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ABSTRACT

We try to characterize those Tychonoff spaces X such that BX \ X has
the Menger property.

2010 MSC: 54F65; 54D40; 54D20.

KEYWORDS: Menger; remainder.

1. INTRODUCTION

A space X is Menger (or has the Menger property) if for any sequence of
open coverings {U,, : n < w} one may pick finite sets V,, C U,, in such a way that
U{V» : n < w} is a covering. This equivals to say that X satisfies the selection
principle Sg, (O, O). It is easy to see the following chain of implications:

o-compact —>» Menger — Lindel6f

An important result of Hurewicz [4] states that a space X is Menger if
and only if player 1 does not have a winning strategy in the associated game
Gsn(O,O) played on X. This highlights the game-theoretic nature of the
Menger property, see [7] for more.

Henriksen and Isbell ([3]) proposed the following:

Definition 1.1. A Tychonoff space X is Lindelof at infinity if X \ X is
Lindelof.

They discovered a very elegant duality in the following:
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Proposition 1.2 ([3]). A Tychonoff space is Lindelof at infinity if and only if
it is of countable type.

A space X is of countable type provided that every compact set can be
included in a compact set of countable character in X.
A much easier and well-known fact is:

Proposition 1.3. A Tychonoff space is Cech-complete if and only if it is o-
compact at infinity.

These two propositions suggest the following;:
Question 1.4. When is a Tychonoff space Menger at infinity?

Before beginning our discussion here, it is useful to note these well known
facts:

Proposition 1.5. The Menger property is invariant by perfect maps.

Corollary 1.6. X is Menger at infinity if, and only if, for any Y compactifi-
cation of X, Y \ X is Menger.

Fremlin and Miller [6] proved the existence of a Menger subspace X of
the unit interval [0,1] which is not o-compact. The space X can be taken
nowhere locally compact and so Y = [0,1] \ X is dense in [0,1]. Since the
Menger property is invariant under perfect mappings, we see that SY \ 'V is
still Menger. Therefore, a space can be Menger at infinity and not o-compact
at infinity. Another example of this kind, stronger but not second countable,
is Example 3.1 in the last section.

On the other hand, the irrational line shows that a space can be Lindelof at
infinity and not Menger at infinity.

Consequently, the property M characterizing a space to be Menger at infin-
ity strictly lies between countable type and Cech-complete.

Of course, taking into account the formal definition of the Menger property,
we cannot expect to have an answer to Question 1.4 as elegant as Henriksen-
Isbell’s result.

2. A CHARACTERIZATION

Definition 2.1. Let K C X. We say that a family F is a closed net at K if
each F' € F is a closed set such that K C F and for every open A such that
K C A, there is an F' € F such that F' C A.

Lemma 2.2. Let X be a Ty space. If (F)new is a closed net at K, for K C X
compact, then K =, .., Fn.

Proof. Simply note that for each = ¢ K, there is an open set V' such that
KcVandax¢V. O

Lemma 2.3. Let Y be a regular space and let X be a dense subspace of Y.
Let K C X be a compact subset. If (Fy)necw is a closed net at K in X, then

(F_ny)new is a closed net at K in'Y.
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Proof. In the following, all the closures are taken in Y. Let A be an open set in
Y such that K C A. By the compactness of K and the regularity of Y, there
is an open set B such that K C B C B C A. Thus, there is an n € w such that
K C F, C BN X. Note that K C F\,, C B C A. O

Lemma 2.4. Let X be a compact Hausdorff space. If K =\, ., Fn, where
(Fn)new 18 a decreasing sequence of closed sets, then (Fy)necw 8 a closed net at
K.

Proof. If not, then there is an open set V' such that K C V and, for every
n € w, F, \'V # @. By compactness, there is an x € [, ., F \V = K\ V.
Contradiction with the fact that K C V. O

Theorem 2.5. Let X be a Tychonoff space. X is Menger at infinity if, and
only if, X is of countable type and for every sequence (Kp)ne., of compact
subsets of X, if (F}}')pew is a decreasing closed net at K,, for each n, then there
is an f 1w — w such that K = Fny s compact and (<, Fjlf(k))nEw
is a closed net for K.

nEw

Proof. In the following, every closure is taken in SX.

Suppose that X is Menger at infinity. By Lemma 1.2 X is of countable type.
Let (F}')pnew be as in the statement. Note that, by Lemma 2.3 and Lemma
2.2, ﬂpEw By = ﬂpEw Fﬁ for each n € w. Thus, for each n € w, (V;")pew,
where V' = BX \ F"7 is an increasing covering for X \ X. Since X \ X
is Menger there is an f : w — w such that X \ X C U,V F(n)- Note

that K = f(n) is compact and it is a subset of X. By Lemma 2.4,

(Ni<n f(k))nEw is a closed net at K in 8X, therefore, (<, f(k))nEw is a
closed net at K in X. Conversely, for each n € w, let W,, be an open covering
for BX \ X. We may suppose that each W € W, is open in $X. By regularity,
we can take a refinement V,, of W, such that, for every z € X \ X, there
isaV €V, such that z € V € V € Wy for some Wy € W,. Since X is
of countable type, By Lemma 1.2 we may suppose that each V), is countable.
Fix an enumeration for each V,, = (V")kew. Define A} = X\ (Ujgkﬁ)'
Note that each K, = (¢, A_ﬁ is compact and a subset of X. By Lemma 2.4,
(F)keu is a closed net at K,,. Thus, (ﬁ N X)rew is a closed net at K, in X.
Therefore, there is f : w — w such that K = (. (A%, Fy D X) is compact

and ((MNy< () Af(k) N X)new is a closed net at K. So, by Lemma 2.3, K =
Mhew (A (ny N X)- Since Nnew (A% ty NX) = Mhew Af( ) and by the fact that
K C X, it follows that X\ X C {J,,c,, ﬂX\A;}(n) C Unew Int(Uj<f(n) VJ”)

Unew Uj<pn) Wy Therefore, letting U, = {Wyr @ j < f(n)} C Wy, we see
that the collection |, ., Uy covers BX \ X, and we are done. d

new

new

Property M given in the above theorem does not look very nice and we
wonder whether there is a simpler way to describe it, at least in some special
cases.
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Recall that a metrizable space is always of countable type. Moreover, a
metrizable space is complete if and only if it is o-compact at infinity. Therefore,
we could hope for a “nicer” M in this case.

Question 2.6. What kind of weak completeness characterizes those metrizable
spaces which are Menger at infinity?

Proposition 2.7. Let X be a Tychonoff space. If X is Menger at infinity then
for every sequence (Kp)new of compact sets, there is a sequence (Qn)new Of
compact sets such that:
(1) each K,, C Qn;
(2) each Q,, has a countable base at X ;
(3) for every sequence (B} )n kew Such that, for every n € w, (B )rew is a
decreasing base at K, then there is a function f :w — w such that
K =,e, B}, is compact and (<, B’;(k))nEw is a closed net at K.

Proof. Suppose X is Menger at infinity. Let (K,)necw be a sequence of com-
pact sets. Since X is Menger at infinity, X is Lindeldf at infinity. Thus, by
Proposition 1.2, for each K, there is a compact @, O K,, such that Q,, has a
countable base. Now, let (B})x,» be as in 3. Since each @, is compact and X
is regular, each (B_,?)k@J is a decreasing closed net at @),,. Thus, by Theorem
2.5, there is an f : w — w as we need. (]

To some extent, the Menger property is closer to o- compactness rather than
to Lindelofness. Since a Cech- complete space has the Baire property, we may
ask:

Question 2.8. Is it true that a space Menger at infinity has the Baire property?

We thank M. Sakai for calling our attention to the above question. He also
noticed a partial answer to it:

Theorem 2.9 (Sakai). Let X be a first countable Tychonoff space. If X is
Menger at infinity, then X is hereditarily Baire.

Proof. According to a result of Debs [2], a regular first countable space is
hereditarily Baire if and only if it contains no closed copy of the space of
rationals Q. To finish, it suffices to observe that QQ is not Menger at infinity. [

We end this section presenting a selection principle that at first glance could
be related with the Menger at infinity property.

Definition 2.10. We say that a family U of open sets of X is an almost
covering for X if X \ JU is compact. We call A the family of all almost
coverings for X.

Note that the property “being Menger at infinity” looks like something as
Stn(A, A), but for a narrow class of A. We will see that the “narrow” part is
important.

Proposition 2.11. If X satisfies San(A, A), then X is Menger.
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Proof. Let (Up)necw be a sequence of coverings of X. By definition, for each
n € w, there is a finite U,, C Uy, such that K = X \ U, c,, UUy is compact.
Therefore, there is a finite W C U, such that K ¢ JW. Thus, X = W U

Unew UUn. O

Example 2.12. The space of the irrationals is an example of a space that is
Menger at infinity but does not satisfy Sgn(A,.A) (by the Proposition 2.11).

Example 2.13. The one-point Lindel6fication of a discrete space of cardinality
N; is an example of a Menger space which does not satisfy Sgy, (A, A).

Example 2.14. w is an example of a space that satisfies Sg, (A, .A), but it is
not compact.

Proof. Let (Vn)new be a sequence of almost coverings for w. Therefore, for
each n, F,, = w\ |JV, is finite. For each n, let V,, C V,, be a finite subset such
that Fy,q1\ Fi, € U Vs and min(w\ U, .,, Va) € V. Note that w\U,,c,, UVn =
Fp. O

3. MORE THAN MENGER AT INFINITY

One may wonder whether the hypothesis “player 2 has a winning strategy in
the Menger game Gg, (O, O) played on SX \ X7 is strong enough to guarantee
that X is Cech-complete. It turns out this is not the case, as the following
example shows.

Example 3.1. Take the usual space of rational numbers QQ and an uncountable
discrete space D. Let Y = Q x DU {p} be the one-point Lindel6fication of the
space Q x D and then let X = Y \ Y. Since Y is nowhere locally compact,
we have Y = fX \ X. X is not Cech-complete, since Y is not o-compact, but
player 2 has a winning strategy in Gg, (O, O) played on X \ X. The latter
assertion easily follows by observing that any open set containing p leaves out
countably many points.

Therefore, to ensure the Cech-completeness of X, we need to assume some-
thing more on the space (see for instance Corollary 3.3 below). Moreover, the
first example presented in the introduction shows that a metrizable space (ac-
tually a subspace of the real line) can be Menger at infinity, but not favorable
for player 2 in the Menger game at infinity (see again Corollary 3.3).

Recall that a space X is sieve complete [5] if there is an indexed collection
of open coverings ({U; : i € I,} : n < w) together with mapps 7, : In41 — I,
such that U; = X for each i € Iy and U; = [ J{U; : j € 7, (i)} for all i € I,,.
Moreover, we require that for any sequence of indexes (i), : n < w) satisfying
Tn(int1) = in if F is a filterbase in X and U;, contains an element of F for
each n < w, then F has a cluster point.

Every Cech-complete space is sieve complete and every sieve complete space
contains a dense Cech-complete subspace. In addition, a paracompact sieve
complete space is Cech-complete and a sieve complete space is of countable

type [9].
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Telgarsky presented a characterization of sieve completeness in terms of the
Menger game played on X \ X (note that in [8] the Menger game is called the
Hurewicz game and is denoted by H(X)):

Theorem 3.2 (Telgdrsky [8]). Let X be a Tychonoff space. X\ X is favorable
for player 2 in the Menger game if and only if X is sieve complete.

Since a sieve-complete space has the Baire property, Question 2.8 has a
positive answer for spaces which are Menger favorable at infinity.

Taking into account that a paracompact sieve complete space is Cech-complete,
we immediately get:

Corollary 3.3. Let X be a paracompact Tychonoff space. X is Cech-complete
if and only if player 2 has a winning strategy in the game Ggn (O, Q) played on
BX N\ X.

In particular:

Corollary 3.4. A metrizable space X is complete if and only if player 2 has
a winning strategy in Gan (O, O) played on X \ X.

Corollary 3.5. A topological group G is Cech-complete if and only if player 2
has a winning strategy in Gan (O, O) played on G\ G.

Proof. Every topological group of countable type is paracompact. O
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