
PME

I
J

https://ojs.upv.es/index.php/IJPME

International Journal of
Production Management
and Engineering

http://dx.doi.org/10.4995/ijpme.2015.3345

Received 2014-10-29 Accepted: 2014-01-07

The Distributed Parallel Machine and Assembly Scheduling Problem
with eligibility constraints

Sara Hatamia,i, Rubén Ruizb and Carlos Andrés-Romanoa,ii

a Departamento de Organización de Empresas, Universitat Politècnica de València.
Camino de Vera s/n, 46021, València, Spain.

a,i sara_sodi@yahoo.com
a,ii candres@omp.upv.es

b Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad Politécnica de la
Innovación, Edifico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera s/n, 46021, València, Spain.

b rruiz@eio.upv.es

Abstract: In this paper we jointly consider several realistic scheduling extensions: First we study the distributed unrelated
parallel machines problem where there is a set of identical factories with parallel machines in the production stage. Jobs have
to be assigned to factories and to machines. Additionally, there is an assembly stage with a single assembly machine. Finished
jobs at the manufacturing stage are assembled into final products in this second assembly stage. These two joint features are
referred to as the Distributed Parallel Machine and Assembly Scheduling Problem or DPMASP. The objective is to minimize the
makespan in the assembly stage. Due to technological constraints, machines cannot be idle and some jobs can be processed
only in certain factories. We propose a mathematical model and two high-performing heuristics. The model is tested with
two state-of-the-art solvers and, together with the heuristics, 2220 instances are solved in a comprehensive computational
experience. Results show that the proposed model is able to solve moderately-sized instances, and that one of the heuristics
is fast, giving optimal solutions close to optimum in less than half a second in the worst case.

Key words: Distributed Parallel Machines, Assembly Stage,
Heuristics, Model.

1. Introduction
Nowadays, the manufacturing industry faces many
challenges, namely globalization, increasing product
variety, complexity and customer demands, shorter
product life cycles, higher demand of customized
goods instead of mass production, uncertain
and dynamic global market, etc. Of course, the
strong competition from emerging and established
economies has to be considered as well. One of the
many tools to face these challenges and to meet
customer’s demands is to increase the product variety
that companies offer. A wide product portfolio and
diversified offer is a key asset to stay competitive
in such an unpredictable and ever evolving market.
Product variety has been defined by many authors
as a number or collection of different things of a

particular class of the same general kind (Elmaraghy
et al., 2013). In recent years, assembly systems
are such as techniques that are mostly used mass
production. They have been also employed in various
manufacturing systems so as to increase flexibility
and the capability to increase product variety. These
types of manufacturing settings are referred to as
Assembly Scheduling Problems (ASP).

In an assembly system, different operations are
performed independently, and potentially in parallel,
to produce different components which are later
assembled into finished products in assembly lines.
A high variety of finished products, made from
different combinations of produced components, can
be produced in assembly systems.

Existence of more than one manufacturing facility
in different geographical places may decrease
some costs related to the production. To offset
these costs, companies must operate different and
specialized factories in what is known as Distributed

13Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

http://dx.doi.org/10.4995/ijpme.2015.3459
http://creativecommons.org/licenses/by-nc-nd/4.0/

Manufacturing Systems (DMS). In a DMS
environment, several independent production centers
or factories are run in parallel at potentially different
geographical places. Furthermore, distributed
manufacturing allows for greater flexibility and
resiliency (Sluga et al., 1998). Other benefits of
DMS are: higher product quality, lower production
costs, reduced risks (Kahn et al., 2004; Chan et al.,
2005; Mahdavi et al., 2008). However, scheduling
in DMS is more complicated than in a single
production factory. In single production centers a job
schedule for each set of machines has to be defined,
while in DMSs, there are two interrelated decisions
to be made: factory selection for each job and then
scheduling at each factory.

As a conclusion, and in order to reap the benefits
of both assembly systems (ASP) and distributed
manufacturing (DMS), both aspects must be jointly
considered.

In this paper we consider two manufacturing stages:
production and assembly. For production we have a
set of distributed factories and for assembly there is a
single assembly facility. Each one of the f distributed
production centers (factories) has unrelated
parallel machines as a shop configuration whereas
the assembly stage consists of a single machine.
Transportation time for transferring jobs from
production centers to assembly stage is assumed
negligible. By considering the above model we define
the studied problem in this paper as the Distributed
Parallel Machine and Assembly Scheduling Problem
(DPMASP).

More in specifically, in the DPMASP there is a set
N of n jobs that has to be processed on a set F of f
identical factories. Note that all factories are identical
and have the same number of machines. Each factory
has a set M of m unrelated parallel machines. Each
job has to be processed at exactly one machine at one
factory. Furthermore, there are eligibility constraints.
LFj⊆F is the subset of factories where job j can be
assigned, where f ≥|LFj|≥ 1, j=1…n job j can only be
assigned to an eligible factory. There is a set T of t
independent products. Each product is assembled at
the single assembly machine MA. For the assembly of
product h, h=1…t a subset Nh⊆N of jobs must have
been produced at the distributed factories beforehand.
Each job can only belong to an assembly program
of a product, i.e., N nhh

t
1 ==/ . The assembly of

product h can only start when all jobs in Nh have
been completed at the distributed factories. For the
processing at the distributed manufacturing stage, pjk
denotes the processing time of job j at machine k of
any factory. Note that all factories are identical and

have the same number of machines. For the assembly
stage, ph denotes the assembly time of product h.
All processing times are positive, deterministic
and known integer quantities. The objective in the
proposed DPMASP is to assign jobs to machines
at factories in the distributed manufacturing stage,
to schedule all assigned jobs to each machine at
each factory and to schedule products at the single
machine assembly stage while minimizing the
makespan at this assembly stage. As regards the
computational complexity of the DPMASP we can
conclude that it is an NP-Hard problem if n≫f since
the regular parallel machines problem (even in the
case where there are two identical machines, i.e., the
P2//Cmax problem) is already NP-Hard according to
the results of Lenstra et al. (1977). As we will later
show, the DPMASP is an important generalization of
existing problems that has not been studied before to
the best of our knowledge. In this paper we propose a
mathematical model to solve the problem. The model
is solved with two state-of-the-art commercial solvers
and results are compared. Two high performing
heuristics are proposed and are shown to give results
that are, in many cases, close to the optimal ones.
The rest of the paper is organized as follows: In the
next section we present a short literature review on
related problems. In Section 3 we present a Mixed
Integer Linear Programming (MILP) model to solve
the considered problem. Section 4 describes two
simple constructive heuristics. Section 5 presents
a comprehensive computational evaluation of the
proposed MILP and simple constructive heuristics.
Finally, some concluding remarks and future research
directions are provided in Section 6.

2. Literature review
As mentioned, the DPMASP contains parts from
distributed manufacturing, assembly and parallel
machines. As such, a complete literature review
on each one of these three topics is clearly outside
the scope of this paper. Some of the closely related
research will be reviewed instead.

Regarding the assembly part of the proposed
DPMASP, Lee et al. (1993) considered a three-
machine assembly-type flowshop problem (non-
distributed). The problem comprises two stages; in
the first stage there are two production machines that
produce two components for each single product.
The second stage is a single assembly machine
that assembles the two produced components to
make each final product. They present a branch
and bound algorithm and also an approximate

14 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://creativecommons.org/licenses/by-nc-nd/4.0/

procedure. Makespan minimization is considered
as an objective function. Later, Potts et al. (1995)
considered m parallel machines instead of the two
production machines in the first stage. They produced
approximated solutions with worse-case absolute
performance guarantees. For the same problem of
Lee et al. (1993), Hariri and Potts (1997) proposed
a branch-and-bound algorithm, and Sun et al. (2003)
presented different powerful heuristic algorithms.
Also, Sung and Kim (2008) tried to expand the
model presented by Lee et al. (1993) by adding
multiple-assembly machines in the second stage.
The objective is to minimize the sum of completion
times. They proposed a lower bound and employed
it in a branch-and-bound algorithm. An efficient and
simple heuristic was also proposed. As mentioned,
we consider eligibility constraints for assigning jobs
to factories in distributed manufacturing stage. To
the best of our knowledge, Lin and Li (2004) have
a similar job to machine eligibility constraints. In
this paper, the parallel machine scheduling problem
with unit processing times is studied and polynomial
algorithms are presented.

For the distributed part of the DPMASP we have to
note that DMS is a general and broad manufacturing
term. Focusing only on distributed scheduling
problems, there are few studies about, distributed
flowshops and jobshops. For example, the distributed
permutation flowshop scheduling problem (DPFSP)
was introduced for the first time by Naderi and
Ruiz (2010). They proposed six different alternative
MILP models, two simple factory assignment rules,
fourteen heuristics and variable neighborhood descent
methods. Later, Lin et al. (2013) and Wang et al.
(2013) proposed an effective Iterated Greedy (IG)
method and an Estimation of Distribution algorithm
on DPFSP, respectively. Later, Naderi and Ruiz
(2014) presented a scatter search (SS) method for the
DPFSP. This SS was shown to outperform existing
methods. For an updated literature review on the
DPFSP, the reader is referred to this paper of Naderi
and Ruiz (2014). Recently, Fernandez-Viagas and
Framinan (2015) have presented a modified iterated
greedy algorithm for the DPFSP, which is shown to
outperform the initial algorithms of Naderi and Ruiz
(2010). However, there is no comparison between
the SS of Naderi and Ruiz (2014) and this modified
iterated greedy. The distributed jobshop problem
considering two different criteria is studied first by Jia
et al. (2002) and Jia et al. (2003) where they proposed
Genetic Algorithm (GA) to solve the problem. Later,
Jia et al. (2007), refined the previous GA. Chan et al.
(2006) studied the distributed jobshop with makespan
objective, also using GA.

The only papers that we are aware of that jointly
consider the assembly and distributed aspects are
Hatami et al. (2013) which recently introduced
the Distributed Assembly Permutation Flowshop
Scheduling Problem (DAPFSP). In this problem,
there are f distributed flowshop production centers
and a single assembly center with a single machine. A
MILP, several constructive heuristics and simple local
search based Variable Neigborhood Descent (VND)
methods were proposed. Xiong et al. (2014) presented
a distributed two-stage assembly system with setup
times. The authors considered f distributed factories
where each factory has the same m processing parallel
machines at the first stage and the same assembly
machine at the second stage. Each assembled product
consists of m components produced by parallel
machines. They developed heuristic methods and
three hybrid meta-heuristics to minimize the total
completion time. The problem studied by Xiong
et al. (2014) is different from the studied DPMASP.
First, we consider a separated assembly stage, not an
assembly operation at each factory. Second, we allow
the different jobs composing a product to be produced
in different factories. Third, each product might have
a number of jobs (components) different from m.

As we can see, and to the best of our knowledge,
there is no literature on the DPMASP.

3. Mixed Integer Linear
Programming model

We present a mathematical model to solve the
proposed DPMASP. First we detail the indexes,
parameters and variables are used:

Index Description
i, j denotes jobs, i, j=0,1...n, where 0

represents a dummy job
k denotes machines, k=1...m
q denotes factories, q=1...f
l,s denotes products, l, s=0,1...t, where 0

represents a dummy product
M a sufficiently large positive number

Parameter Description
n number of jobs
m number of machines
f number of factories
t number of products
pjk processing time of job j on machine k
ps processing time of product s at the

assembly stage

15Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://creativecommons.org/licenses/by-nc-nd/4.0/

Gjs binary parameter equal to 1 if job j
belongs to product s, and 0 otherwise

Variable Description
Xijkq binary variable equal to 1 if job i is

an immediate predecessor of job j on
machine k in factory q

Yls binary variable equal to 1 if product l is
an immediate predecessor of product s
at the assembly machine

Cj completion time of job j at the
production stage

CAs completion time of product s on the
assembly stage

Cmax makespan

The objective function of the model is to minimize
the makespan:

Min Cmax

Subject to the following constraints:

X j1
,

ijkq
q
q LF
q LF

f

k

m

i i j

n

110
j

i

6=
!

!

!

===
/// (1)

X i1
,

ijkq
q
q LF
q LF

f

k

m

j j i

n

110
j

i

6=
!

!

!

===
/// (2)

,X k q1jkq
j
q LF

n

0
1

j

6=
!

=
/ (3)

,X k q1i kq
i
q LF

n

0
1

i

6=
!

=
/ (4)

, , ,X X i k q q LF0
,

ijkq jikq i
j j i
q LF

n

1
j

6 !- =
!

!

=
^ h/ (5)

, , ,

X X

i n j i

1

1 1

ijkq jikq
q
q LF
q LF

f

k

m

q
q LF
q LF

f

k

m

1111
i

j

i

j

6 f 2

#

!

+

-

!

!

!

!

====

" ,

////
 (6)

, , , ,
C C p M X

i j k q q LF LF
1j i jk i jkq

i j+6

$

!

+ + -^ h
 (7)

sY 1
,

ls
l l s

t

0
6=

!=
/ (8)

Y l1
,

ls
s l s

t

1
6#

!=
/ (9)

, , ,Y Y l t s l1 1 1ls sl 6 f 2# !+ -" , (10)

,CA C G p j s·s j js s 6$ +^ h (11)

, ,CA CA p M Y l s l s1s l s ls 6 !$ + + -^ h (12)

C CA smax s 6$ (13)

, , , , , , ,X i j k q i j q LF q LF0 1ijkq i j6 !! ! !" , (14)

, ,, l s l sY 0 1ls 6 !! " , (15)

Cj j0 6$ (16)

CA s0s 6$ (17)

Note that C0=CA0=0. Constraint sets (1) and (2)
ensure that each job must have exactly one preceding
and succeeding job, respectively. Sets (3) and (4)
enforce that each machine at each factory has to
have a dummy job 0 as predecessor and successor,
respectively. Note that this is a special constraint, as
we do not allow any machine at any factory to be
empty due to technological or economic constraints.
This also requires the total number of jobs in the
shop (n) to be greater or equal than f × m. Constraint
set (5) ensures that if a job is sequenced on a
machine, then its predecessor and successor must be
processed on the same machine. Constraint set (6)
controls that a job cannot be both a predecessor and
successor of another job at the same time. Constraint
set (7) determines that if job j is placed immediately
after job i, its processing at machine k cannot start
before the processing of job i in machine k finishes.
Constraints (8) and (9) force that each product should
have one predecessor and at most one succeeding
product in the assembly factory, respectively.
Constraint (10) controls that a product cannot be both
a predecessor and a successor of another product at
the same time in the assembly machine. Constraint
(11) determines that each product h cannot begin
to be assembled before all its jobs are completed
in the corresponding machine. Constraint set (12)
determines that if product s is placed immediately
after product l, it cannot start to be assembled on the
assembly machine before the assembling of product
l in assembly machine has finished. Constraints (13)
and (14)-(17) define the makespan and the domain of
the decision variables, respectively. Note that only

16 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://creativecommons.org/licenses/by-nc-nd/4.0/

the necessary variables are defined, i.e., eligibility
constraints are implicitly considered in the model.

4. Constructive heuristic methods
Let us first introduce a DPMASP example that will
guide the exposition of the proposed heuristics.
The example consists of fourteen jobs (n=14),
three products (t=3), two factories (f=2) with
two unrelated parallel machines in each factory
(m=2). The assembly programs for each product
are: N1={2, 7, 8}, N2={1, 3, 4, 10, 12, 13} and
N3={5, 6, 9, 11, 14}, i.e., jobs 2, 7 and 8 must be
finished in order to assemble product 1. Table 1
contains the job processing times on each machine
at the production stage and eligibility constraints.
Processing times for assembling products 1 to 3 are
3, 12 and 7, respectively.

Some additional notation is the following: A product
sequence is represented by π, e.g., π = {2, 1, 3}. To
assign all jobs belonging to the assembly program
of product h to the unrelated parallel machines at
the different factories, a job to machine-factory
assignment method is needed. After the application
of this assignment procedure we obtain a job to
machine-factory sequence for product h, referred to
πh, e.g., π1 = {0, 8; 7, 2}, π2 = {1-10, 3; 12, 4-13} and
π3 = {14, 5; 6- 9, 11} as a possible job to machine-
factory sequence for products of the example. At each
πh, each factory is separated by “;”, each machine
by “,” and the sequence of jobs at each machine is
separated by “-”. A machine that is still empty (which
can only occur in a partial solution) is denoted by
“0” in its sequence. Following the previous example
for π2 we have that jobs 1, 10 and 3 are assigned to
the first factory. Jobs 1 and 10 are assigned to the
first machine in this factory in this order and job
3 to the second machine. Since πh presents the job
to machine-factory sequence of a single product
h, πT, referred to as the final job sequence, is the
concatenation of the different πh following the
product sequence π. Following the previous example,
πT = {1-10-14, 3-8-5; 12-7-6-9, 4-13-2-11}. Once

all jobs in the assembly program of a product h are
completed in the production stage, it can be assembled
on the assembly stage. Earliest assembling time of
product h is denoted as Eh.

In this paper two methods are employed to construct
the product sequence π. The first one uses the Shortest
Processing Time heuristic (SPT). This dispatching
rule is known to reduce the average number of jobs
in the system, in-process inventories and average job
tardiness (Stafford et al., 2005). We obtain the SPT
order using the product assembly times and refer to
this method as PS1. The second method, referred to
as PS2, sorts the products in ascending order of the
earliest assembling times (Eh).

In the method to make job to machine-factory
assignments for products, we need first some
additional notation. We refer to Uh to the set of
unscheduled jobs of product h assembly program,
i.e., those jobs not yet assigned to machines at
factories. Skq is the set of jobs already scheduled at
machine k inside factory q. With this in mind, the
job to machine-factory assignment considers, for
a product h, all jobs inside its assembly program,
assigning first the unscheduled job with the earliest
completion time at any machine in every eligible
factory. More in details, we assign job j*∊Uh to
machine k* at factory q* satisfying:

, ,

, ,
argmin

j k q

k m q LF j U p pj h ik jk
i Skq

! ! !

=

+

)))

!

"

'

,

1/

The process is applied until all jobs in the assembly
program of product h are scheduled.

Both proposed constructive heuristics consist
of three main steps: In the first step, the product
sequence π is constructed. In the second step, the
jobs inside the assembly program of each product
are assigned following the previous job to machine-
factory assignment procedure, following the order
of products given in π. Finally, in the third step
the sequence of products for the assembly stage
is obtained by sorting products according to Eh in

Table 1. Job processing times and factory eligibility constraints for the example.

Job
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

Machine
M1 7 3 4 3 1 3 7 4 9 7 8 3 4 7
M2 1 6 5 4 5 9 2 1 6 8 4 9 1 3

LFj 1,2 1,2 1 2 1,2 2 2 1 2 1 2 1,2 2 1,2

17Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://creativecommons.org/licenses/by-nc-nd/4.0/

ascending order. We propose two heuristics with
identical second and third steps and with a different
process to build the product sequence π in the first
step.

4.1. Heuristics PJ1 and PJ2

In heuristic PJ1, PS1 is used to determine the
product sequence π. After processing all jobs in the
production stage, Eh for each product h is calculated.
The product sequence on the assembly machine is
updated by sorting Eh in ascending order and the final
makespan is calculated. Pseudocode 1 explains PJ1
in detail:

Pseudocode 1: Outline of the PJ1 heuristic.

- Obtain product sequence, π, applying PS1

- Use the job to machine-factory assignment
procedure to assign all jobs of each product
following the product order in π

- Calculate earliest assembling time of each
product h, Eh

- Determine the product sequence π on the
assembly stage by sorting Eh in ascending
order

The second heuristic PJ2 needs some careful
explanation. It uses method PS2 in the first step
to make the product sequence π. However, PS2
requires sorting products in increasing order of Eh.
To calculate Eh, all jobs must be assigned to factories
and machines. In heuristic PJ2, each product’s Eh
is calculated in isolation. To calculate Eh of each
product h, only jobs belong to product h are
considered. Once Eh is calculated for all products,
they are sorted in increasing order to form the
product sequence π. This product sequence π is in
turn used to apply again the job to machine-factory
assignment for all products, which in the end gives
us the final makespan.

The difference between heuristic PJ2, and the first
heuristic PJ1, is just on the first step. As mentioned

before, heuristic PJ2, uses PS2 to construct π.
Therefore, Pseudocode of heuristic PJ2 is not
presented due to space constraints and because of its
similarity with heuristic PJ1.

Note that if there are ties in the Eh of products, they are
broken by taking the first product. Also the same rule
is considered for breaking ties on the SPT rule which
is used in heuristic PJ1 to calculate π.As a final note,
and to enforce the technological constraint that no
machine should be left empty, if after the application
of any of the two proposed heuristics, any machine is
left empty, we reassign to it the job with the smallest
processing time at that machine. The two proposed
heuristics are applied to the previous example in the
next section for further clarification.

4.2. Heuristic application example
The example of Table 1 is used to detail heuristic PJ1
first. Products are first sorted according to shortest
processing assembly times so π = {1, 3, 2}. In the
second step, following the product order in π, first
we assign jobs of product 1, to factories through
the job to machine-factory assignment procedure.
N1 = {2, 7, 8} so we first take job 2. The earliest
completion time of this first job in all machines of
all factories is 3. For job 7 is 2 (considering that it
can only be assigned to factory 2) and for job 8 is 1
and can only be assigned to factory 1. The minimum
is 1, which corresponds to the assignment of job
8 to the second machine of factory 1. Note that if
there is a tie in the minimum completion time for
the jobs, it is broken by taking the first job. We now
have to consider the unscheduled jobs 2 and 7. We
now calculate the earliest completion times of these
two jobs at all machines of all eligible factories
considering that job 8 is already assigned. These
minimum completion times are 3 and 2 for jobs 2
and 7, respectively. Therefore job 7 is scheduled
at factory 2 (the only eligible for this job) and
to machine 2. Lastly, job 2 is scheduled with the
earliest completion time of 3 at factory 1, machine
1. Note that we could have assigned this job to
machine 1 of factory 2 with the same completion
time, so we break ties by assigning jobs to the first

Table 2. Instance and factors for proposed instances.

Instance factor Symbol
Values

GA GB GC
Number of jobs n 10, 12, 14, 16, 18 20, 22, 24 200, 300, 400
Number of machines m 2, 3 2, 3, 4 5, 10, 15
Number of factories f 2, 3 2, 3, 4 4, 6, 8
Number of products t 2, 3, 4 2, 3, 4 20, 30, 40

18 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://creativecommons.org/licenses/by-nc-nd/4.0/

machine and factory with equal completion time.
After this procedure π1 = {2, 8; 0, 7}. Following the
same process, the jobs in the assembly programs
of products 3 and 2 are assigned to factories one
after the other, resulting in the final job sequence
πT = {2-12-3, 8-14-1-10; 5-6-4-13, 7-11-9}. The
completion times of all jobs at the production stage
are: C1 = 5, C2 = 3, C3 = 10, C4 = 7, C5 = 1, C6 = 4,
C7 = 2, C8 = 1, C9 = 12, C10 = 13, C11 = 6, C12 = 6,
C13 = 11 and C14 = 4. The earliest assembling time
for products 1 to 3, by considering their respective
assembly programs are: E1 = 3, E2 = 13 and E3 = 12,
respectively. In the third step, the product sequence
π on the assembly stage is updated by sorting Eh in
ascending order, i.e., π = {1, 3, 2} and the Cmax of the
application of PJ1 to this example is 31.

For the second heuristic PJ2 we calculate the Eh
values for all products one by one with the job to
machine-factory assignment procedure, the obtained
sequences are π1 = {2, 8; 0, 7 } with E1 = 3, π2 = {12-
10, 1-3; 4, 13} with E2 = 10 and π3 = {5, 14; 6, 11-9}
with E3 = 10, so π = {1,2,3}. Note that there is a tie in
the Eh of products 2 and 3 so again we break ties by
taking the first product. Using this π we apply again
the job to machine-factory assignment procedure
obtaining πT={2-12-10, 8-1-3; 4-5-6-9, 7-13-14-11}
with completion times for the jobs as: C1= 2, C2= 3,
C3= 7, C4= 3, C5= 4, C6= 7, C7= 2, C8= 1, C9= 16,
C10= 13, C11= 10, C12= 6, C13= 3 and C14= 6. In the
third step, again products are sorted in increasing
order of their respective Eh which are E1= 3, E2= 13
and E3= 16. Therefore, the updated product sequence
for the assembly stage is π ={1, 2, 3} with a makespan
of 32.

5. Computational evaluation
To test the proposed MILP model and constructive
heuristics, six complete sets of instances have been
generated. We consider different number of problem

characteristics to comprehensively evaluate and
test the proposed approaches: Number of jobs (n),
number of machines (m), number of factories (f) and
number of products (t) are four controlled instance
factors. Depending on the chosen values we have
small, medium and large-sized instances, referred
to as GA, GB and GC, respectively. The processing
times of the jobs on each machine in the production
stage, are generated following a random uniform
distribution in the range [1, 99], as it is common in
the scheduling literature. The last instance factor
we consider is the distribution of the assembly
processing times which are fixed as: U[|Nh|,49×|Nh|]
and U[|Nh|,99×|Nh|]. These two distributions are
referred to in short as 50, and 100, respectively.
The final sets of instances are then denoted as GA50,
GA100,…,GC100. For each combination of instance
factors we have five replications. The combinations
for each instance size are given in Table 2.

Therefore, the total number of instances is 300 for
GA50 and another 300 for GA100 and 405 for every set
in GB50 through GC100 resulting in a grand total of
2220 instances.

5.1. MILP model evaluation
The proposed MILP model is tested only on sets
GA and GB given the impossibility to solve large
instances. Two state-of-the-art commercial solvers
are used, namely CPLEX 12.6 and GUROBI 5.6.3,
which are, at the time of the writing of this paper,
the latest versions available. Two different stopping
times are tested with each solver: 900 and 3600
seconds. In total we have obtained 5640 results. All
tests are performed in a high performance computing
cluster with 30 blades, each one containing 16
GBytes of RAM memory and two Intel XEON
E5420 processors running at 2.5 GHz. The 30 blade
servers are used only to divide the workload since
experiments are performed in virtualized Windows
XP machines, each one with a virtualized processor

Table 3. Performance results for solvers and time limit for instance sets of GA50, GA100, GB50 and GB100.

Solver
Time Limit 900s 3600s
Instance set GA50 GA100 GB50 GB100 GA50 GA100 GB50 GB100

CPLEX

% opt 96.67 98.00 79.50 87.40 97.00 98.33 81.72 88.39
% outm 0.00 0.00 2.46 1.72 0.00 0.00 12.34 6.41
GAP % 0.18 0.06 0.55 0.23 0.15 0.05 0.32 0.07

Av Time (sec.) 48.92 28.37 201.02 133.95 133.28 79.04 391.35 286.12

GUROBI
% opt 95.67 98.00 74.56 81.97 97.00 98.67 77.03 84.44

GAP % 0.29 0.07 1.15 0.51 0.21 0.05 0.82 0.37
Av Time (sec.) 61.08 36.06 292.75 221.95 159.21 83.35 932.96 658.33

19Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://creativecommons.org/licenses/by-nc-nd/4.0/

with two cores and 2 GB of RAM memory. Therefore,
since both CPLEX and GUROBI are parallel solvers,
the two available threads at each virtual machine are
used.

After solving the models with CPLEX and GUROBI,
three possible outcomes are obtained. The first type
is “optimal”, which means that an optimal solution
with a given makespan value was obtained in the
given maximum CPU time. The second type is “non-
optimal”, meaning that a feasible integer solution
was obtained within the time limit but it was not
possible to demonstrate its optimality and the gap
is reported. The third and last outcome is “out of
memory”, by which the solver had an error and ran
out of RAM memory, reporting a solution and a gap
calculated with respect to the best obtained solution
for that instance. In general, the solvers were able
to find 294 (98.00%) and 297 (99.00%) optimal
solutions in sets GA50 and GA100, respectively. For
GB50 and GB100 the numbers are 338 (83.45%) and
363 (89.63%) for the 405 instances, respectively.
The summarized results, according to the instance
factors, type of solver and time limit, are presented
in Table 3 for sets GA and GB. The reported values
at the tables are the percentage of optimum solutions
found (% opt), the percentage of cases with out of
memory error (% outm), the average gap for non-
optimal solution (GAP %) and the average CPU time
in seconds (Av Time).

As we can see, the effect of the distribution of the
assembly times at the assembly stage is much
stronger than either the type of solver or CPU time
limit. For group GA, instances with more disperse
assembly times are easier to solve and also need
less CPU time. As regards the comparison between
CPLEX and GUROBI, for set GA we see comparable
performance with slightly shorter CPU times for

CPLEX. For instance sets GB the differences
between solvers are stronger. We see that GUROBI is
much slower than CPLEX and has higher gap values.
However, CPLEX reports out of memory errors that
in some cases average more than 12% (GB50). So it
is important to conclude that there is no clear winner
for this problem between these two solvers. In total,
the largest tested instances in sets GB have 24 jobs
and 16 machines distributed in 4 factories so we can
attest that the proposed mathematical model has an
adequate performance.

5.2. Heuristics evaluation
The two proposed heuristics, PJ1 and PJ2, are
now tested. The response variable is the Relative
Percentage Deviation (RPD), measured as:

lgRPD Best
A Best 100

sol

sol sol
#= -

Where Bestsol is the best makespan obtained after all
experimentation in this paper for any instance and
Algsol is the makespan obtained by the heuristic. The
heuristics are coded in C# and are compiled under
Visual Studio 2010. The same computing platform
used for the MILP evaluation is employed here. The
average RPD values for the proposed heuristics are
given in Tables 4, 5 and 6 for instances sets GA,
GB and GC, respectively. All results are grouped
by n and f. The average RPD values of CPLEX and
GUROBI are reported as well for reference.

As can be observed, PJ2 is generally much better than
PJ1 in all groups of instances, although the difference
is not very big in the large instances. It is important
to observe how in the largest instances in set GB of
24 jobs and 4 factories, PJ2, gives a very small gap of
just 0.35% which indicates that PJ2 is a very capable

Table 4. Average Relative Percentage Deviation (RPD) of CPLEX, GUROBI and the proposed heuristics for instance sets
GA50 and GA100.

GA50 GA100

f×n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2×10 0.00 0.00 9.52 3.26 0.00 0.00 2.21 0.46
2×12 0.00 0.00 8.24 4.04 0.00 0.00 3.58 1.76
2×14 0.00 0.00 8.29 3.36 0.00 0.00 4.50 0.62
2×16 0.00 0.00 9.31 4.59 0.00 0.00 4.30 1.16
2×18 0.00 0.21 7.27 3.90 0.00 0.00 3.34 1.23
3×10 0.00 0.00 5.10 2.59 0.00 0.00 1.09 1.24
3×12 0.00 0.00 4.72 1.43 0.00 0.00 1.85 0.98
3×14 0.00 0.00 4.51 1.71 0.00 0.00 1.51 0.28
3×16 0.00 0.00 4.79 1.39 0.00 0.00 2.63 0.72
3×18 0.00 0.00 4.04 1.34 0.00 0.00 2.15 0.78
Average 0.00 0.02 6.58 2.76 0.00 0.00 2.72 0.92

20 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://creativecommons.org/licenses/by-nc-nd/4.0/

heuristic with close to optimality performance. On
average, PJ2 is below 1% RPD for instance groups
GA and GB. For the large instances in GC it is not
possible to calculate the optimum solution so we
only have an overall picture were PJ2 always obtains
the best solution. As a matter of fact and although
not reported in detail here, among the 810 instances
in GC50 and GC100, PJ2 is always better or equal than
PJ1.

We report now on the CPU times of the proposed
heuristics in Table 7. It has to be noted that CPU
times are negligible, on the verge of being below the
margin of error in measurements.

As can be seen, the average CPU times are below one
tenth of a second for the largest instances in group
GC. On average, PJ2 is relatively slower than PJ1
but on absolute terms the CPU times are very small.
Although not shown here, the largest measured CPU
time corresponds to heuristic PJ2 and has been 0.41
seconds. From this final evaluation and considering
the relative RPD of PJ2 we can conclude that it is a
capable and very fast heuristic.

Even though the observed differences are large in all
cases for the proposed heuristics and very small for
the two solvers, we carry out some statistical analyses
in order to ascertain if the observed differences
are indeed statistically significant. All results are
examined with the Analysis of Variance (ANOVA)
technique. ANOVA is a powerful parametric tool,
which has been used in the last 10 years in the
scheduling literature with great success. For the
small instances there is no statistically significant
difference in the performance of CPLEX and
GUROBI and PJ2 is statistically better than PJ1. The
detailed data is not reported for space reasons. For
the medium sized-instances in set GB we observe the
interaction between the distribution of the assembly
processing times and tested methods in Figure 1.

As can be seen, the results are similar to those of set
GA. The differences between the proposed heuristics

Table 5. Average Relative Percentage Deviation (RPD) of CPLEX, GUROBI and the proposed heuristics for instance sets
GB50 and GB100.

GA50 GA100

f×n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2×20 0.20 0.00 7.03 2.33 0.00 0.00 3.33 1.03
2×22 0.29 0.03 5.26 2.36 0.05 0.03 2.36 0.87
2×24 0.13 0.19 4.78 1.89 0.11 0.04 3.33 1.40
3×20 0.00 0.00 3.21 1.42 0.00 0.00 2.48 1.27
3×22 0.01 0.01 2.89 1.69 0.04 0.02 1.54 0.47
3×24 0.10 0.02 3.17 1.25 0.00 0.02 1.38 0.70
4×20 0.00 0.00 2.31 1.29 0.00 0.00 1.83 0.67
4×22 0.00 0.00 2.18 0.77 0.00 0.00 1.78 0.75
4×24 0.00 0.00 2.50 1.12 0.00 0.00 1.82 0.35
Average 0.08 0.03 3.70 1.57 0.02 0.01 2.21 0.84

Table 6. Average Relative Percentage Deviation (RPD) of
the proposed heuristics for instance sets GC50 and GC100.

f×n

GC50 GC100

PJ1 PJ2 PJ1 PJ2

4×200 0.13 0.00 0.07 0.00
4×300 0.12 0.00 0.05 0.00
4×400 0.11 0.00 0.06 0.00
6×200 0.09 0.00 0.04 0.00
6×300 0.08 0.00 0.05 0.00
6×400 0.08 0.00 0.04 0.00
8×200 0.06 0.00 0.03 0.00
8×300 0.08 0.00 0.03 0.00
8×400 0.05 0.00 0.04 0.00
Average 0.09 0.00 0.05 0.00

-0.3

0.7

1.7

2.7

3.7

4.7

A
ve

ra
ge

 R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n

PJ1 PJ2 CPLEX GUROBI

Assembly times
distribution

50
100

Figure 1. Means plot with the interaction between the
distribution of the assembly processing times and the tested
methods for instances GB. All means have Tukey’s Honest
Significant Difference (HSD) 95% confidence intervals.

21Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://creativecommons.org/licenses/by-nc-nd/4.0/

are large enough so as to be statistically significant
whereas the differences in the performance of the
solvers are not statistically relevant. As for the
large instances in group GC we can only test the
significance in the observed differences in the
average RPD between the two heuristics. This is
given in Figure 2.

-0.003

0.017

0.037

0.057

0.077

A
ve

ra
ge

 R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n

PJ1 PJ2

Figure 2. Means plot for the two heuristics in large
instances (GC). All means have Tukey’s Honest Significant
Difference (HSD) 95% confidence intervals.

As can be observed, PJ2 is statistically better than PJ1
even though the absolute difference between both
proposed methods is practically small.

6. Conclusions and future research
In this paper we have studied an interesting
combination of a distributed manufacturing problem
with assembly operations. More specifically, we
have presented a distributed unrelated parallel
machines problem by which a number of factories,
each one containing unrelated parallel machines
have to manufacture jobs. All these jobs are later
assembled into products in a factory with a single
assembly machine. The objective is to minimize the

makespan in the assembly stage. Such a problem has
been motivated and shown not to have been studied
to date. We have presented a mathematical model and
two constructive heuristics. The mathematical model
has been comprehensively evaluated and tested using
two state-of-the-art commercial solvers. Results have
shown that we are able to solve optimally problems
of up to 24 jobs and 16 machines distributed in 4
factories. The two proposed heuristics are inherently
simple and at the same time report solutions very
close to optimal in the cases for which the optimal
solution has been obtained. Furthermore, for large
instances, the performance is very good, obtaining
solutions in less than half a second.

While the studied problem has many potential
applications, it is very likely for additional constraints
to appear in practice. For example, sequence
dependent setup times at machines are ubiquitous
in real industries. More complex assembly stages
with parallel assembly machines, or assembly
flowshops, might be of interest. Lastly, other
objective functions, basically those based on due
dates are worthy of additional studies. Furthermore,
metaheuristic techniques might improve the results
of the mathematical models and proposed heuristics
in a significant way. We expect dealing with some of
these ideas in future work.

Acknowledgements

The Spanish Ministry of Economy and
Competitiveness supports Rubén Ruiz,
under the project “RESULT-Realistic Extended
Scheduling Using Light Techniques” (No. DPI2012-
36243-C02-01). Carlos Andrés is partially supported
by the project “Hybrid Methods for Horizontal
Cooperation in Green Transportation and Logistics
GreenCOOP” TRA2013-48180-C3-3-P from the
Spanish Ministry of Economy and Competitiveness.

References
Chan, F. T. S., Chung, S. H., Chan, P. L. Y. (2005). An adaptive genetic algorithm with dominated genes for distributed scheduling problems.

Expert Systems with Applications, 29(2): 364–371. doi:10.1016/j.eswa.2005.04.009

Chan, F. T. S., Chung, S. H., Chan, P. L. Y., Finke, G., Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance:
genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6): 493–504. doi:10.1016/j.rcim.2005.11.005

Elmaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A. (2013). Product variety management. CIRP
Annals-Manufacturing Technology, 62(2): 629–652. doi:10.1016/j.cirp.2013.05.007

Fernandez-Viagas, V., Framinan, J.M. (2015). A bounded-search iterated greedy algorithm for the distributed permutation flowshop
scheduling problem. International Journal of Production Research, 53(4): 1111–1123. doi:10.1080/00207543.2014.948578

22 Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hatami, S., Ruiz, R. and Andrés-Romano, C.

http://dx.doi.org/10.1016/j.eswa.2005.04.009
http://dx.doi.org/10.1016/j.rcim.2005.11.005
http://dx.doi.org/10.1016/j.cirp.2013.05.007
http://dx.doi.org/10.1080/00207543.2014.948578
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hariri, A. M. A., Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of
Operational Research, 103(3): 547–556. doi:10.1016/S0377-2217(96)00312-8

Hatami, S., Ruiz, R., Andrés-Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal
of Production Research, 51: 5292–5308. doi:10.1080/00207543.2013.807955

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., Zhang, Y. F. (2002). Web-based multi-functional scheduling system for a distributed manufacturing
environment. Concurrent Engineering: Research and Applications, 10(1): 27–39.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., Zhang, Y. F. (2003). A modified genetic algorithm for distributed scheduling problems. Journal of
Intelligent Manufacturing, 14(3-4): 351–362. doi:10.1023/A:1024653810491

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed
manufacturing systems. Computers & Industrial Engineering, 53(2): 313–320. doi:10.1016/j.cie.2007.06.024

Lee, C. Y., Cheng, T. C. E., Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine assembly-type flowshop scheduling problem.
Management Science, 39(5): 616–625. doi:10.1287/mnsc.39.5.616

Lenstra, J. K., Rinnooy Kan, A. H. G., Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics,
1:343–362. doi:10.1016/S0167-5060(08)70743-X

Lin, S. W., Ying, K. C., Huang, C. Y. (2013). Minimising makespan in distributed permutation flowshops using a modified iterated greedy
algorithm. International Journal of Production Research, 51(16): 5029–5038. doi:10.1080/00207543.2013.790571

Lin, Y., Li, W. (2004). Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of Operational Research,
156(1): 261–266. doi:10.1016/S0377-2217(02)00914-1

Mahdavi, I., Shirazi, B., Cho, N., Sahebjamnia, N., Ghobadi, S. (2008). Modeling an e-based real-time quality control information system in
distributed manufacturing shops. Computers in Industry, 59(8): 759–766. doi:10.1016/j.compind.2008.03.005

Naderi, B., Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Computers & Operations Research, 37(4): 754–768.
doi:10.1016/j.cor.2009.06.019

Naderi, B., Ruiz, R. (2014). A scatter search algorithm for the distributed permutation flowshop scheduling problem. European Journal of
Operational Research, 239(2): 323–334. doi:10.1016/j.ejor.2014.05.024

Sluga, A., Butala, P., Bervar, G. (1998). A multi-agent approach to process planning and fabrication in distributed manufacturing. Computers
& Industrial Engineering, 35(3-4): 455–458. doi:10.1016/S0360-8352(98)00132-6

Stafford, E. F., Tseng, F. T., Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research
Society, 56(1): 88–101. doi:10.1057/palgrave.jors.2601805

Sun, X., Morizawa, K., Nagasawa, H. (2003). Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop
scheduling. European Journal of Operational Research, 146(3): 499–517. doi:10.1016/S0377-2217(02)00245-X

Sung, C. S., Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times.
International Journal of Production Economics, 113(2): 1038–1048. doi:10.1016/j.ijpe.2007.12.007

Wang, S. Y., Wang, L., Liu, M., Xu, Y. (2013). An effective estimation of distribution algorithm for solving the distributed permutation flowshop
scheduling problem. International Journal of Production Economics, 145(1): 387–396. doi:10.1016/j.ijpe.2013.05.004

Xiong, F., Xing, K., Wang, F., Lei, H., Han, L. (2014). Minimizing the total completion time in a distributed two stage assembly system with
setup times. Computers & Operations Research, 47: 92–105. doi:10.1016/j.cor.2014.02.005

23Int. J. Prod. Manag. Eng. (2015) 3(1), 13-23Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

The Distributed Parallel Machine and Assembly Scheduling Problem with eligibility constraints

http://dx.doi.org/10.1016/S0377-2217(96)00312-8
http://dx.doi.org/10.1080/00207543.2013.807955
http://dx.doi.org/10.1023/A:1024653810491
http://dx.doi.org/10.1016/j.cie.2007.06.024
http://dx.doi.org/10.1287/mnsc.39.5.616
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1016/S0377-2217(02)00914-1
http://dx.doi.org/10.1016/j.compind.2008.03.005
http://dx.doi.org/10.1016/j.cor.2009.06.019
http://dx.doi.org/10.1016/j.ejor.2014.05.024
http://dx.doi.org/10.1016/S0360-8352(98)00132-6
http://dx.doi.org/10.1057/palgrave.jors.2601805
http://dx.doi.org/10.1016/S0377-2217(02)00245-X
http://dx.doi.org/10.1016/j.ijpe.2007.12.007
http://dx.doi.org/10.1016/j.ijpe.2013.05.004
http://dx.doi.org/10.1016/j.cor.2014.02.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

