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Abstract:  In this paper we jointly consider several realistic scheduling extensions: First we study the distributed unrelated 
parallel machines problem where there is a set of identical factories with parallel machines in the production stage. Jobs have 
to be assigned to factories and to machines. Additionally, there is an assembly stage with a single assembly machine. Finished 
jobs at the manufacturing stage are assembled into final products in this second assembly stage. These two joint features are 
referred to as the Distributed Parallel Machine and Assembly Scheduling Problem or DPMASP. The objective is to minimize the 
makespan in the assembly stage. Due to technological constraints, machines cannot be idle and some jobs can be processed 
only in certain factories. We propose a mathematical model and two high-performing heuristics. The model is tested with 
two state-of-the-art solvers and, together with the heuristics, 2220 instances are solved in a comprehensive computational 
experience. Results show that the proposed model is able to solve moderately-sized instances, and that one of the heuristics 
is fast, giving optimal solutions close to optimum in less than half a second in the worst case.

Key words: Distributed Parallel Machines, Assembly Stage, 
Heuristics, Model. 

1. Introduction
Nowadays, the manufacturing industry faces many 
challenges, namely globalization, increasing product 
variety, complexity and customer demands, shorter 
product life cycles, higher demand of customized 
goods instead of mass production, uncertain 
and dynamic global market, etc. Of course, the 
strong competition from emerging and established 
economies has to be considered as well. One of the 
many tools to face these challenges and to meet 
customer’s demands is to increase the product variety 
that companies offer. A wide product portfolio and 
diversified offer is a key asset to stay competitive 
in such an unpredictable and ever evolving market. 
Product variety has been defined by many authors 
as a number or collection of different things of a 

particular class of the same general kind (Elmaraghy 
et al., 2013). In recent years, assembly systems 
are such as techniques that are mostly used mass 
production. They have been also employed in various 
manufacturing systems so as to increase flexibility 
and the capability to increase product variety. These 
types of manufacturing settings are referred to as 
Assembly Scheduling Problems (ASP).

In an assembly system, different operations are 
performed independently, and potentially in parallel, 
to produce different components which are later 
assembled into finished products in assembly lines. 
A high variety of finished products, made from 
different combinations of produced components, can 
be produced in assembly systems.

Existence of more than one manufacturing facility 
in different geographical places may decrease 
some costs related to the production. To offset 
these costs, companies must operate different and 
specialized factories in what is known as Distributed 
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Manufacturing Systems (DMS). In a DMS 
environment, several independent production centers 
or factories are run in parallel at potentially different 
geographical places. Furthermore, distributed 
manufacturing allows for greater flexibility and 
resiliency (Sluga et al., 1998). Other benefits of 
DMS are: higher product quality, lower production 
costs, reduced risks (Kahn et al., 2004; Chan et al., 
2005; Mahdavi et al., 2008). However, scheduling 
in DMS is more complicated than in a single 
production factory. In single production centers a job 
schedule for each set of machines has to be defined, 
while in DMSs, there are two interrelated decisions 
to be made: factory selection for each job and then 
scheduling at each factory.

As a conclusion, and in order to reap the benefits 
of both assembly systems (ASP) and distributed 
manufacturing (DMS), both aspects must be jointly 
considered.

In this paper we consider two manufacturing stages: 
production and assembly. For production we have a 
set of distributed factories and for assembly there is a 
single assembly facility. Each one of the f distributed 
production centers (factories) has unrelated 
parallel machines as a shop configuration whereas 
the assembly stage consists of a single machine. 
Transportation time for transferring jobs from 
production centers to assembly stage is assumed 
negligible. By considering the above model we define 
the studied problem in this paper as the Distributed 
Parallel Machine and Assembly Scheduling Problem 
(DPMASP).

More in specifically, in the DPMASP there is a set 
N of n jobs that has to be processed on a set F of f 
identical factories. Note that all factories are identical 
and have the same number of machines. Each factory 
has a set M of m unrelated parallel machines. Each 
job has to be processed at exactly one machine at one 
factory. Furthermore, there are eligibility constraints. 
LFj⊆F is the subset of factories where job j can be 
assigned, where f ≥|LFj|≥ 1, j=1…n job j can only be 
assigned to an eligible factory. There is a set T of t 
independent products. Each product is assembled at 
the single assembly machine MA. For the assembly of 
product h, h=1…t a subset Nh⊆N of jobs must have 
been produced at the distributed factories beforehand. 
Each job can only belong to an assembly program 
of a product, i.e., N nhh

t
1 ==/ . The assembly of 

product h can only start when all jobs in Nh have 
been completed at the distributed factories. For the 
processing at the distributed manufacturing stage, pjk 
denotes the processing time of job j at machine k of 
any factory. Note that all factories are identical and 

have the same number of machines. For the assembly 
stage, ph denotes the assembly time of product h. 
All processing times are positive, deterministic 
and known integer quantities. The objective in the 
proposed DPMASP is to assign jobs to machines 
at factories in the distributed manufacturing stage, 
to schedule all assigned jobs to each machine at 
each factory and to schedule products at the single 
machine assembly stage while minimizing the 
makespan at this assembly stage. As regards the 
computational complexity of the DPMASP we can 
conclude that it is an NP-Hard problem if n≫f since 
the regular parallel machines problem (even in the 
case where there are two identical machines, i.e., the 
P2//Cmax problem) is already NP-Hard according to 
the results of Lenstra et al. (1977). As we will later 
show, the DPMASP is an important generalization of 
existing problems that has not been studied before to 
the best of our knowledge. In this paper we propose a 
mathematical model to solve the problem. The model 
is solved with two state-of-the-art commercial solvers 
and results are compared. Two high performing 
heuristics are proposed and are shown to give results 
that are, in many cases, close to the optimal ones. 
The rest of the paper is organized as follows: In the 
next section we present a short literature review on 
related problems. In Section 3 we present a Mixed 
Integer Linear Programming (MILP) model to solve 
the considered problem. Section 4 describes two 
simple constructive heuristics. Section 5 presents 
a comprehensive computational evaluation of the 
proposed MILP and simple constructive heuristics. 
Finally, some concluding remarks and future research 
directions are provided in Section 6.

2. Literature review
As mentioned, the DPMASP contains parts from 
distributed manufacturing, assembly and parallel 
machines. As such, a complete literature review 
on each one of these three topics is clearly outside 
the scope of this paper. Some of the closely related 
research will be reviewed instead.

Regarding the assembly part of the proposed 
DPMASP, Lee et al. (1993) considered a three-
machine assembly-type flowshop problem (non-
distributed). The problem comprises two stages; in 
the first stage there are two production machines that 
produce two components for each single product. 
The second stage is a single assembly machine 
that assembles the two produced components to 
make each final product. They present a branch 
and bound algorithm and also an approximate 
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procedure. Makespan minimization is considered 
as an objective function. Later, Potts et al. (1995) 
considered m parallel machines instead of the two 
production machines in the first stage. They produced 
approximated solutions with worse-case absolute 
performance guarantees. For the same problem of 
Lee et al. (1993), Hariri and Potts (1997) proposed 
a branch-and-bound algorithm, and Sun et al. (2003) 
presented different powerful heuristic algorithms. 
Also, Sung and Kim (2008) tried to expand the 
model presented by Lee et al. (1993) by adding 
multiple-assembly machines in the second stage. 
The objective is to minimize the sum of completion 
times. They proposed a lower bound and employed 
it in a branch-and-bound algorithm. An efficient and 
simple heuristic was also proposed. As mentioned, 
we consider eligibility constraints for assigning jobs 
to factories in distributed manufacturing stage. To 
the best of our knowledge, Lin and Li (2004) have 
a similar job to machine eligibility constraints. In 
this paper, the parallel machine scheduling problem 
with unit processing times is studied and polynomial 
algorithms are presented.

For the distributed part of the DPMASP we have to 
note that DMS is a general and broad manufacturing 
term. Focusing only on distributed scheduling 
problems, there are few studies about, distributed 
flowshops and jobshops. For example, the distributed 
permutation flowshop scheduling problem (DPFSP) 
was introduced for the first time by Naderi and 
Ruiz (2010). They proposed six different alternative 
MILP models, two simple factory assignment rules, 
fourteen heuristics and variable neighborhood descent 
methods. Later, Lin et al. (2013) and Wang et al. 
(2013) proposed an effective Iterated Greedy (IG) 
method and an Estimation of Distribution algorithm 
on DPFSP, respectively. Later, Naderi and Ruiz 
(2014) presented a scatter search (SS) method for the 
DPFSP. This SS was shown to outperform existing 
methods. For an updated literature review on the 
DPFSP, the reader is referred to this paper of Naderi 
and Ruiz (2014). Recently, Fernandez-Viagas and 
Framinan (2015) have presented a modified iterated 
greedy algorithm for the DPFSP, which is shown to 
outperform the initial algorithms of Naderi and Ruiz 
(2010). However, there is no comparison between 
the SS of Naderi and Ruiz (2014) and this modified 
iterated greedy. The distributed jobshop problem 
considering two different criteria is studied first by Jia 
et al. (2002) and Jia et al. (2003) where they proposed 
Genetic Algorithm (GA) to solve the problem. Later, 
Jia et al. (2007), refined the previous GA. Chan et al. 
(2006) studied the distributed jobshop with makespan 
objective, also using GA.

The only papers that we are aware of that jointly 
consider the assembly and distributed aspects are 
Hatami et al. (2013) which recently introduced 
the Distributed Assembly Permutation Flowshop 
Scheduling Problem (DAPFSP). In this problem, 
there are f distributed flowshop production centers 
and a single assembly center with a single machine. A 
MILP, several constructive heuristics and simple local 
search based Variable Neigborhood Descent (VND) 
methods were proposed. Xiong et al. (2014) presented 
a distributed two-stage assembly system with setup 
times. The authors considered f distributed factories 
where each factory has the same m processing parallel 
machines at the first stage and the same assembly 
machine at the second stage. Each assembled product 
consists of m components produced by parallel 
machines. They developed heuristic methods and 
three hybrid meta-heuristics to minimize the total 
completion time. The problem studied by Xiong 
et al. (2014) is different from the studied DPMASP. 
First, we consider a separated assembly stage, not an 
assembly operation at each factory. Second, we allow 
the different jobs composing a product to be produced 
in different factories. Third, each product might have 
a number of jobs (components) different from m.

As we can see, and to the best of our knowledge, 
there is no literature on the DPMASP. 

3. Mixed Integer Linear 
Programming model

We present a mathematical model to solve the 
proposed DPMASP. First we detail the indexes, 
parameters and variables are used:

Index Description
i, j denotes jobs, i, j=0,1...n, where 0 

represents a dummy job
k denotes machines, k=1...m
q denotes factories, q=1...f
l,s denotes products, l, s=0,1...t, where 0 

represents a dummy product
M a sufficiently large positive number

Parameter Description
n number of jobs
m number of machines
f number of factories
t number of products
pjk processing time of job j on machine k
ps processing time of product s at the 

assembly stage
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Gjs binary parameter equal to 1 if job j 
belongs to product s, and 0 otherwise  

Variable Description
Xijkq binary variable equal to 1 if job i is 

an immediate predecessor of job j on 
machine k in factory q

Yls binary variable equal to 1 if product l is 
an immediate predecessor of product s 
at the assembly machine

Cj completion time of job j at the 
production stage

CAs completion time of product s on the 
assembly stage

Cmax makespan

The objective function of the model is to minimize 
the makespan:

Min Cmax

Subject to the following constraints:
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Note that C0=CA0=0. Constraint sets (1) and (2) 
ensure that each job must have exactly one preceding 
and succeeding job, respectively. Sets (3) and (4) 
enforce that each machine at each factory has to 
have a dummy job 0 as predecessor and successor, 
respectively. Note that this is a special constraint, as 
we do not allow any machine at any factory to be 
empty due to technological or economic constraints. 
This also requires the total number of jobs in the 
shop (n) to be greater or equal than f × m. Constraint 
set (5) ensures that if a job is sequenced on a 
machine, then its predecessor and successor must be 
processed on the same machine. Constraint set (6) 
controls that a job cannot be both a predecessor and 
successor of another job at the same time. Constraint 
set (7) determines that if job j is placed immediately 
after job i, its processing at machine k cannot start 
before the processing of job i in machine k finishes. 
Constraints (8) and (9) force that each product should 
have one predecessor and at most one succeeding 
product in the assembly factory, respectively. 
Constraint (10) controls that a product cannot be both 
a predecessor and a successor of another product at 
the same time in the assembly machine. Constraint 
(11) determines that each product h cannot begin 
to be assembled before all its jobs are completed 
in the corresponding machine. Constraint set (12) 
determines that if product s is placed immediately 
after product l, it cannot start to be assembled on the 
assembly machine before the assembling of product 
l in assembly machine has finished. Constraints (13) 
and (14)-(17) define the makespan and the domain of 
the decision variables, respectively. Note that only 
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the necessary variables are defined, i.e., eligibility 
constraints are implicitly considered in the model.

4. Constructive heuristic methods
Let us first introduce a DPMASP example that will 
guide the exposition of the proposed heuristics. 
The example consists of fourteen jobs (n=14), 
three products (t=3), two factories (f=2) with 
two unrelated parallel machines in each factory 
(m=2). The assembly programs for each product 
are: N1={2, 7, 8},  N2={1, 3, 4, 10, 12, 13} and 
N3={5, 6, 9, 11, 14}, i.e., jobs 2, 7 and 8 must be 
finished in order to assemble product 1. Table 1 
contains the job processing times on each machine 
at the production stage and eligibility constraints. 
Processing times for assembling products 1 to 3 are 
3, 12 and 7, respectively.

Some additional notation is the following: A product 
sequence is represented by π, e.g., π = {2, 1, 3}. To 
assign all jobs belonging to the assembly program 
of product h to the unrelated parallel machines at 
the different factories, a job to machine-factory 
assignment method is needed. After the application 
of this assignment procedure we obtain a job to 
machine-factory sequence for product h, referred to 
πh, e.g., π1 = {0, 8; 7, 2}, π2 = {1-10, 3; 12, 4-13} and 
π3 = {14, 5; 6- 9, 11} as a possible job to machine-
factory sequence for products of the example. At each 
πh, each factory is separated by “;”, each machine 
by “,” and the sequence of jobs at each machine is 
separated by “-”. A machine that is still empty (which 
can only occur in a partial solution) is denoted by 
“0” in its sequence. Following the previous example 
for π2 we have that jobs 1, 10 and 3 are assigned to 
the first factory. Jobs 1 and 10 are assigned to the 
first machine in this factory in this order and job 
3 to the second machine. Since πh presents the job 
to machine-factory sequence of a single product 
h, πT, referred to as the final job sequence, is the 
concatenation of the different πh following the 
product sequence π. Following the previous example, 
πT = {1-10-14, 3-8-5; 12-7-6-9, 4-13-2-11}. Once 

all jobs in the assembly program of a product h are 
completed in the production stage, it can be assembled 
on the assembly stage. Earliest assembling time of 
product h is denoted as Eh.

In this paper two methods are employed to construct 
the product sequence π. The first one uses the Shortest 
Processing Time heuristic (SPT). This dispatching 
rule is known to reduce the average number of jobs 
in the system, in-process inventories and average job 
tardiness (Stafford et al., 2005). We obtain the SPT 
order using the product assembly times and refer to 
this method as PS1. The second method, referred to 
as PS2, sorts the products in ascending order of the 
earliest assembling times (Eh).

In the method to make job to machine-factory 
assignments for products, we need first some 
additional notation. We refer to Uh to the set of 
unscheduled jobs of product h assembly program, 
i.e., those jobs not yet assigned to machines at 
factories. Skq is the set of jobs already scheduled at 
machine k inside factory q. With this in mind, the 
job to machine-factory assignment considers, for 
a product h, all jobs inside its assembly program, 
assigning first the unscheduled job with the earliest 
completion time at any machine in every eligible 
factory. More in details, we assign job j*∊Uh to 
machine k* at factory q* satisfying:

, ,

, ,
argmin

j k q

k m q LF j U p pj h ik jk
i Skq

! ! !

=

+

) ) )

!

"

'

,

1/

The process is applied until all jobs in the assembly 
program of product h are scheduled.

Both proposed constructive heuristics consist 
of three main steps: In the first step, the product 
sequence π is constructed. In the second step, the 
jobs inside the assembly program of each product 
are assigned following the previous job to machine-
factory assignment procedure, following the order 
of products given in π. Finally, in the third step 
the sequence of products for the assembly stage 
is obtained by sorting products according to Eh in 

Table 1. Job processing times and factory eligibility constraints for the example.

Job
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

Machine
M1 7 3 4 3 1 3 7 4 9 7 8 3 4 7
M2 1 6 5 4 5 9 2 1 6 8 4 9 1 3

LFj 1,2 1,2 1 2 1,2 2 2 1 2 1 2 1,2 2 1,2
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ascending order. We propose two heuristics with 
identical second and third steps and with a different 
process to build the product sequence π in the first 
step.

4.1.  Heuristics PJ1 and PJ2

In heuristic PJ1, PS1 is used to determine the 
product sequence π. After processing all jobs in the 
production stage, Eh for each product h is calculated. 
The product sequence on the assembly machine is 
updated by sorting Eh in ascending order and the final 
makespan is calculated. Pseudocode 1 explains PJ1 
in detail:

Pseudocode 1: Outline of the PJ1 heuristic.

- Obtain product sequence, π, applying PS1

- Use the job to machine-factory assignment 
procedure to assign all jobs of each product 
following the product order in π

- Calculate earliest assembling time of each 
product h, Eh

- Determine the product sequence π on the 
assembly stage by sorting Eh in ascending 
order

The second heuristic PJ2 needs some careful 
explanation. It uses method PS2 in the first step 
to make the product sequence π. However, PS2 
requires sorting products in increasing order of Eh. 
To calculate Eh, all jobs must be assigned to factories 
and machines. In heuristic PJ2, each product’s Eh 
is calculated in isolation. To calculate Eh of each 
product h, only jobs belong to product h are 
considered. Once Eh is calculated for all products, 
they are sorted in increasing order to form the 
product sequence π. This product sequence π is in 
turn used to apply again the job to machine-factory 
assignment for all products, which in the end gives 
us the final makespan. 

The difference between heuristic PJ2, and the first 
heuristic PJ1, is just on the first step. As mentioned 

before, heuristic PJ2, uses PS2 to construct π. 
Therefore, Pseudocode of heuristic PJ2 is not 
presented due to space constraints and because of its 
similarity with heuristic PJ1. 

Note that if there are ties in the Eh of products, they are 
broken by taking the first product. Also the same rule 
is considered for breaking ties on the SPT rule which 
is used in heuristic PJ1 to calculate π.As a final note, 
and to enforce the technological constraint that no 
machine should be left empty, if after the application 
of any of the two proposed heuristics, any machine is 
left empty, we reassign to it the job with the smallest 
processing time at that machine. The two proposed 
heuristics are applied to the previous example in the 
next section for further clarification.

4.2. Heuristic application example
The example of Table 1 is used to detail heuristic PJ1 
first. Products are first sorted according to shortest 
processing assembly times so π = {1, 3, 2}. In the 
second step, following the product order in π, first 
we assign jobs of product 1, to factories through 
the job to machine-factory assignment procedure. 
N1 = {2, 7, 8} so we first take job 2. The earliest 
completion time of this first job in all machines of 
all factories is 3. For job 7 is 2 (considering that it 
can only be assigned to factory 2) and for job 8 is 1 
and can only be assigned to factory 1. The minimum 
is 1, which corresponds to the assignment of job 
8 to the second machine of factory 1. Note that if 
there is a tie in the minimum completion time for 
the jobs, it is broken by taking the first job. We now 
have to consider the unscheduled jobs 2 and 7. We 
now calculate the earliest completion times of these 
two jobs at all machines of all eligible factories 
considering that job 8 is already assigned. These 
minimum completion times are 3 and 2 for jobs 2 
and 7, respectively. Therefore job 7 is scheduled 
at factory 2 (the only eligible for this job) and 
to machine 2. Lastly, job 2 is scheduled with the 
earliest completion time of 3 at factory 1, machine 
1. Note that we could have assigned this job to 
machine 1 of factory 2 with the same completion 
time, so we break ties by assigning jobs to the first 

Table 2. Instance and factors for proposed instances.

Instance factor Symbol
Values

GA GB GC
Number of jobs n 10, 12, 14, 16, 18 20, 22, 24 200, 300, 400
Number of machines m 2, 3 2, 3, 4 5, 10, 15
Number of factories f 2, 3 2, 3, 4 4, 6, 8
Number of products t 2, 3, 4 2, 3, 4 20, 30, 40
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machine and factory with equal completion time. 
After this procedure π1 = {2, 8; 0, 7}. Following the 
same process, the jobs in the assembly programs 
of products 3 and 2 are assigned to factories one 
after the other, resulting in the final job sequence 
πT = {2-12-3, 8-14-1-10; 5-6-4-13, 7-11-9}. The 
completion times of all jobs at the production stage 
are: C1 = 5, C2 = 3, C3 = 10, C4 = 7, C5 = 1, C6 = 4, 
C7 = 2, C8 = 1, C9 = 12, C10 = 13, C11 = 6, C12 = 6, 
C13 = 11 and C14 = 4. The earliest assembling time 
for products 1 to 3, by considering their respective 
assembly programs are: E1 = 3, E2 = 13 and E3 = 12, 
respectively. In the third step, the product sequence 
π on the assembly stage is updated by sorting Eh in 
ascending order, i.e., π = {1, 3, 2} and the Cmax of the 
application of PJ1 to this example is 31. 

For the second heuristic PJ2 we calculate the Eh 
values for all products one by one with the job to 
machine-factory assignment procedure, the obtained 
sequences are π1 = {2, 8; 0, 7 } with E1 = 3,  π2 = {12-
10, 1-3; 4, 13} with E2 = 10 and π3 = {5, 14; 6, 11-9} 
with E3 = 10, so π = {1,2,3}. Note that there is a tie in 
the Eh of products 2 and 3 so again we break ties by 
taking the first product. Using this π we apply again 
the job to machine-factory assignment procedure 
obtaining πT={2-12-10, 8-1-3; 4-5-6-9, 7-13-14-11} 
with completion times for the jobs as: C1= 2, C2= 3, 
C3= 7, C4= 3, C5= 4, C6= 7, C7= 2, C8= 1, C9= 16, 
C10= 13, C11= 10, C12= 6, C13= 3 and C14= 6. In the 
third step, again products are sorted in increasing 
order of their respective Eh which are E1= 3, E2= 13 
and E3= 16. Therefore, the updated product sequence 
for the assembly stage is π ={1, 2, 3} with a makespan 
of 32.

5. Computational evaluation
To test the proposed MILP model and constructive 
heuristics, six complete sets of instances have been 
generated. We consider different number of problem 

characteristics to comprehensively evaluate and 
test the proposed approaches: Number of jobs (n), 
number of machines (m), number of factories (f) and 
number of products (t) are four controlled instance 
factors. Depending on the chosen values we have 
small, medium and large-sized instances, referred 
to as GA, GB and GC, respectively. The processing 
times of the jobs on each machine in the production 
stage, are generated following a random uniform 
distribution in the range [1, 99], as it is common in 
the scheduling literature. The last instance factor 
we consider is the distribution of the assembly 
processing times which are fixed as: U[|Nh|,49×|Nh|] 
and U[|Nh|,99×|Nh|]. These two distributions are 
referred to in short as 50, and 100, respectively. 
The final sets of instances are then denoted as GA50, 
GA100,…,GC100. For each combination of instance 
factors we have five replications. The combinations 
for each instance size are given in Table 2.

Therefore, the total number of instances is 300 for 
GA50 and another 300 for GA100 and 405 for every set 
in GB50 through GC100 resulting in a grand total of 
2220 instances.

5.1. MILP model evaluation
The proposed MILP model is tested only on sets 
GA and GB given the impossibility to solve large 
instances. Two state-of-the-art commercial solvers 
are used, namely CPLEX 12.6 and GUROBI 5.6.3, 
which are, at the time of the writing of this paper, 
the latest versions available. Two different stopping 
times are tested with each solver: 900 and 3600 
seconds. In total we have obtained 5640 results. All 
tests are performed in a high performance computing 
cluster with 30 blades, each one containing 16 
GBytes of RAM memory and two Intel XEON 
E5420 processors running at 2.5 GHz. The 30 blade 
servers are used only to divide the workload since 
experiments are performed in virtualized Windows 
XP machines, each one with a virtualized processor 

Table 3. Performance results for solvers and time limit for instance sets of GA50, GA100, GB50 and GB100.

Solver
Time Limit 900s 3600s
Instance set GA50 GA100 GB50 GB100 GA50 GA100 GB50 GB100

CPLEX

% opt 96.67 98.00 79.50 87.40 97.00 98.33 81.72 88.39
% outm 0.00 0.00 2.46 1.72 0.00 0.00 12.34 6.41
GAP % 0.18 0.06 0.55 0.23 0.15 0.05 0.32 0.07

Av Time (sec.) 48.92 28.37 201.02 133.95 133.28 79.04 391.35 286.12

GUROBI
% opt 95.67 98.00 74.56 81.97 97.00 98.67 77.03 84.44

GAP % 0.29 0.07 1.15 0.51 0.21 0.05 0.82 0.37
Av Time (sec.) 61.08 36.06 292.75 221.95 159.21 83.35 932.96 658.33
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with two cores and 2 GB of RAM memory. Therefore, 
since both CPLEX and GUROBI are parallel solvers, 
the two available threads at each virtual machine are 
used.

After solving the models with CPLEX and GUROBI, 
three possible outcomes are obtained. The first type 
is “optimal”, which means that an optimal solution 
with a given makespan value was obtained in the 
given maximum CPU time. The second type is “non-
optimal”, meaning that a feasible integer solution 
was obtained within the time limit but it was not 
possible to demonstrate its optimality and the gap 
is reported. The third and last outcome is “out of 
memory”, by which the solver had an error and ran 
out of RAM memory, reporting a solution and a gap 
calculated with respect to the best obtained solution 
for that instance. In general, the solvers were able 
to find 294 (98.00%) and 297 (99.00%) optimal 
solutions in sets GA50 and GA100, respectively. For 
GB50 and GB100 the numbers are 338 (83.45%) and 
363 (89.63%) for the 405 instances, respectively. 
The summarized results, according to the instance 
factors, type of solver and time limit, are presented 
in Table 3 for sets GA and GB. The reported values 
at the tables are the percentage of optimum solutions 
found (% opt), the percentage of cases with out of 
memory error (% outm), the average gap for non-
optimal solution (GAP %) and the average CPU time 
in seconds (Av Time).

As we can see, the effect of the distribution of the 
assembly times at the assembly stage is much 
stronger than either the type of solver or CPU time 
limit. For group GA, instances with more disperse 
assembly times are easier to solve and also need 
less CPU time. As regards the comparison between 
CPLEX and GUROBI, for set GA we see comparable 
performance with slightly shorter CPU times for 

CPLEX. For instance sets GB the differences 
between solvers are stronger. We see that GUROBI is 
much slower than CPLEX and has higher gap values. 
However, CPLEX reports out of memory errors that 
in some cases average more than 12% (GB50). So it 
is important to conclude that there is no clear winner 
for this problem between these two solvers. In total, 
the largest tested instances in sets GB have 24 jobs 
and 16 machines distributed in 4 factories so we can 
attest that the proposed mathematical model has an 
adequate performance. 

5.2. Heuristics evaluation
The two proposed heuristics, PJ1 and PJ2, are 
now tested. The response variable is the Relative 
Percentage Deviation (RPD), measured as:

lgRPD Best
A Best 100

sol

sol sol
#= -

Where Bestsol is the best makespan obtained after all 
experimentation in this paper for any instance and 
Algsol is the makespan obtained by the heuristic. The 
heuristics are coded in C# and are compiled under 
Visual Studio 2010. The same computing platform 
used for the MILP evaluation is employed here. The 
average RPD values for the proposed heuristics are 
given in Tables 4, 5 and 6 for instances sets GA, 
GB and GC, respectively. All results are grouped 
by n and f. The average RPD values of CPLEX and 
GUROBI are reported as well for reference. 

As can be observed, PJ2 is generally much better than 
PJ1 in all groups of instances, although the difference 
is not very big in the large instances. It is important 
to observe how in the largest instances in set GB of 
24 jobs and 4 factories, PJ2, gives a very small gap of 
just 0.35% which indicates that PJ2 is a very capable 

Table 4. Average Relative Percentage Deviation (RPD) of CPLEX, GUROBI and the proposed heuristics for instance sets 
GA50 and GA100.

GA50 GA100

f×n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2×10 0.00 0.00 9.52 3.26 0.00 0.00 2.21 0.46
2×12 0.00 0.00 8.24 4.04 0.00 0.00 3.58 1.76
2×14 0.00 0.00 8.29 3.36 0.00 0.00 4.50 0.62
2×16 0.00 0.00 9.31 4.59 0.00 0.00 4.30 1.16
2×18 0.00 0.21 7.27 3.90 0.00 0.00 3.34 1.23
3×10 0.00 0.00 5.10 2.59 0.00 0.00 1.09 1.24
3×12 0.00 0.00 4.72 1.43 0.00 0.00 1.85 0.98
3×14 0.00 0.00 4.51 1.71 0.00 0.00 1.51 0.28
3×16 0.00 0.00 4.79 1.39 0.00 0.00 2.63 0.72
3×18 0.00 0.00 4.04 1.34 0.00 0.00 2.15 0.78
Average 0.00 0.02 6.58 2.76 0.00 0.00 2.72 0.92
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heuristic with close to optimality performance. On 
average, PJ2 is below 1% RPD for instance groups 
GA and GB. For the large instances in GC it is not 
possible to calculate the optimum solution so we 
only have an overall picture were PJ2 always obtains 
the best solution. As a matter of fact and although 
not reported in detail here, among the 810 instances 
in GC50 and GC100, PJ2 is always better or equal than 
PJ1.

We report now on the CPU times of the proposed 
heuristics in Table 7. It has to be noted that CPU 
times are negligible, on the verge of being below the 
margin of error in measurements.

As can be seen, the average CPU times are below one 
tenth of a second for the largest instances in group 
GC. On average, PJ2 is relatively slower than PJ1 
but on absolute terms the CPU times are very small. 
Although not shown here, the largest measured CPU 
time corresponds to heuristic PJ2 and has been 0.41 
seconds. From this final evaluation and considering 
the relative RPD of PJ2 we can conclude that it is a 
capable and very fast heuristic. 

Even though the observed differences are large in all 
cases for the proposed heuristics and very small for 
the two solvers, we carry out some statistical analyses 
in order to ascertain if the observed differences 
are indeed statistically significant. All results are 
examined with the Analysis of Variance (ANOVA) 
technique. ANOVA is a powerful parametric tool, 
which has been used in the last 10 years in the 
scheduling literature with great success. For the 
small instances there is no statistically significant 
difference in the performance of CPLEX and 
GUROBI and PJ2 is statistically better than PJ1. The 
detailed data is not reported for space reasons. For 
the medium sized-instances in set GB we observe the 
interaction between the distribution of the assembly 
processing times and tested methods in Figure 1. 

As can be seen, the results are similar to those of set 
GA. The differences between the proposed heuristics 

Table 5. Average Relative Percentage Deviation (RPD) of CPLEX, GUROBI and the proposed heuristics for instance sets 
GB50 and GB100.

GA50 GA100

f×n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2×20 0.20 0.00 7.03 2.33 0.00 0.00 3.33 1.03
2×22 0.29 0.03 5.26 2.36 0.05 0.03 2.36 0.87
2×24 0.13 0.19 4.78 1.89 0.11 0.04 3.33 1.40
3×20 0.00 0.00 3.21 1.42 0.00 0.00 2.48 1.27
3×22 0.01 0.01 2.89 1.69 0.04 0.02 1.54 0.47
3×24 0.10 0.02 3.17 1.25 0.00 0.02 1.38 0.70
4×20 0.00 0.00 2.31 1.29 0.00 0.00 1.83 0.67
4×22 0.00 0.00 2.18 0.77 0.00 0.00 1.78 0.75
4×24 0.00 0.00 2.50 1.12 0.00 0.00 1.82 0.35
Average 0.08 0.03 3.70 1.57 0.02 0.01 2.21 0.84

Table 6. Average Relative Percentage Deviation (RPD) of 
the proposed heuristics for instance sets GC50 and GC100.

f×n

GC50 GC100

PJ1 PJ2 PJ1 PJ2

4×200 0.13 0.00 0.07 0.00
4×300 0.12 0.00 0.05 0.00
4×400 0.11 0.00 0.06 0.00
6×200 0.09 0.00 0.04 0.00
6×300 0.08 0.00 0.05 0.00
6×400 0.08 0.00 0.04 0.00
8×200 0.06 0.00 0.03 0.00
8×300 0.08 0.00 0.03 0.00
8×400 0.05 0.00 0.04 0.00
Average 0.09 0.00 0.05 0.00
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Figure 1. Means plot with the interaction between the 
distribution of the assembly processing times and the tested 
methods for instances GB. All means have Tukey’s Honest 
Significant Difference (HSD) 95% confidence intervals.
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are large enough so as to be statistically significant 
whereas the differences in the performance of the 
solvers are not statistically relevant. As for the 
large instances in group GC we can only test the 
significance in the observed differences in the 
average RPD between the two heuristics. This is 
given in Figure 2.
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Figure 2. Means plot for the two heuristics in large 
instances (GC). All means have Tukey’s Honest Significant 
Difference (HSD) 95% confidence intervals.

As can be observed, PJ2 is statistically better than PJ1 
even though the absolute difference between both 
proposed methods is practically small.

6. Conclusions and future research
In this paper we have studied an interesting 
combination of a distributed manufacturing problem 
with assembly operations. More specifically, we 
have presented a distributed unrelated parallel 
machines problem by which a number of factories, 
each one containing unrelated parallel machines 
have to manufacture jobs. All these jobs are later 
assembled into products in a factory with a single 
assembly machine. The objective is to minimize the 

makespan in the assembly stage. Such a problem has 
been motivated and shown not to have been studied 
to date. We have presented a mathematical model and 
two constructive heuristics. The mathematical model 
has been comprehensively evaluated and tested using 
two state-of-the-art commercial solvers. Results have 
shown that we are able to solve optimally problems 
of up to 24 jobs and 16 machines distributed in 4 
factories. The two proposed heuristics are inherently 
simple and at the same time report solutions very 
close to optimal in the cases for which the optimal 
solution has been obtained. Furthermore, for large 
instances, the performance is very good, obtaining 
solutions in less than half a second.

While the studied problem has many potential 
applications, it is very likely for additional constraints 
to appear in practice. For example, sequence 
dependent setup times at machines are ubiquitous 
in real industries. More complex assembly stages 
with parallel assembly machines, or assembly 
flowshops, might be of interest. Lastly, other 
objective functions, basically those based on due 
dates are worthy of additional studies. Furthermore, 
metaheuristic techniques might improve the results 
of the mathematical models and proposed heuristics 
in a significant way. We expect dealing with some of 
these ideas in future work.

Acknowledgements

The Spanish Ministry of Economy and 
Competitiveness supports Rubén Ruiz, 
under the project “RESULT-Realistic Extended 
Scheduling Using Light Techniques” (No. DPI2012-
36243-C02-01). Carlos Andrés is partially supported 
by the project “Hybrid Methods for Horizontal 
Cooperation in Green Transportation and Logistics 
GreenCOOP” TRA2013-48180-C3-3-P from the 
Spanish Ministry of Economy and Competitiveness.

References
Chan, F. T. S., Chung, S. H., Chan, P. L. Y. (2005). An adaptive genetic algorithm with dominated genes for distributed scheduling problems. 

Expert Systems with Applications, 29(2): 364–371. doi:10.1016/j.eswa.2005.04.009

Chan, F. T. S., Chung, S. H., Chan, P. L. Y., Finke, G., Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: 
genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6): 493–504. doi:10.1016/j.rcim.2005.11.005

Elmaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A. (2013). Product variety management. CIRP 
Annals-Manufacturing Technology, 62(2): 629–652. doi:10.1016/j.cirp.2013.05.007

Fernandez-Viagas, V., Framinan, J.M. (2015). A bounded-search iterated greedy algorithm for the distributed permutation flowshop 
scheduling problem. International Journal of Production Research, 53(4): 1111–1123. doi:10.1080/00207543.2014.948578 

22 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://dx.doi.org/10.1016/j.eswa.2005.04.009
http://dx.doi.org/10.1016/j.rcim.2005.11.005
http://dx.doi.org/10.1016/j.cirp.2013.05.007
http://dx.doi.org/10.1080/00207543.2014.948578
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hariri, A. M. A., Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of 
Operational Research, 103(3): 547–556. doi:10.1016/S0377-2217(96)00312-8

Hatami, S., Ruiz, R., Andrés-Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal 
of Production Research, 51: 5292–5308. doi:10.1080/00207543.2013.807955

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., Zhang, Y. F. (2002). Web-based multi-functional scheduling system for a distributed manufacturing 
environment. Concurrent Engineering: Research and Applications, 10(1): 27–39.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., Zhang, Y. F. (2003). A modified genetic algorithm for distributed scheduling problems. Journal of 
Intelligent Manufacturing, 14(3-4): 351–362. doi:10.1023/A:1024653810491

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed 
manufacturing systems. Computers & Industrial Engineering, 53(2): 313–320. doi:10.1016/j.cie.2007.06.024

Lee, C. Y., Cheng, T. C. E., Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine assembly-type flowshop scheduling problem. 
Management Science, 39(5): 616–625. doi:10.1287/mnsc.39.5.616

Lenstra, J. K., Rinnooy Kan, A. H. G., Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics, 
1:343–362. doi:10.1016/S0167-5060(08)70743-X

Lin, S. W., Ying, K. C., Huang, C. Y. (2013). Minimising makespan in distributed permutation flowshops using a modified iterated greedy 
algorithm. International Journal of Production Research, 51(16): 5029–5038. doi:10.1080/00207543.2013.790571

Lin, Y., Li, W. (2004). Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of Operational Research, 
156(1): 261–266. doi:10.1016/S0377-2217(02)00914-1

Mahdavi, I., Shirazi, B., Cho, N., Sahebjamnia, N., Ghobadi, S. (2008). Modeling an e-based real-time quality control information system in 
distributed manufacturing shops. Computers in Industry, 59(8): 759–766. doi:10.1016/j.compind.2008.03.005

Naderi, B., Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Computers & Operations Research, 37(4): 754–768. 
doi:10.1016/j.cor.2009.06.019

Naderi, B., Ruiz, R. (2014). A scatter search algorithm for the distributed permutation flowshop scheduling problem. European Journal of 
Operational Research, 239(2): 323–334. doi:10.1016/j.ejor.2014.05.024

Sluga, A., Butala, P., Bervar, G. (1998). A multi-agent approach to process planning and fabrication in distributed manufacturing. Computers 
& Industrial Engineering, 35(3-4): 455–458. doi:10.1016/S0360-8352(98)00132-6

Stafford, E. F., Tseng, F. T., Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research 
Society, 56(1): 88–101. doi:10.1057/palgrave.jors.2601805

Sun, X., Morizawa, K., Nagasawa, H. (2003). Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop 
scheduling. European Journal of Operational Research, 146(3): 499–517. doi:10.1016/S0377-2217(02)00245-X

Sung, C. S., Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times. 
International Journal of Production Economics, 113(2): 1038–1048. doi:10.1016/j.ijpe.2007.12.007

Wang, S. Y., Wang, L., Liu, M., Xu, Y. (2013). An effective estimation of distribution algorithm for solving the distributed permutation flowshop 
scheduling problem. International Journal of Production Economics, 145(1): 387–396. doi:10.1016/j.ijpe.2013.05.004

Xiong, F., Xing, K., Wang, F., Lei, H., Han, L. (2014). Minimizing the total completion time in a distributed two stage assembly system with 
setup times. Computers & Operations Research, 47: 92–105. doi:10.1016/j.cor.2014.02.005

23Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://dx.doi.org/10.1016/S0377-2217(96)00312-8
http://dx.doi.org/10.1080/00207543.2013.807955
http://dx.doi.org/10.1023/A:1024653810491
http://dx.doi.org/10.1016/j.cie.2007.06.024
http://dx.doi.org/10.1287/mnsc.39.5.616
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1016/S0377-2217(02)00914-1
http://dx.doi.org/10.1016/j.compind.2008.03.005
http://dx.doi.org/10.1016/j.cor.2009.06.019
http://dx.doi.org/10.1016/j.ejor.2014.05.024
http://dx.doi.org/10.1016/S0360-8352(98)00132-6
http://dx.doi.org/10.1057/palgrave.jors.2601805
http://dx.doi.org/10.1016/S0377-2217(02)00245-X
http://dx.doi.org/10.1016/j.ijpe.2007.12.007
http://dx.doi.org/10.1016/j.ijpe.2013.05.004
http://dx.doi.org/10.1016/j.cor.2014.02.005
http://creativecommons.org/licenses/by-nc-nd/4.0/



