 as follows:

𝑊 = [𝑊RSS,𝑊𝐷,𝑊𝐿] . (13)

The detailed weight vector calculation is presented using
the following equation (14), whereas the average variance is
tackled seriously with RSS input metric rather than other
two input metrics (𝐷 and 𝐿), as presented in the example
in the previous paragraph. The important point to note here
is that (14) is adjustable based on the input metric that is
more variable during theMN’s roaming process. For instance,
when theMN ismovingwithmany changes in direction angle
𝜃, the mean of direction input metric𝑀

𝐷
will be considered
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Figure 6: The membership function for AP quality cost output
metric.

in (14). Hence, the accuracy throughout this feature improves
the handover decision making process. Consider

𝑊 = (𝑤RSS, 𝑤𝐷, 𝑤𝐿)

= (

𝐴RSS
𝑀RSS

,𝑀RSS × 𝐴
𝐷
,𝑀RSS × 𝐴

𝐿
) .

(14)

Suppose that, for the 𝑗th (𝑗 = 1, 2, . . . , 𝑛) mobile station,
namely, MN

𝑗
, the membership degree vector 𝑈

𝑗
has been

defined from combination of three inputmetrics (RSS,𝐷, and
𝐿). Consider

𝑈𝑗 =

{
{

{
{

{

𝜐RSS,𝑗
𝜐
𝐷,𝑗

𝜐
𝐿,𝑗
.

(15)

Based on (15) and (13), the final fuzzy cost FuzzyCost𝑖 of
mobile station 𝑗th can be obtained utilizing (16). Consider

Fuzzycost = 𝑈
𝑗 ⋅ 𝑊. (16)

The output AP quality cost from fuzzy inference system
FuzzyCost𝑖 is configured to range between (0 to 1 Rank) from
lower value to the higher value of quality cost for each AP.
For instance, Figure 6 shows that the division of quality cost
output of AP has five levels of rank: VLcost, Lcost, Mcost,
Hcost, andVHcost.Thefinal fuzzy inference decision is based
on the adaptive membership degree vector of each input
metric and the weight vector as presented in (16). Moreover,
triangular functions are used as membership functions as
they have been widely used in real-time applications due
to their simple formulas and computational efficiency. It is
important to highlight that a good membership function
design has a significant impact on the performance of the
fuzzy decision making process.

3.2.2. Adaptive Fuzzy Inference Engine. In the proposed AHP
scheme, the adaptive membership function is proposed and
utilized in the design of a fuzzy inference system. Moreover,
it is important to mention that the precise design of member-
ship function has a major impact on the overall performance
of the fuzzy prediction process. Furthermore, the proposed
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Table 2: Knowledge structure based on fuzzy rules.

Rule IF THEN
RSS Direction AP load AP-Q-Cost

1 Weak Less-Directed High VLcost
2 Weak Less-Directed Medium Lcost
3 Weak Less-Directed Low Lcost
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

27 Strong Medium-Directed Low VHcost

weight vector concept and the best AP selection process
contribute positively to increase the quality of the obtained
final handover decision. Table 2 demonstrates the utilized
fuzzy rules in the proposed fuzzy inference system.

3.2.3. Defuzzifcation. Defuzzification refers to the way that
a crisp value is extracted from a fuzzy set value. In the
proposed fuzzy decision making system in AHP, the centroid
of area strategy for defuzzification has been considered. This
defuzzifier method is based on Formula (17) as follows.
Consider

Fuzzycost =
∑All Rules 𝑈𝑗 ×𝑊

∑All Rules 𝑈𝑗
, (17)

where Fuzzycost is used to specify the degree of decision
making,𝑊 is theweight vector variable of inputmetrics (RSS,
𝐷, and 𝐿), and 𝑈𝑗 is their adaptive degree of membership
functions. Based on this defuzzification method, the output
of the AP-Q-Cost is changed to a crisp value.

3.3. The Best AP Selection Process in AHP. The handover
decision is performed in local host mode as each MN mea-
sures the received RSS and its direction degree towards each
available AP. In addition to the received AP load value, which
is broadcast via each AP, the handover decision utilizing the
implemented AHP (whenever RSS from current serving AP,
RSS𝑐, degrades below a threshold 𝑇) is then carried out.
Consider

RSS
𝑐
< 𝑇. (18)

Afterwards, the decision factor, AHP
𝐹
, based on the

calculated FuzzyQCost𝑖
for all the candidates is obtained and

the AP
𝑖
candidate is chosen for handover initiation if the

following condition is satisfied:

AHP
𝐹 = APCost − FuzzyCost𝑖 > ℎ, (19)

where ℎ is the threshold value which helps to avoid unnec-
essary handovers, FuzzyCost𝑖 is the final decision metric of
maximum quality cost of AP

𝑖 candidate, APCost is the quality
cost of the currently serving AP, and AHP

𝐹
is the difference

between decision factor of the serving AP and the AP
𝑖
target.

Table 3: Simulation parameters.

Parameters Value
Simulation time 700 s
Simulation area 2500 × 1500m
Mobility model Rectangle and mass models
Number of MN 50
MN Speed Maximum 60 km/h
Transmitted power WLAN 17 dbm
Transmission range of each
AP 400 meter

Maximum packet
generation rate 1350 packet/second

Maximum packet size 1000 byte
Channel bandwidth WLAN 11Mbps
MAC protocol of WLAN IEEE 802.11b PCF

4. Performance Evaluation

To evaluate the performance of the proposed AHP scheme, a
simulation scenario is created employing OMNET++ simu-
lator and the AHP scheme was implemented along with the
state of the art, which are the existing AP predictionmethods
in wireless networks. The evaluation is conducted based on
several metrics which are the impact of MN’s number on
average handover delay, impact of MN’s number on average
handover delay, AP load, total number of handovers, number
of failed handovers, handover failure probability, average
MAC-layer delay, the impact of MN’s number on packet
loss ratio, and adaptive Fuzzy-Quality-Cost of available APs
in simulation scenario. Table 3 demonstrates the simulation
parameters that were utilized in simulation AHP scheme by
OMNeT++.

In order to achieve simplicity in presenting the simulation
results, the two compared methods are represented by short-
form style. The method proposed in [13] is denoted as
access point candidacy value (APCV), whereas the other
method, in [22], Scan in AP-dense 802.11 networks is called
D-Scan. On the other hand, adaptive handover prediction
has been previously identified as an AHP scheme. A detailed
discussion of all the aforementioned evaluation metrics is
presented in the subsections below.

4.1. Impact of MN’s Number on Average Handover Delay.
Figure 10(a) illustrates the impact of MN’s number on
obtained average handover delay based on 5 simulation
runs. As a function of MN’s number increasing up to a
maximum of 50 MNs, graphs of average handover delay in
seconds are collected and presented for each AHP scheme
and APCV and D-Scan methods in Figure 10(a). As can be
seen, as the number of MNs is increased to 50, the AHP
scheme performed the best in decreasing the overall average
handover delay.More precisely, the handover delay withAHP
scheme maintained an average of 0.06 to 0.09 sec, when the
number of MNs increased from 1 to 18. In contrast, when
the number of MNs increased to 19, the average handover
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delay increased to 0.1 sec.The handover delay kept increasing
slightly, on average, as the number of MNs reached 22; the
average delay was fixed to 0.23 sec up to 50 MNs.

On the other hand, the achieved average handover delay
utilizing APCVmethod was very similar to the one obtained
byAHP schemewith 10MNs running in a simulated scenario.
This delay started to increase sharply after 18 MNs. It can be
observed from the resulting graph of APCV method that the
average handover delay reached 1.098 sec when the number
of MN’s reached 43. However, the delay keep increasing
similar to the increase which occurred in MN’s number until
reaching 2.84 sec with 50 MNs. In contrast, although D-
Scan method is designed to decrease the handover delay by
incorporating smart scanning processing in the link layer,
a worse performance is observed with respect to both the
AHP scheme and APCV method when the number of MNs
is increasing. As observed from the results presented in
Figure 10(a), note that the average handover delay began
to increase sharply after 29 MNs (more than 1 sec delay),
compared to both AHP and APCV results. The average
obtained handover delay by D-Scan method continued to
increase as the number of MNs increased until it is reached
2.99 sec after 43 MNs.

In fact, the serious improvement in decreasing average
handover delay which was achieved using the proposed AHP
scheme is due to the fact that the handover decision in
the AHP scheme is obtained in cooperation with adaptive
AP load input metric. Therefore, the handover process did
not encounter any overloaded APs, keeping the average
handover delay low regardless of the increase in the number
of MNs. However, this feature was not considered in either
the APCV or D-Scan method which resulted in the failure
to reduce the handover delay in the low average range in
response to increases in the number of MNs. Finally, it is
worth mentioning that the AHP scheme could efficiently
decrease the average handover delay as the number of MNs
continued to increase. This was achieved by developing
adaptive coefficients of the mean and standard deviation of
the normalized fuzzy inference system’s input metrics.

4.2. AP Load. Asmentioned earlier, AP load is an important
metric that must be considered during the handover decision
making process. Handover decisions obtained with one
particular AP with high load cause high handover delay and
might cause handover failure. Hence, the AP load considered
in the proposed AHP is an important metric that contributes
positively to the AP rankings. This leads to making handover
decisions with the most qualified AP candidate by taking
into account its current load. Moreover, the AHP scheme
using AP load metric made an essential contribution in
support of wireless networks by creating load balancing
among APs, ensuring or improving accuracy in handover
decisionmaking.Therefore, as can be seen from Figure 10(b),
the AHP scheme reduced the load balance that was tackled
by each AP and distributed it fairly among all 9 APs in the
simulation scenario.

In order to provide a perspective example of calculated
AP load, the average load obtained from AP1 is highlighted
in this paragraph. Alternatively, Figure 10(c) presents the
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Figure 7: Number of total handovers.

average of obtained AP load of AP1 utilizing AHP scheme
and APCV and D-Scan methods measured in bits/sec during
simulation time. As a function of load (bits/sec) tackled
by AP1 during simulation time, the output graphs of AHP
scheme and APCV and D-Scan methods over the first 100
seconds, all acting on the same load, are shown. The reason
is that, during this period of time, AP1 is still serving
only the first round of MNs. When the new MNs begin to
associate with AP1 as a result of handovers beginning after
100 seconds, the obtained load by both APCV and D-Scan
is increased sharply. At the same time, the load obtained by
employing AHP scheme continued to decrease throughout
the simulation time comparedwith APCV andD-Scan which
obtained higher loads, respectively.

In percentage form, the AP1 load as presented in
Figure 10(b) indicates that the achieved load is the lowest
using the AHP scheme followed by D-Scan and APCV
methods, respectively. Similarly, in Figure 10(c), the AHP
scheme is superior in terms of decreasing the load (bits/sec)
performed by AP1 during simulation time compared with the
state of the art or the existing AP’s prediction methods. This
has a tremendous effect on the load balancing among the
available APs in the simulated area. Thereby, the handover
process avoids overloadingAPs as long as there are alternative
APs with better quality cost obtained using the proposed
adaptive fuzzy inference system.

4.3. Total Number of Handovers. In order to evaluate the
proposed AHP scheme in terms of the ability to maintain
the total number of handovers at an acceptable level, five
MNs have been selected to observe the average number of
handovers that are performed with each simulation run.
Throughout this evaluationmetric, the level of improvements
in prediction accuracy can be studied and analyzed as a way
to validate the proposed AHP scheme’s performance. The
total number of handovers processed during the simulation
time by the five selected MNs has been captured and then
calculated. Figure 7 illustrates the total number of handover
decisions triggered by each of the five MNs (successful and
failure handovers) employing AHP, APCV, and D-Scan. It
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was observed that, by using the proposed APH scheme, the
average number of handovers that are obtained by MN1 is 5,
whereas MN2 and MN4 are achieved 4. On the other hand,
the obtained average handovers within MN3 and MN5 was 3
handovers. Utilizing APCV and D-Scan, the average number
of total handovers were 9, 6, 5, 6, and 7 and 7, 7, 6, 5, and 5 as
a sequence of five selected MNs, respectively.

It is obvious that proposed AHP scheme performs better
than both APCV and D-Scan methods in terms of reducing
the total number of handovers. In other words, by using the
AHP scheme, unnecessary and incorrect handover decisions
have been significantly reduced or avoided. This is due to the
fact that, in proposed AHP scheme, the MN calculates the
quality cost of each neighbour AP using the proposed adap-
tive fuzzy inference system before performing the handover
process. Thus, the obtained handover decision is based on
the correlation between three fuzzified input metrics (RSS,
related direction, and AP load) and is more accurate.

4.4. Number of Failed Handovers. From another perspective,
to evaluate the proposed AHP scheme in terms of reducing
the number of unsuccessful handovers, the average number
of failed handovers in each of 5 selected MNs has been
calculated. Through conducting this performance test, the
ability in obtaining correct handover predictions in WLANs
can be examined, which subsequently contributes in reducing
the handover delay. By looking at Figure 8, it can be observed
that MN2, MN3, and MN5 using the proposed AHP scheme
did not face any handover failure during simulation time.
However, MN1 and MN4 obtained one handover failure.
In contrast, the number of failed handovers in each of 5
MNs using both APCV and D-Scan was 3, 1, 0, 1, and 1
and 3, 2, 1, 2, and 3, respectively. In different form, when
counting the average number of failed handovers out of
the five MNs as presented in Figure 8 for the three applied
schemes, the obtained average number using each imple-
mented scheme was 0.4 AHP, 1.2 APCV, and 2.2 utilizing D-
Scan.This indicates that the proposed AHP scheme achieved
the lowest average of failed handovers while APCV and D-
Scan methods followed in rank order. This is not surprising
since the proposed AHP scheme relies on a predictive fuzzy
inference system based on three input metrics (RSS, related
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Figure 9: Handover failure probability.

direction, and AP load). Hence, the handover process was
performed each time with the most qualified AP candidate
in the scanning area.

On the other hand, in APCV method, the MN obtained
the handover decisions with APs based on the candidacy
value obtained via fuzzy logic regardless of AP’s current
load factor and its related direction aspect. In contrast, D-
Scan method relies only in a predictive way on performing
a fast and active scan for existing APs which contributes
to reducing the Maximum Channel scanning time. The
simulation experiment conducted in this regard shows that
the D-Scan method achieves low total handover latency in
comparison with APCV, while, at the same time, the number
of failed handovers increased. This is due to the fact that
the D-Scan method focused on performing scanning process
in less time than obtaining the handover decision with an
AP collected from APs list by comparing their RSS with
the current AP. An additional weakness is that this type of
decision making system can fall into inaccurate handover
decisions easily. Alternatively, it can be concluded from
Figure 8 that the proposed AHP scheme could achieve a low
number of failed handovers in comparison with both APCV
and D-Scan methods due to accurate handover decisions
based on an adaptable fuzzy inference system.

4.5. Handover Failure Probability. The probability of han-
dover failure in unit of zero (Low) to 1 (High) for the five
selected MNs in the experiments is considered under this
section. The simulation outcome of varying number of failed
handovers using proposed AHP scheme in comparison to
D-Scan and APCV methods was calculated to demonstrate
the probability of failure. It is under such circumstances
that the probability of handover failure can be calculated
based on the mean of obtained failed handovers that were
previously recorded.Handover failure probabilities have been
calculated for each of the five selectedMNs and are illustrated
in Figure 9. In Figure 9, the probability of handover failure
is shown in comparison form, and the probability of failure
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Figure 10: Continued.
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Figure 10: Performance evaluation.

achieved by the AHP scheme, APCV, and D-scanMN1 is 0.2,
0.33, and 0.42, respectively. This implies that MN1 explained
in the proposed AHP scheme could obtain the lowest failure
probability compared with the other two methods. In MN2,
the probability of failure was 0, 0.16, and 0.28, respectively,
which shows that the AHP scheme achieved zero handover
failure probability with MN2. The calculated failure proba-
bility for MN3 was zero in both AHP scheme and APCV
while it was 0.16 in D-Scan method. On the other hand,
APCV method with MN4 obtained 0.16 as the lowest failure
probability in comparisonwith proposedAHP scheme at 0.24
and the D-Scan method at 0.4.

To sum up, the calculated failure probability in MN5 was
zero by usingAHP scheme, while it were 0.14 with APCV, and
0.6 with Scan method. It can be summarized from Figure 9

that the handover failure probability using the AHP scheme
in MN1, MN2, and MN5 was the lowest compared with the
other two methods. In contrast, the probability in MN3 was
the same as AHP and APCV, which was zero probability.
Last but not least, in MN4, the APCV achieved less failure
probability compared with AHP and D-Scan. Therefore, in
terms of the overall probability of handover failure, the AHP
scheme is superior in comparison to the state of the art in
reducing the probability of failure due to the aforementioned
reasons.

4.6. AverageMAC-Layer Delay. Figure 10(d) shows the aver-
age MAC-layer delay (measured in seconds), in comparison
formbetween the proposedAHP scheme,D-Scan, andAPCV
during simulation time. Generally, it can be observed that
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the proposed AHP scheme obtained the lowest average
MAC-layer delay out of 5 simulation runs compared with
APCV and D-Scan methods. The graph presented in
Figure 10(d) illustrates the varying rate in MAC-layer delay
with the impact of handovers which are performed during
simulation time. Therefore, by looking at the fluctuations in
the depicted graphs, the behaviour of the MAC-layer delay
during the handover time is split between MN and APs in
the simulated area. On the other hand, a straight line graph
indicates that theMAC-layer is currently not in the handover
process (MN is currently active with one AP).

In fact, the proposed AHP scheme performed handover
decisions accurately, avoiding unnecessary handovers. As
presented in Figure 7, the total number of handovers is less
than that of the other twomethods, and theMAC-layer delay
is critically decreased. Hence, the MAC-layer delay, which is
susceptible to high delay due to many handover processes,
has been saved from having to do so many fluctuations as the
AHP scheme reduces the number of handovers. In contrast,
APCV method obtained higher delay compared with AHP
scheme, since APCV does not consider any adaptation
process or weight vectors in order to improve handover
decision making in fuzzy inference systems. Subsequently,
the delay increased during simulation time compared with
the AHP scheme. On the other hand, the MAC-layer delay
increased sharply after 50 seconds using the D-Scan method,
being in the average higher than both APCV and AHP
scheme. It should be noted that the D-Scan method focuses
on smartness during the scanning process in MAC-layer
regardless of mobility and AP’s aspects such as MN’s related
direction with the AP and current AP’s load.

4.7. Impact of MN’s Number on Packet Loss Ratio.
Figure 10(e) shows the packet loss ratio of AHP scheme,
APCV, andD-Scan.Thepacket loss ratio has beennormalized
between 0 and 1. It can be noted that the AHP scheme
obtained the lowest ratio, followed by APCV and D-Scan
methods. As mentioned in the previous subsections, the
AHP scheme achieved the lowest average handover delay
in addition to low handover delay associated with real-time
applications. For this reason, when MN performs the
handover process with low delay, the connection is less likely
to be broken during the handover procedure. Therefore, the
probability of incurring a high packet loss ratio is low.

Furthermore, the impact of MNs increasing during
simulation time on packet loss ratio is decreased by the
proposed AHP scheme since load balancing is considered
in the proposed adaptive fuzzy inference system. This is not
surprising, since the packet loss ratio continued to decrease
as the number of MNs increased, which implies that there
are no handovers being processed by overloaded APs, which
decreases packet loss ratio. From a different perspective, in
order to place greater emphasis on the reasons behind the
improvement in the ratio of packet loss utilizing proposed
AHP scheme, Figure 10(f) presents the packet delay variation
between calling and called party obtained by the AHP
scheme.

Figure 10(f) illustrates the collected results of one exam-
ple of two MNs communicating with each other by running

a VoIP application type pulse-code modulation (PCM) with
bit generation rate at 64 kbps. Throughout this example, the
variance in time delay in delivering VoIP application packets
is very similar between both the calling and the called party,
where the calling party is the MN which initiates the call
and the called party is the MN which answers the call. From
the presented graphs which were collected during a handover
process during simulation time, it can be observed that after
100 seconds the delay associated with the called party started
to increase slightly as another handover process was started
at that moment.

Afterwards, the delay increased when the packet ratio of
VoIP increased during the calling session. After 100 seconds,
however, the variation in the delay time between both the
calling and the called parties was insignificant. Subsequently,
after 490 seconds of simulation time, the second handover is
started, and the variance in delay experienced between calling
and called parties was in the range of 1 to 2 milliseconds.

4.8. Adaptive Fuzzy-Quality-Cost of Available APs in Simu-
lation Scenario. In order to present the calculated Fuzzy-Q-
Cost output of input metrics (RSS,𝐷, and 𝐿), that is obtained
with each run of adaptive fuzzy inference engine, one MN
was selected in the simulation scenario. The calculated costs
by the selectedMNof all available APs usingAHP scheme are
presented in this subsection. Figure 10(g) shows the scenario
of the selected MN’s movement trajectory (Host1) crossing 9
specific APs. The APs are sorted in the movement trajectory
as sequence AP1, AP2, AP3, AP4, AP5, AP6, AP7, AP8, and
AP9. Throughout these 9 APs, the obtained Fuzzy-Q-Cost
by Host1 illustrates that an average of 5 simulation runs are
sufficient to serve as a numerical example of how to calculate
cost in an AHP scheme.

Figure 10(h) illustrates the outputs of the proposed adap-
tive fuzzy inference engine which was employed in the AHP
scheme to calculate the quality cost of AP1, AP2, and AP3. It
is worth mentioning that the Fuzzy-Q-Cost of the APs was
calculated every 10 seconds during the scanning process by
Host1 during its movement. As can be seen from Figure 10(h),
the Fuzzy-Q-Cost ranges between 0 and 1 and is presented as
a function of distance. At the first point of Host1 movement
(started its trajectory fromAP1 as shown in Figure 10(g)), the
obtained Fuzzy-Q-Cost is 1 (best quality cost) during the first
100 meters. Afterwards, the cost began to gradually decrease
as the time distance was increasing, until sharply dropping to
0 beyond 800 meters.

The reason is that as the time distance increased between
Host1 and AP1, many quality aspects may have varied. For
instance, when the MN is moving out of an AP’s coverage
area, the RSS will experience quality attenuation due to
large scale fading. Moreover, direction can be changed to
be more likely in low directed membership. Therefore, the
obtained cost decreased as distance increased with AP1. On
the other hand, the obtained costs from both AP2 and AP3
fluctuate by the increased distance during Host1 movement.
It is under such circumstances that the calculated cost, by
employing proposed adaptive fuzzy inference system, can be
either increased or decreased. For instance, as the load factors
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begin to vary between AP2 andAP3with respect to two other
input metrics (RSS and𝐷), different costs result for AP2 and
AP3 as plotted in Figure 10(h).

Figure 10(i) illustrates the obtained Fuzzy-Q-Cost for
AP4, AP5, and AP6 during Host1’s movement trajectory as
shown in Figure 10(g). As can be seen from the figure, at
the first 100 meters of Host1 movement, the Fuzzy-Q-Cost
for AP4, AP5, and AP6 was low cost. This is not surprising
since the allocated positions of the aforementioned APs in
the movement trajectory are at a farther distance compared
to AP1, AP2, and AP3. Therefore, the cost of AP4 and AP5
started to increase evenly by the time of Host1 movement
towardsAP5 crossingAP4. Subsequently, the obtained cost of
AP4 sharply decreased after 930 meters of Host1 movement.
In fact, two main AP4 ranking factors, which are RSS quality
due to the movement out of AP4’s coverage area and Host1
moving in different direction with AP4 at this distance, are
degraded. Therefore, the maximum achieved Fuzzy-Q-Cost
for AP4 during simulation is a cost score of 0.635.

On the other hand, Figure 10(j) plots the obtained Fuzzy-
Q-Cost of the last APs in Host1 trajectory (AP7, AP8, and
AP9) in the presented scenario in Figure 10(g). Based on the
presented Fuzzy-Q-Cost graphs, the cost for these three APs
was zero during the first 1200 meters of Host1 movement,
which increased the AP7 cost to 0.208 after 1220 meters.
This sort of increase in the quality cost of AP7 fluctuated
slightly between small cost values to a maximum value of
0.02. However, as the distance increased, the cost is increased
as well, and, at 1400 meters, AP8 started to obtain small
amounts of Fuzzy-Q-Cost as well.

The maximum Fuzzy-Q-Cost is obtained from AP7
which was 0.416 at 1910 meters of Host1 movement. Beyond
this distance, the calculated quality cost of AP7 started to
gradually decrease. In this regard, it can be mentioned that
based on definedHost1’s movement trajectory, the movement
is adjusted close to the borders of AP7’s coverage area. For
this reason, as Host1 moves farther distance away from AP7
after 1910 meters, the quality of two input metrics, RSS and
Direction, is deducted. In the meantime, the Fuzzy-Q-Cost
of AP8 and AP9 increased to a maximum achieved cost for
AP8 of 0.98 at 1930 meters and the cost value of AP9 reached
its maximum value (1) at 1980 meters.

Finally, the important point to note here is that through-
out the obtained Fuzzy-Q-Cost as presented in the example
of Host1 all the available APs in MN’s coverage area are
ranked between 0 and 1 and are ready to choose the best
candidate AP to camp on. Utilizing AP selection process as
presented in Section 3.3, the best candidate AP can be chosen
accordingly. Subsequently, all the associated delays in the
handover process are decreased and the QoS of the ongoing
applications are insured.

5. Conclusion

This paper proposed an adaptive handover prediction (AHP)
scheme that predicts the best AP candidate considering the
RSS of AP candidate, mobile node relative direction towards
the access points in the vicinity, and access point load. As
discussed in detail, the proposed AHP scheme relies on

an adaptive fuzzy inference system to obtain predictions
in the handover decision making process. This is achieved
whereby coefficients are designed in a form and can be set up
by the user. Afterwards, the membership functions of each
particular input metric are calculated adaptively employing
the developed piecewise linear equations. In the meantime,
the weight vector for each input metric is proposed in
an adjustable way to insure the accuracy of the obtained
handover decision. Subsequently, the AHP scheme selects
the final handover decision where AP obtained the highest
quality cost (Fuzzy-Q-Cost), with respect to ℎ which is the
threshold value which helps to reduce unnecessary han-
dovers. Simulation results show that proposed AHP scheme
performs the best in contrast to the state of the art.
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