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Abstract

Pharmacokinetic models are of utmost importance in drug andmedical research. The class
of parallel inputs models consists of two or more linear chains connected together in parallel. It
has been used to represent pharmacokinetic processes in which the input shows effects on the
output with different delays in time.

Due to physiological variability, the exact values of the model parameters are uncertain, but
they can be bounded by intervals. In this case, the computation of output bounds can be posed
as the solution of an initial value problem (IVP) for ordinary differential equations (ODEs) with
uncertain initial conditions. However, current methods may produce a significant overestimation.

In this paper, a new method to minimise overestimation when using the parallel inputs model
is proposed and applied to two cases: subcutaneous insulin absorption for artificial pancreas
research, and the study of the double-peak phenomenon observed for certain drugs. Our proposal
consists in performing a model reduction in conjunction with analytical solutions of the input
chains and a monotonicity analysis of model states and parameters. This method allows obtaining
tighter output bounds with low computational cost comparedto the latest techniques.

Keywords: Compartmental models, Parallel inputs, Uncertainty, Interval uncertainty, Bounded
solutions
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1. Introduction

Compartmental modelling is a common approach to simulate biological processes. Further-
more, these models are used in many diverse areas such as economics, engineering, medicine
or human sciences. In particular, many models have been developed to study pharmacokinetic
processes, such as the examples analysed in this paper.

This work is focused on the parallel inputs model [1], which is based on a suggestion given
by Jacquez, who considered that the single-peak concentration-time response that usually fol-
lows the oral administration of a drug could be modelled using a single linear chain of identical
compartments connected together in series. A similar approach is based on two or more parallel
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linear chains connected to the output compartment with elimination rateke. Each chain is formed
by a number (that can vary for each chain) of identical compartments. Due to the possible differ-
ent pathways to reach the output, this type of model is usually used to analyse pharmacokinetic
processes in which inputs show effects on the output with different delays in time.

When studying a biological process with a compartmental model there is always some mis-
match between the model and real life, caused because the mathematical models are a simplified
version of the actual process. This mismatch yields non-modelled dynamics. Furthermore, a
common characteristic of biological processes is variability, leading to parametric uncertainty.
The exact values of the model parameters and initial conditions are unknown, but they can be
bounded by intervals. There is just one solution for constant parameters, but parametric uncer-
tainty yields a set of different possible solutions. The computation of an output envelope must
guarantee the inclusion of all the possible solutions for the model.

Montecarlo methods have traditionally been used to deal with uncertainty [2]. However,
they are not applicable for computing output bounds because, independently of the number of
simulations executed, the bounds obtained do not guaranteethe inclusion of all the possible solu-
tions [3]. This inclusion guarantee is a priority when a model is used as part of a medical decision
system, as is the case here, since the output bounds must ensure that all the possible responses
by the patient are outside risk levels. Other areas where this is needed include error-bounded
parametric identification and constraint-satisfaction problems. In the former, the range (or a tight
overestimation) of the output trajectory must be computed and compared with measurements
to estimate intervals for the model parameters guaranteeing data consistency. In the latter, the
computed range must be compared with the constraints to be satisfied so as to obtain an inner
and outer approximation of the solution set for the decisionvariables. Furthermore, the com-
putational cost of Montecarlo methods increases proportionally to the number of simulations
performed to cover the uncertain input space sufficiently. For these reasons, region-based and
trajectory-based approaches [4] have been considered to compute output bounds based mainly
on interval analysis [5] and monotone systems theory [6, 7].However, current methods may lead
to a significant overestimation when the uncertainty is highand some monotonicity properties
are not fulfilled.

The aim of this work is to propose a new method to minimise the overestimation of output
bounds on the class of parallel inputs models. This method isapplied to two cases: subcuta-
neous insulin absorption for artificial pancreas research [8], and the study of the double-peak
phenomenon observed for certain drugs [9]. Our proposal consists in performing a model reduc-
tion combining analytical solutions of the input chains with a monotonicity analysis of model
compartments and parameters. This method allows computingtighter output bounds with low
computational cost compared to latest techniques.

This work has been organised as follows: In Section 2, interval simulation for an initial value
problem for parametric ordinary differential equations (ODEs) is introduced, and the two main
approaches are listed. In Section 3, a new method for the computation of output bounds on the
parallel inputs model is proposed. In Section 4, simulations for the two examples of pharma-
cokinetics models are executed, and the output bounds are computed using different methods.
Finally, Section 5 outlines the conclusions of this study.

2. Initial Value Problems for Parametric ODEs

Systems in which the parameters and initial conditions are unknown but bounded are consid-
ered henceforth. A system modelled using interval parametric uncertainty is called an interval
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dynamic system. The continuous-time system under study is described by an initial-value prob-
lem (IVP):

x′(t, p) = f (x, p), x(t0) = x0, x ∈ Rn, t ∈ R (1)

wherex is the state vector,p is the parameter vector andx(t; t0, x0, p) is the solution of (1). The
different initial conditionsx0 and parametersp analysed can be expressed as the interval vectors
x0 andp, respectively (intervals are represented in bold). The setof possible solutions obtained
by considering parametric uncertainty is denoted byx(t; t0, x0,p):

x(t; t0, x0,p) = {x(t; t0, x0, p) | x0 ∈ x0, p ∈ p}

Computing output bounds plays a key role in the simulation ofsystems under uncertainty.
Algorithms for computing output bounds can be classified according to whether the computation
is performed using one-step-ahead iteration based on previous approximations of the reachable
set (region-based approaches), or a set of point-wise trajectories generated by selecting particular
values ofp ∈ p using heuristics or optimisation (trajectory-based approaches) [4].

2.1. Region based approaches
Region-based approaches for computing output bounds consist of two phases [10, 11]. Sup-

posingxi has been computed at a given time instantti such that

x(ti ; t0, x0,p) ⊆ xi

the first step consists in finding an a priori enclosurex̃i for an interval [ti , ti+1]. State vectorx(t)
has a unique solution for eachxi ∈ xi , t ∈ [ti , ti+1], such that

x(t; ti , xi ,p) ⊆ x̃i ∀t ∈ [ti , ti+1]

The second step usesx̃i to enclose the truncation error of the method and computes a tighter
enclosurexi+1 at ti+1 such that

x(ti+1; t0, x0,p) ⊆ xi+1 ⊆ x̃i .

In contrast to traditional ODE solvers, which compute approximate solutions, region-based
solvers prove that a unique solution for the problem exists;afterwards rigorous bounds that
guarantee the enclosure of the solution are computed.

The problem of wrapping appears when a raft approximation ofthe solution set is iterated
with one-step-ahead recursion of the state space functionẋ(t) = f (x(t),p). At each iteration,
the true solution set is wrapped into a region based on outer approximations. A significant
overestimation is introduced since the regions must be feasible to be constructed and represented
on a computer. The errors involved can quickly accumulate and the output bounds on the interval
system can blow up. Since the wrapping effect was first observed in the early 1960s [12], several
approaches have been proposed to avoid or reduce it. These approaches include the rotation of the
state space of the interval system by a change of coordinates[12] or by a QR-factorisation [13].
Also, region-based approaches have been enhanced using ellipsoids [14] or zonotopes [15].

A state-of-the-art solver is VNODE-LP [5], developed byN. Nedialkov. This package is
a successor of the VNODE [16] package, validated numerical ODE. A distinctive feature of
the VNODE-LP solver is that it is implemented entirely usingliterate programming [17]. As a
result, its correctness can be verified by a human expert, similarly to how mathematical results
are certified.
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2.2. Trajectory based approaches

In compartmental ODE models, the rate of change of each compartment can be expressed as
a function of the rest of compartments at that time:

ẋ1(t, p) = f1(t, x1(t), x2(t), ..., xn(t), p)
ẋ2(t, p) = f2(t, x1(t), x2(t), ..., xn(t), p)

...

ẋn(t, p) = fn(t, x1(t), x2(t), ..., xn(t), p)

or dx/dt = f (x), wheref is the vector function with componentsfi . It is assumed that all com-
partmentsxi of the system take arbitrary non-negative values.

Monotone systems respond to perturbations in a predictableway, and they have very robust
dynamical characteristics. Interconnection of monotone systems may be analysed in an analytical
way [11] by considering a flowx(t) = φ(x0, t). A system is monotone ifx0 � y0 ⇒ φ(x0, t) �
φ(y0, t) for all t ≥ 0, where� is a given relation order. Cooperative systems form a class of
monotone dynamical systems [6] in which

∂ fi
∂x j
≥ 0, for all i , j, t ≥ 0

A monotone and cooperative study can also be performed usinggraph theory. In particular,
thespecies graph[7] assigns a node for each model compartment. No edge is drawn from node
xi to nodex j if the partial derivative∂ f j

∂xi
(x) equals zero, meaning that nodexi has no direct effect

on nodex j . An activation arrow (→) represents that the derivative is strictly positive, while an
inhibition line (⊣) denotes that it is strictly negative. However, if the derivative sign changes
depending on the particular entries, both an activation arrow and an inhibition line are drawn
from nodexi to nodex j .

A spin assignmentis an assignment in which each node has a sign. Nodes connected by an
activation arrow (→) have the same sign, while nodes connected by an inhibition line (⊣) have
different sign. A dynamical system is monotone if there exists atleast one consistent assign-
ment. Furthermore, a system is cooperative if all nodes are connected by activation arrows (→).
Figure 1 shows an example of monotone and non-monotone systems.

A) B)

?

Figure 1:Examples of graph monotonicity analysis. A) A monotone system. B) A non-monotone system.

In order to calculate output bounds, two models are considered: an upper bounding model and
a lower bounding model. In an upper bounding model, cooperative compartments with respect to

4



the solution take their maximum values, while monotone but non-cooperative compartments take
their minimum values. On the other hand, a lower bounding model is obtained by considering
the minimum value of cooperative compartments, and the maximum value of monotone but non-
cooperative compartments. Despite parametric uncertainty, only interval endpoints of monotone
compartments (cooperative or not) are needed for the computation of the upper and the lower
output bounds. In both cases, non-monotone compartments are still considered as intervals, and
these interval uncertainties will produce an overestimation on the computation of output bounds.

Analysis of monotone and cooperative parameters is performed by considering the parame-
ters as invariant compartments, where

ẋ1(t) = f1(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)
...

ẋn(t) = fn(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)
ṗi(t) = 0

3. The computation of output bounds on the parallel inputs model

The parallel inputs model [1] consists of two or more parallel linear chains connected to the
output compartment, represented byX, with a varying number of identical compartments per
chain, as shown in Figure 2. This model has mostly been used toanalyse biological processes in
which inputs show different and separate effects on the output. The characteristics of the delays
determine the number of compartments and the absorption rates of each chain. Longer chains
are used for representing larger delays.

a1,1 

k1 a1,2 

X
 

ke 

a1,N1  

k1 
k1 

an,1 

kn an,2 
an,Nn  

kn 
kn 

un 

u1 

Figure 2:Diagram of the parallel inputs model.

The inputs of each chain can be considered as impulses, continuous functions, or both. As a
general case, each chain has an impulsive inputDiδ(t), whereDi = ai,1(0) is the initial condition,
and a continuous inputui . Each chain is formed byNi identical compartments, joined with the
same absorption rateki .

The differential equations for the parallel inputs model composed of n chains are, fori =
1, ...,n,
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ȧi,1 = ui − kiai,1 ai,1(0) = Di

ȧi,2 = kiai,1 − kiai,2 ai,2(0) = 0
ȧi,3 = kiai,2 − kiai,3 ai,3(0) = 0

...
...

ȧi,Ni = kiai,(Ni−1) − kiai,Ni ai,Ni (0) = 0

Ẋ =

n∑

i=1

kiai,Ni − keX X(0) = X0

(2)

One of the advantages of the parallel inputs model is that, despite the large number of com-
partments (1+

∑n
i=1 Ni) that are included in the model, there are a few parameters under uncer-

tainty (3n+ 2).
Using graph theory to perform a monotonicity analysis, Figure 3 shows a spin assignment

of the parallel inputs model in which the parameters are considered as invariant compartments
(u̇i = 0, k̇i = 0 and k̇e = 0). The compartmentsX and ai, j are cooperative; thus the initial
conditionsDi andX0 are also cooperative. Furthermore, the parametersui are cooperative, while
the parameterke is monotone but not cooperative. Finally, the parameterski are not monotone
with respect to the system.

ai,1 
ai,2 X

 
ai,Ni  

ui 
ke 

ki 

?
 

Figure 3:Diagram of monotonicity of the parallel inputs model parameters. The parameters Di are cooperative and the
parameter ke is monotone non-cooperative, while the parameters ki are not monotone.

When studying the upper (lower) bounds on the output of the parallel inputs model, the
maximum (minimum) interval value for the cooperative parametersDi , ui , andX0 is considered,
while the minimum (maximum) interval value for the monotonenon-cooperative parameterke is
considered. In both cases, the non-monotone parameterski are still considered as intervals, and
they will produce an overestimation on the the computation of output bounds.

3.1. Proposed method

As after a monotonicity analysis non-monotone compartments still cause an overestimation
in the output bounds computation, a new method is proposed from now on based on using an
equivalent model to the parallel inputs model. As the parallel inputs model is a linear ODE sys-
tem with the formY′(t) = AY(t), whereA is anxn matrix, the solution is given byY(t) = eAtY(0).
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The output solution is not easy to deal with analytically in order to compute the envelopes. How-
ever, the solutionai,Ni of the last compartmentNi of each chain can be studied more easily [18]:

ai,Ni (t) = Die
−ki t (ki t)Ni−1

(Ni − 1)!
+ ui

1− e−ki t
Ni−1∑

j=1

(ki t) j

j!

ki
(3)

Analytical solutions of the last compartment of each chain and the ODE associated with
the output compartment have been combined, transforming the parallel inputs model into an
equivalent and simpler model with just one compartment where inputs are given by (3). The new
model has thus one input for each chain of the parallel inputsmodel. The differential equation
for the one-compartmental model withn inputs is

Ẋ(t) =
n∑

i=1

kiai,Ni (t) − keX(t) X(0) = X0 (4)

where the unique compartment isX(t). As the one-compartment model is equivalent to the
parallel inputs model, the monotonicity analysis shows that the parametersDi , ui , andX0 are still
cooperative and that the parameterke is monotone but not cooperative, while the parameterski

are not monotone.
The parameterski are non-monotone in both models, and they produce an overestimation in

the output bounds computation. In the parallel inputs modelis not possible to analyse the critical
points of these parameters because they are present in different equations with different signs.
However, in the one-compartment model eachki appears as a parameter for a unique input of the
model. Studying the critical points oḟX(t) with respect toki , there is one non-trivial value:

∂Ẋ(t)
∂ki

= 0 ⇒ ki = 0 or ki =
NiDi + tui

Di t
(5)

Analysing the second derivative with respect toki , stability of the non-trivial critical point is
obtained:

−
e−Ni−

ui t
Di t(NiDi + ui t)Ni−1

(Ni − 1)!D3
i

As the second derivative is negative,Ẋ(t) reaches a maximum at that point. If the critical
point (5) belongs to the intervalki , it is applied to obtain the upper bound on the solution. Oth-
erwise, the endpoint of the intervalki that maximises the output is considered. As there is no
minimum, both endpoints of the intervalki are analysed, and the value that minimises the output
is considered to compute the lower bound.

4. Pharmacokinetic examples

Two examples, subcutaneous insulin absorption and the double-peak phenomenon, are stud-
ied to verify the effectiveness of the method proposed above. In both cases, 10% uncertainty is
considered in all the parameters and the initial conditionsof the model. The starting point is the
result of computing output bounds using the VNODE-LP package [5] for interval analysis. The
second computation is performed using a monotonicity analysis of the parallel inputs model.
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Finally, the last computation is carried out evaluating thecritical points for the non-monotone
parameters of the one-compartment equivalent model. Theselast two computations are executed
using Matlab with the toolbox IntLab [19] for interval analysis.

Each output bounds computation is compared with several possible numerical simulations
executed by varying the parameter values inside the intervals. Each numerical simulation takes
0.01 s to be computed using an Intel(R) 3.2 GHz Pentium(R) processor. Computing the output
bounds with our proposed method takes 0.02 s, as it is composed of two simulations, one for the
upper bound and one for the lower bound.

4.1. Subcutaneous insulin absorption

Insulin is a hormone secreted by the pancreas with the role ofreducing the glucose con-
centration in blood. Under normal circumstances, an increase in plasma glucose concentration,
for instance after an ingestion, is followed by an increase in insulin secretion. On the other
hand, insulin secretion decreases when the plasma glucose concentration decays. Indeed, insulin
secretion maintains blood glucose concentrations in a narrow range.

Patients affected by type 1 Diabetes Mellitus suffer an autoimmune disease related to a low
level of insulin in the blood. When this is untreated, it can cause hyperglycaemia, i.e. a high
level of plasma glucose concentration. Insulin administration is necessary to maintain the plasma
glucose concentration in a safe range, and to avoid severe symptoms related to hyperglycaemia
or hypoglycaemia, i.e. a low level of plasma glucose concentration.

Technological progress has fuelled research on Artificial Pancreas, a project to develop closed-
loop glucose control systems that automatically dispense insulin subcutaneously. Insulin therapy
aims to mimic the pattern of endogenous insulin secretion present in healthy subjects. Several
models of subcutaneous insulin kinetics have been proposed[20, 21], but here we focus on one
of the most used models, formulated byWilinska et al.[8].

This subcutaneous insulin absorption model is composed of two parallel chains of two and
one compartments. The differential equations are given by (2) withn = 2, N1 = 2 andN2 =

1, with the initial conditionsD1 = a1,1(0) = 445 mU, D2 = a2,1(0) = 120 mU, and X0 =

395 mU, and a continuous dose ofu1 = 5 mU/min and u2 = 2.5 mU/min. The absorption
rates arek1 = 0.0112min−1 andk2 = 0.021min−1, while the elimination rate is given byke =

0.0189min−1. In order to represent insulin concentration in blood, the output result is divided by
Vi = 0.5645L kg−1 and by the patient weightBW= 70kg.

To analyse a more general model, instead of assuming an impulse bolus at the initial time, it
is supposed that the impulse bolus occurs att = tb ≥ 0. While t < tb, a model with two chains is
considered. However, after the impulse bolus att = tb, two more chains are added to the model
with the same absorption ratesk1 andk2 and initial conditionsD3 = 500mU andD4 = 250mU.
Figure 4 shows the new model structure with four chains.

The starting point is given by the VNODE-LP computation in Figure 5a, which shows that
the output bounds give a considerable overestimation over the numerical simulations. The output
bounds adjust much better after performing a monotonicity analysis of the parallel inputs model,
but there is still place for improvements, as shown in Figure5b. Finally, our proposed method is
evaluated by computing output bounds on the equivalent one-compartment model, given by (3)
and (4). Figure 5c shows that the output bounds adjust almostperfectly to the numerical simula-
tions.
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Figure 4:Diagram of the parallel inputs model for the Wilinska model.Chains1 and3 share the parameter k1, while
chains2 and4 share the parameter k2.
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Figure 5:Improvements computing subcutaneous insulin absorption bounds with impulse bolus at tb = 50. (a) VNODE-
LP computation. (b) Monotonicity analysis of the parallel inputs model. (c) Monotonicity analysis of the equivalent
one-compartment model.

4.2. Double-peak phenomenon

After the administration of a single dose of several drugs, there is normally a peak in the
plasma concentration-time response, before it decays away. However, for certain drugs the
plasma concentration rises to a peak, starts to decay, but then it rises again and a second peak is
obtained before decaying away again. The second peak is usually higher than the first one, but
its magnitude depends on the drug and the means of administration.

Several biological reasons can explain this behaviour, known as the double-peak phenomenon.
The first one isenterohepatic recirculation, which refers to the process in which bile circulates
from the liver to the small intestine and back to the liver, producing a smaller second peak [22].
The second possible reason affects drugs with high water solubility after oral administration,
resulting in part of the dose being delayed in the stomach; this is known asdelayed gastric emp-
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tying [23]. Finally, the most common reason isvariability of absorptionwithin different regions
of the gut [24].

The parallel inputs model has been used byGodfrey et al.[9] to model the double-peak
phenomenon. Two chains are considered, one for each peak in plasma concentration. One chain
is usually smaller and, indeed, faster than the other one, soboth peaks are clearly differentiable.

In this paper, two chains of ten and five compartments with impulse bolus are considered.
The number of compartments of each chain has been chosen arbitrarily to represent an example
with longer chains than the subcutaneous insulin absorption example and to demonstrate the
method’s performance in high-order models. Their differential equations are given by (2) with
n = 2, N1 = 10, andN2 = 5. As the dose is given as an impulse,u1 = u2 = 0 mU, while the initial
conditions areX0 = 0 mU, D1 = 30 mU, andD2 = 10 mU. The absorption rates for each chain
arek1 = 0.15min−1 andk2 = 0.40min−1, while the elimination rate is given byke = 0.20min−1.

The VNODE-LP computation, represented in Figure 6a, shows that the computed output
bounds grow exponentially due to the high number (16) of model compartments, not providing
any helpful information. Figure 6b shows that after performing a monotonicity analysis of the
parallel inputs model there is still an overestimation, butthe error is much smaller. Finally,
a monotonicity analysis of the equivalent one-compartmentmodel is carried out, given by (3)
and (4), where the output bounds adjust almost perfectly to the numerical simulations, as shown
in Figure 6c.
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Figure 6: Improvements computing double-peak phenomenon bounds. (a) VNODE-LP computation. (b) Monotonicity
analysis of the parallel inputs model. (c) Monotonicity analysis of the equivalent one-compartment model.

5. Discussion and Conclusion

Different approaches have been applied to compute the set of possible solutions when interval
parametric uncertainty is considered. In this paper, a new method for the computation of output
bounds on the class of parallel inputs models is proposed. This method has been compared
with previous approaches in two cases: subcutaneous insulin absorption for artificial pancreas
research, and the study of the double-peak phenomenon observed for certain drugs.
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Montecarlo simulations have been used to measure the overestimation produced by the dif-
ferent methods. However, Montecarlo approaches have not been considered as valid methods
to compute solution bounds, as they never guarantee the inclusion of all the solutions. Further-
more, a high number of simulations is needed to cover the uncertain input space sufficiently,
with a computational cost of 0.01 s for each simulation in both cases. If five possible valuesare
considered for each of the eight parameters that have uncertainty, the output computation would
need 58 simulations, whereas our proposal just needs two simulations.

Region-based approaches have been considered for the output bounds computation, using
VNODE-LP software. This C++ solver computes guaranteed output bounds, but the error seems
to increase drastically depending on the number of model compartments: 4 in Figure 5a and 16
in Figure 6a. A large overestimation is produced in both cases.

The most common method in the literature to reduce overestimation is to perform a mono-
tonicity analysis of a trajectory-based approach. After this analysis is performed, only non-
monotone compartments or parameters produce an overestimation in the output bounds compu-
tation. In the parallel inputs model, the only non-monotoneparameters areki . In both cases, an
overestimation is produced due to these parameters, as seenin Figure 5b and Figure 6b, but this
is much smaller than the error obtained with the VNODE-LP method.

Finally, our proposal consists in obtaining an equivalent model combining analytical solu-
tions of the input chains with a monotonicity analysis. Thisapproach allows computing critical
points of the non-monotone parameterki , which helps to compute tighter output bounds, as seen
in Figure 5c and Figure 6c. Furthermore, the computational cost is just 0.02 s to obtain the
solution bounds.

Our proposed method outperforms previous approaches for the computation of output bounds
on the parallel inputs model, as it minimises the overestimation produced, and also because of its
low computational cost. To extend these results to nonlinear equations is still an open problem.
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