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Abstract

Pharmacokinetic models are of utmost importance in drugnaedical research. The class
of parallel inputs models consists of two or more linear nhaionnected together in parallel. It
has been used to represent pharmacokinetic processesdh thiei input showsfiects on the
output with diferent delays in time.

Due to physiological variability, the exact values of thedabparameters are uncertain, but
they can be bounded by intervals. In this case, the compautafioutput bounds can be posed
as the solution of an initial value problem (IVP) for ordipalifferential equations (ODESs) with
uncertain initial conditions. However, current methody/mpeoduce a significant overestimation.

In this paper, a new method to minimise overestimation wtsimg.the parallel inputs model
is proposed and applied to two cases: subcutaneous indwdor@ion for artificial pancreas
research, and the study of the double-peak phenomenonveldder certain drugs. Our proposal
consists in performing a model reduction in conjunctionhvanalytical solutions of the input
chains and a monotonicity analysis of model states and petesisn This method allows obtaining
tighter output bounds with low computational cost compdeetthe latest techniques.

Keywords: Compartmental models, Parallel inputs, Uncertainty rirgleuncertainty, Bounded
solutions
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1. Introduction

Compartmental modelling is a common approach to simulatedgical processes. Further-
more, these models are used in many diverse areas such asrécenengineering, medicine
or human sciences. In particular, many models have beenoge¢kto study pharmacokinetic
processes, such as the examples analysed in this paper.

This work is focused on the parallel inputs model [1], whistbased on a suggestion given
by Jacquezwho considered that the single-peak concentration-tiespanse that usually fol-
lows the oral administration of a drug could be modelled gisirsingle linear chain of identical
compartments connected together in series. A similar @abres based on two or more parallel
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linear chains connected to the output compartment withiedtion ratek.. Each chain is formed
by a number (that can vary for each chain) of identical compants. Due to the possibleftir-
ent pathways to reach the output, this type of model is uguakd to analyse pharmacokinetic
processes in which inputs shoierts on the output with ffierent delays in time.

When studying a biological process with a compartmental mibdee is always some mis-
match between the model and real life, caused because themmatical models are a simplified
version of the actual process. This mismatch yields nonethed dynamics. Furthermore, a
common characteristic of biological processes is vaiigbleading to parametric uncertainty.
The exact values of the model parameters and initial canditare unknown, but they can be
bounded by intervals. There is just one solution for corigpanameters, but parametric uncer-
tainty yields a set of diierent possible solutions. The computation of an outputlepeemust
guarantee the inclusion of all the possible solutions fertiodel.

Montecarlo methods have traditionally been used to dedl witcertainty [2]. However,
they are not applicable for computing output bounds begandependently of the number of
simulations executed, the bounds obtained do not guarthrgéeclusion of all the possible solu-
tions [3]. This inclusion guarantee is a priority when a nidslased as part of a medical decision
system, as is the case here, since the output bounds muse ¢natiall the possible responses
by the patient are outside risk levels. Other areas wheseighieeded include error-bounded
parametric identification and constraint-satisfactiashpems. In the former, the range (or a tight
overestimation) of the output trajectory must be computed @mpared with measurements
to estimate intervals for the model parameters guarargegata consistency. In the latter, the
computed range must be compared with the constraints totlsfiexh so as to obtain an inner
and outer approximation of the solution set for the decisianables. Furthermore, the com-
putational cost of Montecarlo methods increases propmatip to the number of simulations
performed to cover the uncertain input spacéisiently. For these reasons, region-based and
trajectory-based approaches [4] have been considerechipute output bounds based mainly
on interval analysis [5] and monotone systems theory [6Hdjvever, current methods may lead
to a significant overestimation when the uncertainty is lighd some monotonicity properties
are not fulfilled.

The aim of this work is to propose a nhew method to minimise trerestimation of output
bounds on the class of parallel inputs models. This methagjidied to two cases: subcuta-
neous insulin absorption for artificial pancreas resea8fhdnd the study of the double-peak
phenomenon observed for certain drugs [9]. Our proposaistain performing a model reduc-
tion combining analytical solutions of the input chainsiw& monotonicity analysis of model
compartments and parameters. This method allows comptigjihter output bounds with low
computational cost compared to latest techniques.

This work has been organised as follows: In Section 2, iatesimulation for an initial value
problem for parametric ordinary fiiérential equations (ODES) is introduced, and the two main
approaches are listed. In Section 3, a new method for the atatipn of output bounds on the
parallel inputs model is proposed. In Section 4, simulatifor the two examples of pharma-
cokinetics models are executed, and the output bounds amputed using dferent methods.
Finally, Section 5 outlines the conclusions of this study.

2. Initial Value Problems for Parametric ODEs

Systems in which the parameters and initial conditions akmown but bounded are consid-
ered henceforth. A system modelled using interval parametrcertainty is called an interval
2



dynamic system. The continuous-time system under studgssribed by an initial-value prob-
lem (IVP):

Xt p)=f(x,p), Xt)=%, xeR",teR Q)
wherex is the state vectop is the parameter vector ang; to, Xo, p) is the solution of (1). The
different initial conditions and parameterp analysed can be expressed as the interval vectors
Xo andp, respectively (intervals are represented in bold). Thekpbssible solutions obtained
by considering parametric uncertainty is denotedyto, Xo, p):

X(t; to, Xo, P) = {X(t; to, X0, P) | X0 € Xo, P € P}

Computing output bounds plays a key role in the simulatiosystems under uncertainty.
Algorithms for computing output bounds can be classifiedediag to whether the computation
is performed using one-step-ahead iteration based onqu®wapproximations of the reachable
set (region-based approaches), or a set of point-wisetogjes generated by selecting particular
values ofp € p using heuristics or optimisation (trajectory-based apphes) [4].

2.1. Region based approaches
Region-based approaches for computing output boundsstarigivo phases [10, 11]. Sup-
posingx; has been computed at a given time instastich that

X(ti; to, Xo, P) C Xi

the first step consists in finding an a priori enclosgréor an interval {;, tj,1]. State vectox(t)
has a unique solution for eashe x;, t € [t;, ti;1], such that

X(tt, X, p) € X Vte[t,ti]

The second step us&sto enclose the truncation error of the method and computightet
enclosurexi,; atti;; such that

X(ti+1; to, X0, P) S Xis1 € Xi.

In contrast to traditional ODE solvers, which compute appnate solutions, region-based
solvers prove that a unique solution for the problem exiafterwards rigorous bounds that
guarantee the enclosure of the solution are computed.

The problem of wrapping appears when a raft approximatioth@fsolution set is iterated
with one-step-ahead recursion of the state space fung{pn= f(x(t), p). At each iteration,
the true solution set is wrapped into a region based on oygrogimations. A significant
overestimation is introduced since the regions must bélfieet® be constructed and represented
on a computer. The errors involved can quickly accumulatetla@ output bounds on the interval
system can blow up. Since the wrappirffeet was first observed in the early 1960s [12], several
approaches have been proposed to avoid or reduce it. ThesEahpes include the rotation of the
state space of the interval system by a change of coordiffe2gsr by a QR-factorisation [13].
Also, region-based approaches have been enhanced ugisgiel$ [14] or zonotopes [15].

A state-of-the-art solver is VNODE-LP [5], developed By Nedialkov This package is
a successor of the VNODE [16] package, validated numeridE QA distinctive feature of
the VNODE-LP solver is that it is implemented entirely uslitgrate programming [17]. As a
result, its correctness can be verified by a human experiiasiynto how mathematical results
are certified.
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2.2. Trajectory based approaches

In compartmental ODE models, the rate of change of each cameat can be expressed as
a function of the rest of compartments at that time:

Xl(t’ p) = fl(t’ Xl(t)a X2(t)7 s Xn(t), p)
%(t,p) = faft, xa(t), %(t), ... Xa(t), P)
Xn(t’ p) = fn(t’ Xl(t)a XZ(t)7 [RE) Xn(t)7 p)

or dx/dt = f(x), wheref is the vector function with componenfs It is assumed that all com-
partments of the system take arbitrary non-negative values.

Monotone systems respond to perturbations in a predictadje and they have very robust
dynamical characteristics. Interconnection of monotyséesns may be analysed in an analytical
way [11] by considering a flow(t) = ¢(Xo,t). A system is monotone iy < Yo = ¢(Xp,t) =<
#(yo,t) for all t > 0, where< is a given relation order. Cooperative systems form a cléss o
monotone dynamical systems [6] in which

8—fi20, foralli+j,t>0
('3Xj

A monotone and cooperative study can also be performed gsamh theory. In particular,
thespecies graplifi7] assigns a node for each model compartment. No edge isndramw node
X; to nodey; if the partial derivativeg%(x) equals zero, meaning that nogeéhas no direct #ect
on nodex;. An activation arrow £) represents that the derivative is strictly positive, wtah
inhibition line (1) denotes that it is strictly negative. However, if the dative sign changes
depending on the particular entries, both an activatioavaand an inhibition line are drawn
from nodex; to nodex;.

A spin assignmeris an assignment in which each node has a sign. Nodes codrisctn
activation arrow {) have the same sign, while nodes connected by an inhibitien) have
different sign. A dynamical system is monotone if there exisieadt one consistent assign-
ment. Furthermore, a system is cooperative if all nodes@maected by activation arrows).
Figure 1 shows an example of monotone and non-monotonensyste

A) B)
,0

Figure 1:Examples of graph monotonicity analysis. A) A monoton@sysB) A non-monotone system.

In order to calculate output bounds, two models are consitiem upper bounding model and
a lower bounding model. In an upper bounding model, cooperabmpartments with respect to
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the solution take their maximum values, while monotone bt oooperative compartments take
their minimum values. On the other hand, a lower boundingehizobtained by considering
the minimum value of cooperative compartments, and the maxi value of monotone but non-
cooperative compartments. Despite parametric unceytainly interval endpoints of monotone
compartments (cooperative or not) are needed for the catiputof the upper and the lower
output bounds. In both cases, non-monotone compartmentikiiconsidered as intervals, and
these interval uncertainties will produce an overestiamatin the computation of output bounds.

Analysis of monotone and cooperative parameters is pedidioy considering the parame-
ters as invariant compartments, where

X =t xa(t), (1), ... Xa (1), Po(1). P2(b). ...)

Xn(t)

fn(t, Xl(t)’ XZ(t)’ R Xn(t)’ pl(t)’ pZ(t)’ )
pi(t) 0

3. The computation of output bounds on the parallel inputs malel

The parallel inputs model [1] consists of two or more patditear chains connected to the
output compartment, represented Xywith a varying number of identical compartments per
chain, as shown in Figure 2. This model has mostly been usagktiyse biological processes in
which inputs show dferent and separatéfects on the output. The characteristics of the delays
determine the number of compartments and the absorpties odteach chain. Longer chains
are used for representing larger delays.

Figure 2:Diagram of the parallel inputs model.

The inputs of each chain can be considered as impulsesnoons functions, or both. As a
general case, each chain has an impulsive iDpé(t), whereD; = & ;(0) is the initial condition,
and a continuous input. Each chain is formed bl identical compartments, joined with the
same absorption rate.

The diferential equations for the parallel inputs model compoden chains are, for =
1,..,n,



&1 = U-—-ka; 81(0) = Dy

g = ka—ka 820 = 0
&3 = ka—-kagzs 830) = O
: : 2)
an = kinai,(N,—l)—kiai,N, an@O) = 0
X = > kany - keX X0 = X
i-1

One of the advantages of the parallel inputs model is thapitkethe large number of com-
partments (& X' ; N;) that are included in the model, there are a few parametetsrumcer-
tainty (30 + 2).

Using graph theory to perform a monotonicity analysis, Fég8 shows a spin assignment
of the parallel inputs model in which the parameters are idensd as invariant compartments
(46 = 0,k = 0andke = 0). The compartmentX anda; ; are cooperative; thus the initial
conditionsD; andX, are also cooperative. Furthermore, the parametere cooperative, while
the parameteke is monotone but not cooperative. Finally, the paramétease not monotone
with respect to the system.

Figure 3:Diagram of monotonicity of the parallel inputs model paraens. The parameters;re cooperative and the
parameter k is monotone non-cooperative, while the parameteesé not monotone.

When studying the upper (lower) bounds on the output of thallghinputs model, the
maximum (minimum) interval value for the cooperative pagtensD;, u;, and X, is considered,
while the minimum (maximum) interval value for the monoteran-cooperative parameteyis
considered. In both cases, the non-monotone paranigtars still considered as intervals, and
they will produce an overestimation on the the computatiooudput bounds.

3.1. Proposed method

As after a monotonicity analysis non-monotone compartmstill cause an overestimation
in the output bounds computation, a new method is proposed frow on based on using an
equivalent model to the parallel inputs model. As the patatiputs model is a linear ODE sys-
tem with the formY’(t) = AY(t), whereA is anxn matrix, the solution is given by(t) = €*Y(0).



The output solution is not easy to deal with analytically idex to compute the envelopes. How-
ever, the solutiom; \, of the last compartmem; of each chain can be studied more easily [18]:

1- e—k4t IEL M
e (kN =

N - D) K ®)

Analytical solutions of the last compartment of each chaid the ODE associated with
the output compartment have been combined, transformiagéhnallel inputs model into an
equivalent and simpler model with just one compartment eiguuts are given by (3). The new
model has thus one input for each chain of the parallel inmadel. The diterential equation
for the one-compartmental model wittinputs is

a (1) = Die” + Ui

X(t) = D kan® -kX®)  X(0)=Xo (4)
i=1

where the unique compartment ¥gt). As the one-compartment model is equivalent to the
parallel inputs model, the monotonicity analysis shows e parameterd;, u;, andXg are still
cooperative and that the parameétgis monotone but not cooperative, while the paramelers
are not monotone.

The parameterk are non-monotone in both models, and they produce an oiraegiin in
the output bounds computation. In the parallel inputs mdedt possible to analyse the critical
points of these parameters because they are preserffénedit equations with ffierent signs.
However, in the one-compartment model egchppears as a parameter for a unique input of the
model. Studying the critical points &f(t) with respect td, there is one non-trivial value:

6X(t) _ o o N;D; + tu
ok =0 = k=0 or k= Dt (5)
Analysing the second derivative with respecktostability of the non-trivial critical point is
obtained:

_e_Ni_%i'[(Ni D; + yt)N-1
(Nj - l)!Di3

As the second derivative is negatié(t) reaches a maximum at that point. If the critical
point (5) belongs to the intervéd, it is applied to obtain the upper bound on the solution. Oth-
erwise, the endpoint of the intervil that maximises the output is considered. As there is no
minimum, both endpoints of the intervalare analysed, and the value that minimises the output
is considered to compute the lower bound.

4. Pharmacokinetic examples

Two examples, subcutaneous insulin absorption and thelelgpaak phenomenon, are stud-
ied to verify the #ectiveness of the method proposed above. In both cases, Af8ftainty is
considered in all the parameters and the initial conditimfithe model. The starting point is the
result of computing output bounds using the VNODE-LP paelf&g for interval analysis. The
second computation is performed using a monotonicity amslyf the parallel inputs model.
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Finally, the last computation is carried out evaluating ¢hiéical points for the non-monotone
parameters of the one-compartment equivalent model. Tassievo computations are executed
using Matlab with the toolbox IntLab [19] for interval analg.

Each output bounds computation is compared with severaligesnumerical simulations
executed by varying the parameter values inside the ider&ach numerical simulation takes
0.01 s to be computed using an Intel(R) 3.2 GHz Pentium(R)gssor. Computing the output
bounds with our proposed method takes 0.02 s, as it is cordpdteo simulations, one for the
upper bound and one for the lower bound.

4.1. Subcutaneous insulin absorption

Insulin is a hormone secreted by the pancreas with the rokedicing the glucose con-
centration in blood. Under normal circumstances, an irggéa plasma glucose concentration,
for instance after an ingestion, is followed by an increasisulin secretion. On the other
hand, insulin secretion decreases when the plasma gluoasemtration decays. Indeed, insulin
secretion maintains blood glucose concentrations in awaignge.

Patients fected by type 1 Diabetes Mellitusfer an autoimmune disease related to a low
level of insulin in the blood. When this is untreated, it cansmhyperglycaemia, i.e. a high
level of plasma glucose concentration. Insulin adminigiras necessary to maintain the plasma
glucose concentration in a safe range, and to avoid sevarpteyns related to hyperglycaemia
or hypoglycaemia, i.e. a low level of plasma glucose corregion.

Technological progress has fuelled research on ArtificdaldPeas, a project to develop closed-
loop glucose control systems that automatically dispemsdin subcutaneously. Insulin therapy
aims to mimic the pattern of endogenous insulin secreti@seart in healthy subjects. Several
models of subcutaneous insulin kinetics have been prog@8e@1], but here we focus on one
of the most used models, formulatedWjlinska et al [8].

This subcutaneous insulin absorption model is composed@parallel chains of two and
one compartments. Theftérential equations are given by (2) with= 2, N; = 2 andN, =
1, with the initial conditionsD; = a;1(0) = 445mU, D, = a,1(0) = 120mU, and X, =
395mU, and a continuous dose af = 5 mU/minandu, = 2.5 mU/min. The absorption
rates arek; = 0.0112min* andk, = 0.021 min™?, while the elimination rate is given by =
0.0189min™L. In order to represent insulin concentration in blood, thpat result is divided by
Vi = 0.5645L kg and by the patient weigBW = 70kg.

To analyse a more general model, instead of assuming ansmpolus at the initial time, it
is supposed that the impulse bolus occurs=at, > 0. Whilet < t,, @ model with two chains is
considered. However, after the impulse bolus att,, two more chains are added to the model
with the same absorption ratksandk, and initial conditiondD; = 500mU andD,4 = 250mU.
Figure 4 shows the new model structure with four chains.

The starting point is given by the VNODE-LP computation iiglie 5a, which shows that
the output bounds give a considerable overestimation beemimerical simulations. The output
bounds adjust much better after performing a monotonicighssis of the parallel inputs model,
but there is still place for improvements, as shown in FigibveFinally, our proposed method is
evaluated by computing output bounds on the equivalentcongpartment model, given by (3)
and (4). Figure 5c shows that the output bounds adjust alpsvitctly to the numerical simula-
tions.



Figure 4: Diagram of the parallel inputs model for the Wilinska modéhains1 and 3 share the parameter;k while
chains2 and4 share the parametenk
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Figure 5:Improvements computing subcutaneous insulin absorptomdls with impulse bolus af & 50. (a) VNODE-

LP computation. (b) Monotonicity analysis of the paralleputs model. (c) Monotonicity analysis of the equivalent
one-compartment model.

4.2. Double-peak phenomenon

After the administration of a single dose of several drugeré is normally a peak in the
plasma concentration-time response, before it decays.awtyever, for certain drugs the
plasma concentration rises to a peak, starts to decay, éuitthises again and a second peak is
obtained before decaying away again. The second peak ilyubigher than the first one, but
its magnitude depends on the drug and the means of admiitistra

Several biological reasons can explain this behavioumkras the double-peak phenomenon.
The first one isenterohepatic recirculatiorwhich refers to the process in which bile circulates
from the liver to the small intestine and back to the livengarcing a smaller second peak [22].
The second possible reasoffegts drugs with high water solubility after oral adminitita,
resulting in part of the dose being delayed in the stomadhjstknown aslelayed gastric emp-
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tying [23]. Finally, the most common reasonvariability of absorptionwithin different regions
of the gut [24].

The parallel inputs model has been usedGydfrey et al.[9] to model the double-peak
phenomenon. Two chains are considered, one for each pe#sima concentration. One chain
is usually smaller and, indeed, faster than the other onleggopeaks are clearly fiierentiable.

In this paper, two chains of ten and five compartments withuilsg bolus are considered.
The number of compartments of each chain has been chosémglpto represent an example
with longer chains than the subcutaneous insulin absorpi@ample and to demonstrate the
method’s performance in high-order models. Theffadential equations are given by (2) with
n=2,N; = 10, andN, = 5. As the dose is given as an impulsg = u, = 0 mU, while the initial
conditions areXo = 0 mU, D; = 30mU, andD, = 10 mU. The absorption rates for each chain
arek; = 0.15min"* andk, = 0.40 min%, while the elimination rate is given bg = 0.20 min.

The VNODE-LP computation, represented in Figure 6a, shdwas the computed output
bounds grow exponentially due to the high number (16) of rhodepartments, not providing
any helpful information. Figure 6b shows that after perfimgna monotonicity analysis of the
parallel inputs model there is still an overestimation, the error is much smaller. Finally,
a monotonicity analysis of the equivalent one-compartnmendlel is carried out, given by (3)
and (4), where the output bounds adjust almost perfectliggamtimerical simulations, as shown
in Figure 6¢.
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Figure 6: Improvements computing double-peak phenomenon bound¥N@DE-LP computation. (b) Monotonicity
analysis of the parallel inputs model. (c) Monotonicity bsés of the equivalent one-compartment model.

5. Discussion and Conclusion

Different approaches have been applied to compute the set dflpassutions when interval
parametric uncertainty is considered. In this paper, a nethad for the computation of output
bounds on the class of parallel inputs models is proposeds fikthod has been compared
with previous approaches in two cases: subcutaneous ringdiorption for artificial pancreas
research, and the study of the double-peak phenomenorvebdder certain drugs.
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Montecarlo simulations have been used to measure the tiveagisn produced by the dif-
ferent methods. However, Montecarlo approaches have rest bensidered as valid methods
to compute solution bounds, as they never guarantee thesiool of all the solutions. Further-
more, a high number of simulations is needed to cover thertainegnput space dhciently,
with a computational cost of.01 s for each simulation in both cases. If five possible vatwes
considered for each of the eight parameters that have aitgrtthe output computation would
need 8 simulations, whereas our proposal just needs two simulgtio

Region-based approaches have been considered for thet doyuds computation, using
VNODE-LP software. This €+ solver computes guaranteed output bounds, but the ernmssee
to increase drastically depending on the number of modepeotments: 4 in Figure 5a and 16
in Figure 6a. A large overestimation is produced in both sase

The most common method in the literature to reduce overaitmis to perform a mono-
tonicity analysis of a trajectory-based approach. Aftes #malysis is performed, only non-
monotone compartments or parameters produce an overgetinrathe output bounds compu-
tation. In the parallel inputs model, the only non-monotpaeameters arlg. In both cases, an
overestimation is produced due to these parameters, asnsEgjure 5b and Figure 6b, but this
is much smaller than the error obtained with the VNODE-LPhodt

Finally, our proposal consists in obtaining an equivalentled combining analytical solu-
tions of the input chains with a monotonicity analysis. Tépproach allows computing critical
points of the non-monotone parametgmwhich helps to compute tighter output bounds, as seen
in Figure 5c and Figure 6c. Furthermore, the computationat &s just 002 s to obtain the
solution bounds.

Our proposed method outperforms previous approachesdaatimputation of output bounds
on the parallel inputs model, as it minimises the overestomgroduced, and also because of its
low computational cost. To extend these results to nonliegaations is still an open problem.
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