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Abstract

We try to characterize those Tychonoff spaces X such that βX \X has

the Menger property.
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1. Introduction

A space X is Menger (or has the Menger property) if for any sequence of
open coverings {Un : n < ω} one may pick finite sets Vn ⊆ Un in such a way that⋃
{Vn : n < ω} is a covering. This equivals to say that X satisfies the selection

principle Sfin(O,O). It is easy to see the following chain of implications:

σ-compact −→ Menger −→ Lindelöf

An important result of Hurewicz [4] states that a space X is Menger if
and only if player 1 does not have a winning strategy in the associated game
Gfin(O,O) played on X . This highlights the game-theoretic nature of the
Menger property, see [7] for more.

Henriksen and Isbell ([3]) proposed the following:

Definition 1.1. A Tychonoff space X is Lindelöf at infinity if βX \ X is
Lindelöf.

They discovered a very elegant duality in the following:
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Proposition 1.2 ([3]). A Tychonoff space is Lindelöf at infinity if and only if

it is of countable type.

A space X is of countable type provided that every compact set can be
included in a compact set of countable character in X .

A much easier and well-known fact is:

Proposition 1.3. A Tychonoff space is Čech-complete if and only if it is σ-
compact at infinity.

These two propositions suggest the following:

Question 1.4. When is a Tychonoff space Menger at infinity?

Before beginning our discussion here, it is useful to note these well known
facts:

Proposition 1.5. The Menger property is invariant by perfect maps.

Corollary 1.6. X is Menger at infinity if, and only if, for any Y compactifi-

cation of X, Y \X is Menger.

Fremlin and Miller [6] proved the existence of a Menger subspace X of
the unit interval [0, 1] which is not σ-compact. The space X can be taken
nowhere locally compact and so Y = [0, 1] \ X is dense in [0, 1]. Since the
Menger property is invariant under perfect mappings, we see that βY \ Y is
still Menger. Therefore, a space can be Menger at infinity and not σ-compact
at infinity. Another example of this kind, stronger but not second countable,
is Example 3.1 in the last section.

On the other hand, the irrational line shows that a space can be Lindelöf at
infinity and not Menger at infinity.

Consequently, the property M characterizing a space to be Menger at infin-
ity strictly lies between countable type and Čech-complete.

Of course, taking into account the formal definition of the Menger property,
we cannot expect to have an answer to Question 1.4 as elegant as Henriksen-
Isbell’s result.

2. A characterization

Definition 2.1. Let K ⊂ X . We say that a family F is a closed net at K if
each F ∈ F is a closed set such that K ⊂ F and for every open A such that
K ⊂ A, there is an F ∈ F such that F ⊂ A.

Lemma 2.2. Let X be a T1 space. If (Fn)n∈ω is a closed net at K, for K ⊂ X
compact, then K =

⋂
n∈ω Fn.

Proof. Simply note that for each x /∈ K, there is an open set V such that
K ⊂ V and x /∈ V . �

Lemma 2.3. Let Y be a regular space and let X be a dense subspace of Y .

Let K ⊂ X be a compact subset. If (Fn)n∈ω is a closed net at K in X, then

(Fn
Y
)n∈ω is a closed net at K in Y .
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Proof. In the following, all the closures are taken in Y . Let A be an open set in
Y such that K ⊂ A. By the compactness of K and the regularity of Y , there
is an open set B such that K ⊂ B ⊂ B ⊂ A. Thus, there is an n ∈ ω such that
K ⊂ Fn ⊂ B ∩X . Note that K ⊂ Fn ⊂ B ⊂ A. �

Lemma 2.4. Let X be a compact Hausdorff space. If K =
⋂

n∈ω Fn, where

(Fn)n∈ω is a decreasing sequence of closed sets, then (Fn)n∈ω is a closed net at

K.

Proof. If not, then there is an open set V such that K ⊂ V and, for every
n ∈ ω, Fn \ V 6= ∅. By compactness, there is an x ∈

⋂
n∈ω Fn \ V = K \ V .

Contradiction with the fact that K ⊂ V . �

Theorem 2.5. Let X be a Tychonoff space. X is Menger at infinity if, and

only if, X is of countable type and for every sequence (Kn)n∈ω of compact

subsets of X, if (Fn
p )p∈ω is a decreasing closed net at Kn for each n, then there

is an f : ω −→ ω such that K =
⋂

n∈ω Fn
f(n) is compact and (

⋂
k≤n F k

f(k))n∈ω

is a closed net for K.

Proof. In the following, every closure is taken in βX .
Suppose that X is Menger at infinity. By Lemma 1.2 X is of countable type.

Let (Fn
p )p,n∈ω be as in the statement. Note that, by Lemma 2.3 and Lemma

2.2,
⋂

p∈ω Fn
p =

⋂
p∈ω Fn

p for each n ∈ ω. Thus, for each n ∈ ω, (V n
p )p∈ω,

where V n
p = βX \ Fn

p , is an increasing covering for βX \ X . Since βX \ X
is Menger, there is an f : ω −→ ω such that βX \ X ⊂

⋃
n∈ω V n

f(n). Note

that K =
⋂

n∈ω Fn
f(n) is compact and it is a subset of X . By Lemma 2.4,

(
⋂

k≤n F k
f(k))n∈ω is a closed net at K in βX , therefore, (

⋂
k≤n F k

f(k))n∈ω is a

closed net at K in X . Conversely, for each n ∈ ω, let Wn be an open covering
for βX \X . We may suppose that each W ∈ Wn is open in βX . By regularity,
we can take a refinement Vn of Wn such that, for every x ∈ βX \ X , there
is a V ∈ Vn such that x ∈ V ⊂ V ⊂ WV for some WV ∈ Wn. Since X is
of countable type, By Lemma 1.2 we may suppose that each Vn is countable.
Fix an enumeration for each Vn = (V n

k )k∈ω . Define An
k = βX \ (

⋃
j≤k V

n
j ).

Note that each Kn =
⋂

k∈ω An
k is compact and a subset of X . By Lemma 2.4,

(An
k )k∈ω is a closed net at Kn. Thus, (An

k ∩X)k∈ω is a closed net at Kn in X .

Therefore, there is f : ω −→ ω such that K =
⋂

n∈ω(A
n
f(n) ∩ X) is compact

and (
⋂

k≤f(n) A
k
f(k) ∩ X)n∈ω is a closed net at K. So, by Lemma 2.3, K =

⋂
n∈ω (An

f(n) ∩X). Since
⋂

n∈ω (An
f(n) ∩X) =

⋂
n∈ω An

f(n) and by the fact that

K ⊂ X , it follows that βX \X ⊂
⋃

n∈ω βX \An
f(n) ⊂

⋃
n∈ω Int(

⋃
j≤f(n) V

n
j ) ⊂

⋃
n∈ω

⋃
j≤f(n) WV n

j
. Therefore, letting Un = {WV n

j
: j ≤ f(n)} ⊂ Wn, we see

that the collection
⋃

n∈ω Un covers βX \X , and we are done. �

Property M given in the above theorem does not look very nice and we
wonder whether there is a simpler way to describe it, at least in some special
cases.
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Recall that a metrizable space is always of countable type. Moreover, a
metrizable space is complete if and only if it is σ-compact at infinity. Therefore,
we could hope for a “nicer” M in this case.

Question 2.6. What kind of weak completeness characterizes those metrizable

spaces which are Menger at infinity?

Proposition 2.7. Let X be a Tychonoff space. If X is Menger at infinity then

for every sequence (Kn)n∈ω of compact sets, there is a sequence (Qn)n∈ω of

compact sets such that:

(1) each Kn ⊂ Qn;

(2) each Qn has a countable base at X;

(3) for every sequence (Bn
k )n,k∈ω such that, for every n ∈ ω, (Bn

k )k∈ω is a

decreasing base at Kn, then there is a function f : ω −→ ω such that

K =
⋂

n∈ω Bn
f(n) is compact and (

⋂
k≤n B

k
f(k))n∈ω is a closed net at K.

Proof. Suppose X is Menger at infinity. Let (Kn)n∈ω be a sequence of com-
pact sets. Since X is Menger at infinity, X is Lindelöf at infinity. Thus, by
Proposition 1.2, for each Kn, there is a compact Qn ⊃ Kn such that Qn has a
countable base. Now, let (Bn

k )k,n be as in 3. Since each Qn is compact and X

is regular, each (Bn
k )k∈ω is a decreasing closed net at Qn. Thus, by Theorem

2.5, there is an f : ω −→ ω as we need. �

To some extent, the Menger property is closer to σ- compactness rather than
to Lindelöfness. Since a Čech- complete space has the Baire property, we may
ask:

Question 2.8. Is it true that a space Menger at infinity has the Baire property?

We thank M. Sakai for calling our attention to the above question. He also
noticed a partial answer to it:

Theorem 2.9 (Sakai). Let X be a first countable Tychonoff space. If X is

Menger at infinity, then X is hereditarily Baire.

Proof. According to a result of Debs [2], a regular first countable space is
hereditarily Baire if and only if it contains no closed copy of the space of
rationalsQ. To finish, it suffices to observe that Q is not Menger at infinity. �

We end this section presenting a selection principle that at first glance could
be related with the Menger at infinity property.

Definition 2.10. We say that a family U of open sets of X is an almost

covering for X if X \
⋃
U is compact. We call A the family of all almost

coverings for X .

Note that the property “being Menger at infinity” looks like something as
Sfin(A,A), but for a narrow class of A. We will see that the “narrow” part is
important.

Proposition 2.11. If X satisfies Sfin(A,A), then X is Menger.
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Proof. Let (Un)n∈ω be a sequence of coverings of X . By definition, for each
n ∈ ω, there is a finite Un ⊂ Un, such that K = X \

⋃
n∈ω

⋃
Un is compact.

Therefore, there is a finite W ⊂ Un such that K ⊂
⋃
W . Thus, X = W ∪⋃

n∈ω

⋃
Un. �

Example 2.12. The space of the irrationals is an example of a space that is
Menger at infinity but does not satisfy Sfin(A,A) (by the Proposition 2.11).

Example 2.13. The one-point Lindelöfication of a discrete space of cardinality
ℵ1 is an example of a Menger space which does not satisfy Sfin(A,A).

Example 2.14. ω is an example of a space that satisfies Sfin(A,A), but it is
not compact.

Proof. Let (Vn)n∈ω be a sequence of almost coverings for ω. Therefore, for
each n, Fn = ω \

⋃
Vn is finite. For each n, let Vn ⊂ Vn be a finite subset such

that Fn+1 \Fn ⊂
⋃
Vn and min(ω \

⋃
k<n Vk) ∈ Vn. Note that ω \

⋃
n∈ω

⋃
Vn =

F0. �

3. More than Menger at infinity

One may wonder whether the hypothesis “player 2 has a winning strategy in
the Menger game Gfin(O,O) played on βX \X” is strong enough to guarantee
that X is Čech-complete. It turns out this is not the case, as the following
example shows.

Example 3.1. Take the usual space of rational numbers Q and an uncountable
discrete space D. Let Y = Q×D ∪ {p} be the one-point Lindelöfication of the
space Q ×D and then let X = βY \ Y . Since Y is nowhere locally compact,
we have Y = βX \X . X is not Čech-complete, since Y is not σ-compact, but
player 2 has a winning strategy in Gfin(O,O) played on βX \ X . The latter
assertion easily follows by observing that any open set containing p leaves out
countably many points.

Therefore, to ensure the Čech-completeness of X , we need to assume some-
thing more on the space (see for instance Corollary 3.3 below). Moreover, the
first example presented in the introduction shows that a metrizable space (ac-
tually a subspace of the real line) can be Menger at infinity, but not favorable
for player 2 in the Menger game at infinity (see again Corollary 3.3).

Recall that a space X is sieve complete [5] if there is an indexed collection
of open coverings 〈{Ui : i ∈ In} : n < ω〉 together with mapps πn : In+1 → In
such that Ui = X for each i ∈ I0 and Ui =

⋃
{Uj : j ∈ π−1

n (i)} for all i ∈ In.
Moreover, we require that for any sequence of indexes 〈in : n < ω〉 satisfying
πn(in+1) = in if F is a filterbase in X and Uin contains an element of F for
each n < ω, then F has a cluster point.

Every Čech-complete space is sieve complete and every sieve complete space
contains a dense Čech-complete subspace. In addition, a paracompact sieve
complete space is Čech-complete and a sieve complete space is of countable
type [9].
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Telgársky presented a characterization of sieve completeness in terms of the
Menger game played on βX \X (note that in [8] the Menger game is called the
Hurewicz game and is denoted by H(X)):

Theorem 3.2 (Telgársky [8]). Let X be a Tychonoff space. βX\X is favorable

for player 2 in the Menger game if and only if X is sieve complete.

Since a sieve-complete space has the Baire property, Question 2.8 has a
positive answer for spaces which are Menger favorable at infinity.

Taking into account that a paracompact sieve complete space is Čech-complete,
we immediately get:

Corollary 3.3. Let X be a paracompact Tychonoff space. X is Čech-complete

if and only if player 2 has a winning strategy in the game Gfin(O,O) played on

βX \X.

In particular:

Corollary 3.4. A metrizable space X is complete if and only if player 2 has

a winning strategy in Gfin(O,O) played on βX \X.

Corollary 3.5. A topological group G is Čech-complete if and only if player 2

has a winning strategy in Gfin(O,O) played on βG \G.

Proof. Every topological group of countable type is paracompact. �
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