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Abstract

Consider a positive Banach lattice valued vector measure m : Σ → X, its
space of 2-integrable functions L2(m) and a sequence S in it. We analyze the
notion of weak m-orthogonality for such an S in these spaces and we prove
a Menchoff-Rademacher Theorem on the almost everywhere convergence of
series in them. In order to do this, we provide a criterion for determining
when there is a functional 0 ≤ x′ ∈ X′ such that S is orthogonal with re-
spect to the scalar positive measure 〈m, x′〉. As an application, we use the
representation of ℓ−sums of L2-spaces as spaces L2(m) for a suitable vector
measure m centering our attention in the case of c0-sums.

1 Introduction

The representation theorem for 2-convex order continuous Banach lattices
with a weak unit establishes that such an space can be always identified (iso-
morphically and in order) with a space L2(m) of 2-integrable functions with re-
spect to a positive Banach lattice valued vector measure m on a σ-algebra (see
[11, Proposition 2.4] or [20, Proposition 3.3]). Although these spaces are not in
general Hilbert spaces, the integration structure of the spaces L2(m) provides
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several extensions of the notion of orthogonality. Some theoretical results and
applications have been already obtained in this setting. The notion of (strong)
orthogonality with respect to a vector measure m in spaces L2(m) of 2-integrable
functions has been defined an studied in a series of papers in the last ten years
([12, 13, 14, 21, 25]). Roughly speaking, it is defined by imposing simultaneously
orthogonality with respect to all the elements of the family of scalar measures de-
fined by the vector measure. In this paper we consider the weaker version given
by the definition of weak m-orthogonality: a sequence ( fi)i is weak m-orthogonal
if there is an element x′ ∈ X′ such that S is orthogonal with respect to 〈m, x′〉. In
this paper we prove a criterion for characterizing such sequences and we give
some relevant examples. As an application, we prove a Menchoff-Rademacher
type theorem on almost everywhere convergence of series. We finish the paper
analyzing some concrete cases regarding c0-sums of Lebesgue spaces.

The paper is organized in five sections. After some preliminaries (Section
2), in the third section we prove our main result on weak orthogonality, which
characterize weak m-orthogonal sequences in L2(m). Some effort has been made
for providing examples and applications of the criterion in several settings, in
order to show that this kind of orthogonality of sequences of L2(m) extends in a
relevant way some geometric aspects of the Hilbert space theory.

Although several properties and applications of orthogonal series with re-
spect to a vector measure are known ([13, 14, 21]), the question of the almost
everywhere convergence of series defined by such functions has not been stud-
ied yet. Following this research and as an application of the criterion for weak
orthogonality, the results of this paper provide also reasonable answers to the
problems concerning almost everywhere convergence of (strongly orthogonal)
series that appear in [21, 25]. From the methodological point of view, we follow
the technique that is used in [26] to study the almost everywhere convergence
of series. In Section III.H of this book it is shown that there exists a deep link be-
tween the evaluation of 2-summing norms for a special class of operators between
sequence spaces and the problems concerning almost everywhere convergence of
series; the origin of this idea can be already found in [2, Section 4] (see also [22]).
Recently, related techniques have been used in [4, 8, 9], for instance for proving
generalizations of the Menchoff-Rademacher Theorem for vector valued Banach
function spaces ([9]). We explain the required version of this argument for our
work in the proof of Theorem 4.2. In Section 4 we prove this theorem, that es-
tablishes the requirements for obtaining the almost everywhere convergence of
series defined by weak orthogonal sequences. Finally, in Section 5 we provide
a technique to construct non trivial examples of weak m-orthogonal sequences
( fi)i in concrete Banach lattices such that the requirement ∑

∞
i=1 a2

i < ∞ on the
sequence of scalar coefficients implies the a.e. convergence of the series ∑

∞
i=1 ai fi.

2 Preliminaries

In what follows we introduce several concepts and results that are needed to
define weak m-orthogonal sequences. Let (Ω, Σ) be a measurable space and X
a Banach lattice. Throughout the paper m : Σ → X will be a positive count-
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ably additive vector measure, i.e m(A) ≥ 0 for all A ∈ Σ. For each element
x′ ∈ X′ the formula 〈m, x′〉(A) := 〈m(A), x′〉, A ∈ Σ, defines a (countably ad-
ditive) scalar measure. We write |〈m, x′〉| for its variation, i.e. |〈m, x′〉|(A) :=
sup ∑B∈Π |〈m(B), x′〉| for A ∈ Σ, where the supremum is computed over all finite
measurable partitions Π of A. The semivariation of m is the extended nonnega-
tive function ‖m‖ whose value on a set A ∈ Σ is given by:

‖m‖(A) = sup{|〈m, x′〉|(A) : x′ ∈ X′, ‖x′‖ ≤ 1}.

As usual, we say that a sequence of functions converges |〈m, x′〉|-almost every-
where if it converges pointwise in a set A ∈ Σ such that |〈m, x′〉|(Ω \ A) = 0.
A sequence converges m-almost everywhere if it converges in a set A that satis-
fies that the semivariation of m in Ω \ A is 0. The Bartle, Dunford and Schwartz
theorem (see [10, Ch.I,2, Corollary 6]) produces a finite nonnegative real-valued
measure µ on Σ such that m ≪ µ (i.e. m is µ-continuous). Furthermore, it is
known that there exists always an element x′ ∈ X′ such that m ≪ |〈m, x′〉| sat-
isfies this property. We call such a scalar measure a Rybakov measure for m (see
[10, Ch.IX,2]). If |〈m, x′〉| is a Rybakov measure for m, then it is known that a
sequence of functions converges m-almost everywhere if and only if it converges
|〈m, x′〉|-almost everywhere. Notice that if m is positive and x′ is a positive ele-
ment of the Banach lattice X′, then |〈m, x′〉| = 〈m, x′〉.

Let (Ω, Σ, µ) be a σ-finite measure space. Following the definition in [16, p.28],
a Banach space X(µ) of (classes of) locally µ-integrable real functions is said to be
a Banach function space over µ (Kthe function space) if it satisfies the next two
properties.

• If f is measurable and g ∈ X(µ) such that | f (w)| ≤ |g(w)| µ−a.e. on Ω,
then f ∈ X(µ) and ‖ f‖ ≤ ‖g‖.

• If A ∈ Σ, and µ(A) < ∞, then the characteristic function χA belongs to
X(µ).

The space L1(m) of integrable functions with respect to m is a Banach function
space over any Rybakov measure µ for m (see [5, 16]). The elements of this space
are (classes of µ-a.e. measurable) functions f that are integrable with respect to
each scalar measure 〈m, x′〉, and for every A ∈ Σ there is an element

∫

A f dm ∈
X such that 〈

∫

A f dm, x′〉 =
∫

A f d〈m, x′〉 for every x′ ∈ X′. When no explicit
reference is needed, we write

∫

f dm instead of
∫

Ω
f dm. The reader can find the

definitions and fundamental results concerning the space L1(m) in [5, 15]. In this
paper we deal with sequences of functions in L2(m). This space is defined as the
set of (classes of) real functions that satisfy that | f |2 ∈ L1(m) with the norm

‖ f‖L2(m) := sup
x′∈BX′

(

∫

| f |2d|〈m, x′〉|
)

1
2 , f ∈ L2(m)

(see [11, 21, 24]). If 〈m, x′〉 is a Rybakov measure for m, then the inclusion map ix′ :
L2(m) → L2(|〈m, x′〉|) is well-defined and continuous; in fact, even if x′ do not
define a Rybakov measure this identification map is well-defined and continuous,
although it is not injective. In this work we only need some particular properties
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of the functions in L2(m). For instance, if f , g are functions in L2(m), we use the
fact that the product f g is m-integrable (see [11, 20] or [24]). Thus, the following
definitions make sense. We write as usual δij to be 0 if i 6= j and 1 if i = j for every

couple of natural numbers i, j. We say that a sequence ( fi)i of functions of L2(m)
is (strongly) m-orthonormal if ‖

∫

fi f j dm‖ = δij, i, j ∈ N. This kind of sequences
has been studied in [13, 14, 21, 25]. In this paper we deal with a weaker version of
orthogonality. Recall that we always assume that the vector measure is positive.

Definition 2.1. A sequence of functions S = ( fi)i in L2(m) is weak m-orthogonal if
there is an element 0 ≤ x′ ∈ (X′)+ such that

∫

f 2
i d〈m, x′〉 > 0 for all i ∈ N, and S is

orthogonal in L2(〈m, x′〉), i.e. for all i 6= j

〈
∫

fi f jdm, x′〉 =
∫

fi f jd〈m, x′〉 = 0.

For such a sequence we also say that is orthogonal with respect to 〈m, x′〉 when an explicit
reference to the scalar measure 〈m, x′〉 is convenient.

We will use standard Banach and function space notation; our main references
are [10, 16, 26]. If 1 ≤ p ≤ ∞, we write p′ for the (extended) real number satisfying
1/p + 1/p′ = 1. Let E and F be Banach lattices (see [16, 1.a.1] for the definition)
and 1 ≤ p < ∞. An operator T : E → F is p-concave if for every finite set
x1, x2, ..., xn ∈ E there is a constant K > 0 such that

(
n

∑
i=1

‖ T(xi) ‖p)
1
p ≤ K ‖ (

n

∑
i=1

| xi |p)
1
p ‖ . (2.1)

The infimum of such constants K is the p-concavity constant of the operator. An
operator T : E → F is p-convex if for each finite set x1, x2, ..., xn ∈ E there exists a
constant K > 0 such that

‖ (
n

∑
i=1

| T(xi) |p)
1
p ‖≤ K(

n

∑
i=1

‖ xi ‖p)
1
p . (2.2)

As in the case of p-concavity, the infimum of such constants K is the p-convexity
constant of T. A Banach lattice E is p-concave (p-convex) if the identity map
Id : E → E is p-concave (p-convex). Throughout the paper we will consider Ba-
nach function spaces as Banach lattices with the usual µ-a.e. order. For the aim of
simplicity, we will assume that the corresponding p-concavity/p-convexity con-
stants of the spaces are 1; it is known that each r-convex and s-concave Banach
lattice, 1 ≤ r ≤ s ≤ ∞, can be renormed equivalently so that with the new norm,
the r-convexity and s-concavity constants are both equal to 1 (see [16, 1.d.8]).

Let X and Y be Banach spaces and let X
′

be the dual space of X. An operator
T : X → Y is 2-absolutely summing if there exists a constant C > 0 such that for
every finite sequence x1, ..., xn ∈ X,

(
n

∑
i=1

‖T(xi)‖2)
1
2 ≤ C sup{(

n

∑
i=1

|〈xi, x
′〉|2) 1

2 : x
′ ∈ X

′
, ‖x

′‖ ≤ 1}. (2.3)

We define the 2-summing norm of T as
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π2(T)=inf {C: (2.3) holds for all (xi)
n
i=1 ⊂ X, n ∈ N}.

We write as usual ℓp, 1 ≤ p < ∞, and c0 for the classical sequence spaces, and
‖.‖p, ‖.‖0 for the corresponding norms. The sequence spaces that we deal with
(L, ℓ ...) are assumed to be such kind of spaces. Thus, we will consider spaces
of real functions on the standard measure space on the set of natural numbers
N with an unconditional normalized basis with unconditional constant 1. We
will write ei, i ∈ N, for the elements of the canonical basis of the space. More-
over, we also assume that its dual space can be represented as a sequence space,
i.e. its elements can be written as sequences (τi)i, and the duality is given by
〈(τi), (λi)〉 = ∑

∞
i=1 τiλi, (λi)i ∈ L. For instance, this always happens when the

space is σ-order continuous (see the comments that follow Definition 1.b.17 in
[16]). We will use the following construction, for the particular case of sequence
spaces (i.e. the measure is the discrete one on the set of the natural numbers). If
L0(µ) is the space of (classes of µ-a.e. equal) real measurable functions, 0 < r < ∞

and E(µ) is a Banach function space, we define the r-power of E(µ) as the space

E(µ)[r] := {x ∈ L0(µ) : |x|1/r ∈ E(µ)}

endowed with the (quasi-)norm ‖x‖E[r]
:= ‖|x|1/r‖r

E. The space E(µ)[r] is always

a Köthe function space when 0 < r ≤ 1 and for r > 1 it is so whenever E(µ) is r-
convex; in this case the expression above gives a norm if the r-convexity constant
is 1 (see [7, 20] for the basic properties of r-powers of Köthe function spaces). For
instance, the space L2(m) above can be written as the 1/2-power of L1(m), i.e.
L2(m) = (L1(m))[1/2] .

3 Weak m-orthogonal sequences

In this section we give a characterization of when, given a sequence S in L2(m)
there is an element x′ ∈ BX′ such that S is orthogonal with respect to 〈m, x′〉. It is
easy to find examples of sequences that satisfy this property.

Example 3.1. • Consider the Lebesgue measure space ([0, 1], Σ, dx) and the power
series of the exponential function ex = ∑

∞
n=0

1
n! x

n. It converges (uniformly) on
the interval [0, 1] so we can define the positive vector measure ν : Σ → c0 as
ν(A) = (

∫

A xn dx)∞
n=0. It is clearly countably additive and then the corresponding

space L2(ν) is well-defined.

Consider now the sequence of functions fi =
√

2e−x/2 sin(2πix), i ∈ N, and note
that for each i,

lim
n
〈
∫

f 2
i dν, en〉 = lim

n

∫

xn f 2
i dx = lim

n

∫

2xne−x sin2(2πix) dx = 0,

and

‖ fi‖L2(ν) = ‖
(

∫

xn f 2
i dx

)∞

n=0
‖1/2

c0
= sup

n

(

∫

xn f 2
i dx

)1/2
=

(
∫

f 2
i dx

)1/2 ≤
√

2.
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This means in particular that ( fi) ⊆ L2(ν). Take the norm one sequence
x′0 := ( 1

n!e)
∞
n=0 ∈ ℓ1 = (c0)

′. A direct calculation shows that
∫

fi f jd〈ν, x′0〉 =

δi,j
1
e .

• Let γ := arg sinh(1
2). Take the Lebesgue measure space ([−γ, γ], Σ, dx). The

power series of the function cosh x is equal to ∑k≥0
x2k

(2k)!
that converges uniformly

on [−γ, γ]. The positive countably additive vector measure ν(A) = (
∫

A x2ndx)∞
n=0

∈ c0 is then well defined. Consider the sequence ( fm)m := (cos(2mπ sinh x))m.
Let (en)n be the canonical basis of (c0)

′ = ℓ1, and note that for each m the integrals
in the interval [−γ, γ] are

lim
n
〈
∫

f 2
mdν, en〉 = lim

n

∫

x2n f 2
mdx = lim

n

∫

x2n cos2(m sinh x)dx = 0,

and for all m,

‖ fm‖L2(ν) = ‖(
∫

x2n f 2
mdx)∞

n=0‖1/2
c0

= sup
n
(
∫

x2n f 2
mdx)1/2 ≤ (

∫

f 2
mdx)1/2 ≤

√

2γ.

This means in particular that ( fm)m ⊂ L2(ν). Take the norm one sequence x
′
0 :=

( 1
cosh(1)(2n)!

)∞
n=0 ∈ ℓ1 = (c

′
0). A direct calculation shows that

∫

fn fmd〈ν, x
′
0〉 =

1

2 cosh(1)
δm,n.

In what follows we provide a characterization of the situation given in the
example above, i.e. when we can find an element x′ such that the sequence S
is orthogonal in the space L2(〈m, x′〉). Let us introduce first some notation. Let
m : Σ → X be a positive vector measure and take a sequence S = ( fi)i ⊆ L2(m)
and a sequence of positive real numbers ∆ = (εi)i. Then we write BS for the
convex weak* compact subset

BS,∆ := BX′ ∩ (X′)+ ∩ {x′ : 〈
∫

f 2
i dm, x′〉 ≤ εi}.

Let us define the following continuous seminorm on L1(m).

‖ f‖BS,∆
:= sup

x′∈BS,∆

(

∫

f d〈m, x′〉
)

.

For every i, j ∈ N, i 6= j, let us write

ϕi,j,θ(w) :=
(

fi(w) + θ f j(w)
)2

, w ∈ Ω,

where θ ∈ {−1, 1}. Notice that 0 ≤ ϕi,j,θ ∈ L1(m).

For instance, in Example 3.1 the sequence ∆ is ∆ = (εi)i = (1
e )i, and so BS,∆ :=

1
e Bℓ1 . Thus, ‖ · ‖BS,∆

is equivalent to the norm of L2(ν) and it can be easily checked

that 〈( 1
n!e)

∞
n=0,

∫

f 2
i dν〉 ≤ 1

e for all i.
In the following result the scalar product notation 〈(γk), (δk)〉 := ∑

n
k=1 γkδk

for finite sequences (γk)
n
k=1 and (δk)

n
k=1 is used.
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Theorem 3.2. Let m : Σ → X be a positive vector measure. Consider a sequence ( fi)i ⊆
L2(m) and a sequence of positive real numbers ∆ = (εi)i. The following statements are
equivalent.

(1) For every finite sequence of non negative real numbers (γk)k such that ∑k γk = 1,
indexes ik, jk ∈ N, ik 6= jk, and θk ∈ {−1, 1},

〈(γk), (εik
+ ε jk)〉 ≤ ‖〈(γk), (ϕik ,jk,θk

)〉‖BS,∆
.

(2) There is an element 0 ≤ x′0 ∈ BX′ such that S is orthogonal with respect to 〈m, x′0〉
and

∫

f 2
i d〈m, x′0〉 = εi for every i ∈ N.

Proof. Let us prove first that (1) implies (2). Consider the family of functions
φ : BS,∆ → R given by

φ(x′) =
n

∑
k=1

γk(εik
+ ε jk)−

n

∑
k=1

γk〈
∫

ϕik,jk,θk
dm, x′〉,

where γ1, ..., γn is a family of non negative real numbers such that ∑k γk = 1. Each
such a function is convex, weak* continuous and the set of all these functions is
concave. Moreover, taking into account that the functions are weak* continuous
and that BS,∆ is weak* compact, the inequality in (1) gives an element x′φ ∈ BS,∆

such that φ(x′φ) ≤ 0. Ky Fan Lemma gives an element x′0 such that φ(x′0) ≤ 0 for

all such functions. Consequently for every (γk)
n
k=1 and (ϕik ,jk,θk

)n
k=1 we have that

〈(γk), (εik
+ ε jk)〉 ≤ 〈 (γk), (

∫

ϕik,jk,θk
d〈m, x′0〉) 〉.

In particular, for each couple i, j ∈ N, i 6= j, taking γ1 = 1, ϕi,j,1 and ϕi,j,−1 we
obtain

εi + ε j ≤
∫

( f 2
i + f 2

j + 2θ fi f j)d〈m, x′0〉 ≤ εi + ε j + 2θ

∫

fi f jd〈m, x′0〉, θ ∈ {−1, 1}.

Therefore,
∫

fi f jd〈m, x′0〉 = 0 for each pair i 6= j. Fix now three different indexes
i, j, k ∈ N. We have the inequalities

εr + εs ≤
∫

f 2
r d〈m, x′0〉+ f 2

s d〈m, x′0〉 ≤ εr + εs,

and so the equalities

εr + εs =
∫

f 2
r d〈m, x′0〉+ f 2

s d〈m, x′0〉

for different r and s; r, s ∈ {i, j, k}. This implies that
∫

f 2
r d〈m, x′0〉 = εr for each

r ∈ {i, j, k} and finishes the proof.
The proof of (2) → (1) is a straightforward calculation; suppose that there

is an element x′0 as in (2) and take non negative real numbers ε1, ..., εn such that
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∑k εk = 1. Consider a sequence of functions (ϕik,jk,θk
)n

k=1. Then

〈(γk), (εik
+ ε jk)〉 =

n

∑
k=1

γk(εik
+ ε jk) =

n

∑
k=1

γk(
∫

f 2
ik

d〈m, x′0〉+
∫

f 2
jk

d〈m, x′0〉)

=
n

∑
k=1

γk(
∫

f 2
ik

d〈m, x′0〉+
∫

f 2
jk

d〈m, x′0〉+ 2θk

∫

fik
f jk d〈m, x′0〉)

≤ sup
x′∈BS,∆

|〈
n

∑
k=1

γk

∫

( f 2
ik
+ f 2

jk
+ 2θk fik

f jk) dm , x′〉)| = ‖〈(γk)k, (ϕik ,jk,θk
)k〉‖BS,∆

.

Remark 3.3. For particular cases, the condition given in part (1) of Theorem 3.2 can be
written in a simpler way. Consider a positive vector measure ν : Σ → ℓ1 and take the
sequence ∆ given by (‖

∫

f 2
i dν‖)i, i.e. εi = ‖

∫

f 2
i dν‖ for all i. The positivity of ν and

the 1-concavity of ℓ1 implies that the condition (1) in Theorem 3.2 is equivalent to the
inequality

‖
∫

f 2
i dν‖ℓ1 + ‖

∫

f 2
j dν‖ℓ1 ≤ ‖

∫

( fi + θ f j)
2dν‖ℓ1

for all i, j ∈ N, i 6= j, and θ ∈ {−1, 1}.

In Example 3.1, the element of the dual space that defines the measure was
explicitly computed. However, sometimes this is not possible and then the char-
acterization theorem given above becomes useful. This is the situation that is
shown in the following example.

Example 3.4. • Let (Ω, Σ, µ) be a probability space. Consider a relatively weakly
compact sequence (gk)k ⊂ L1(µ) defined by norm one positive sequences. Let
us define the vector measure ν : Σ → ℓ∞ given by the expression ν(A) :=
(
∫

A gkdµ)k. It is well defined, and since the set is uniformly integrable, it is count-

ably additive. Take a sequence S := ( fi)i ∈ L2(ν) that satisfies the following
properties. For every finite subset I0 ⊆ N there is an index n ∈ N such that
{ fi : i ∈ I0} is orthonormal in L1(gndµ). Let us show that this is enough to prove
that condition (1) in Theorem 3.2 is satisfied.

Take the sequence ∆ := (εi)i, where εi = 1 for every i. Then the set BS,∆ is just
B(ℓ∞)′ . For every i, j ∈ N, i 6= j and θ ∈ {−1, 1}, recall that

ϕi,j,θ :=
(

fi + θ f j

)2
.

So we have to prove the inequality

2 ≤ ‖〈(γk), (ϕik ,jk,θk
)〉‖BS,∆

for γk > 0 such that ∑
m
k=1 γk = 1 and { fik

, f jk ∈ S : ik, jk ∈ I0} for a finite set I0.
But this is a direct consequence of the requirements of ( fi)i and the definition of the
ℓ∞ norm; we find an index n such that

‖
n

∑
k=1

γk

∫

ϕik,jk,θk
‖ℓ∞ ≥

n

∑
k=1

γk

∫

( fik
+ θk f jk)

2gndµ
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=
n

∑
k=1

γk

∫

( f 2
ik
+ f 2

jk
)gndµ = 2.

Therefore, by Theorem 3.2 there is an element x′ ∈ B(ℓ∞)′ such that S is orthonor-

mal when considered as a sequence in L2(|〈ν, x′〉|). Notice also that, although the
element x′ do not belong in general to ℓ1 and cannot be identified with a sequence,
the measure |〈ν, x′〉| is absolutely continuous with respect to µ, so there is an inte-
grable function such that |〈ν, x′〉|(A) =

∫

A g0dµ for every A ∈ Σ.

• A concrete example of the situation above is given by the following elements. Take
the Lebesgue space ([0, 1], Σ, dx) and the functions gn := 2 sin2(2n−1πx), n ∈ N.
Consider the Rademacher functions fi := sgn(sin(2iπx), i ∈ N. A direct com-
putation shows that

∫

f 2
i gndx = 1 for all i, n ∈ N, and that for all i, j ≤ n,

∫

fi f jgndx = 0 if i 6= j. Consequently, the inequality in Theorem 3.2 is satis-
fied, and there is a measure |〈ν, x′〉| such that ( fi)i is an orthonormal sequence in
L2(|〈ν, x′〉|).

4 A Menchoff-Rademacher Theorem for weak m-orthogonal se-

quences

Let (Ω, Σ, µ) be a finite measure space, and consider an orthonormal sequence
( fi)i of real functions in L2(µ) and a sequence or real numbers (ai)i. The Menchoff-
Rademacher Theorem is the main result concerning µ-almost everywhere conver-
gence of the series ∑

∞
i=1 ai fi, and establishes that it converges µ-a.e. if

∞

∑
i=1

|ai|2log2(i + 1) < ∞,

see [18, 19, 23]. Although for particular (even complete) orthonormal sequences
this result can be improved (for instance, it is enough that ∑

∞
i=1 |ai|2 < ∞ for the

Haar and the trigonometric sequences, see 1.6.1 in [1] and [3]), it is optimal if we
consider any orthonormal sequence.

In this section we study the almost everywhere convergence of functional se-
ries defined by (real valued) functions that are weak m-orthogonal for a vector
measure m. Recall that the vector measure is supposed to be positive through all
the paper. We develop a technique for generalizing the arguments that proves
the Menchoff-Rademacher Theorem in our setting (see [26, III.H.22] for the scalar
measure case). It provides the adequate elements for proving more specialized
versions of this theorem depending on the properties of the space where the vec-
tor measure is defined. Let m : Σ → X be a positive vector measure over (Ω, Σ).
Our aim is to obtain conditions on a weak m-orthogonal sequence ( fi)i and a se-
quence of real numbers (ai)i to assure 〈m, x′〉-almost everywhere convergence of
the series ∑

∞
i=1 ai fi for a certain x′ ∈ (X′)+.

Let x′ ∈ (X′)+. Let ( fi)i be a sequence that is orthogonal with respect to
〈m, x′〉. Consider Banach sequence spaces L and M over the standard measure
space on N with canonical (normalized) basis (ei)i. If s is a natural number, we
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write Φs for the function Φs : Ω → L given by the formula

Φs(ω) :=
s

∑
i=1

fi(ω)ei, ω ∈ Ω.

Note that this function belongs to the Bochner space L2(〈m, x′〉, L) for every x′ ∈
(X′)+, since fi ∈ L2(m) for every i ∈ N, and then each such a function can be
considered as a (class of) function(s) of L2(〈m, x′〉) (see the comments after the
definition of L2(m) in Section 2).

Definition 4.1. Consider a Banach sequence space and a sequence of real numbers a :=
(ai)i. We denote by σa,L the operator σa,L : L → ℓ∞ given by

σa,L((λi)i) := ((
n

∑
i=1

aiλi))
∞
n=1, (λi)i ∈ L,

if it is well defined and continuous. We also write σN
a,L for the operator σN

a,L : L → ℓ∞

defined as σa(N),L, where a(N)i = ai for every i ≥ N, and 0 otherwise.

The sequence spaces occurring in the following theorem are supposed to sat-
isfy the requirements that has been explained in Section 2.

Theorem 4.2. Let x′ ∈ BX′ ∩ (X′)+. Consider a sequence of real numbers a = (ai)i and
a sequence ( fi)i that is orthogonal with respect to 〈m, x′〉. Let L be a 2-concave sequence
space and let M be a sequence space such that (L′)[2] = M′. Suppose that

(1) there is a constant K such that ‖(〈
∫

f 2
i dm, x′〉)s

i=1‖M < K for every s ∈ N and

(2) the operators σN
a,L : L → ℓ∞ are 2-summing and limN→∞ π2(σ

N
a,L) = 0.

Then the series ∑
∞
i=1 ai fi converges 〈m, x′〉-a.e.

Proof. First we prove the following claim: suppose that the sequence space L is
2-concave, and M satisfies (L′)[2] = M′. Let Y be a Banach space and let T : L → Y

be a 2-summing operator. If x′ ∈ BX′ ∩ (X′)+, then for every natural number s,

‖TΦs‖L2(〈m,x
′ 〉,Y) ≤ π2(T)‖(〈

∫

f 2
i dm, x

′〉)s
i=1‖

1
2
M.

To prove this, first note that the elements of the space (L′)[2] are sequences

τ = (τi)i that satisfy that there is a sequence z′ = (z′i)i ∈ L′ such that for every

i ∈ N, |z′i |2 = |τi|. Since L′ is 2-convex (see [16, Proposition 1.d.4(iii)]), (L′)[2]
is a Banach space with norm ‖τ‖(L′)[2] := ‖(τi)i‖(L′)[2] = ‖(|τi |1/2)i‖2

L′ (recall that

we assume for simplicity that the 2-concavity constant of L is 1 and then the
2-convexity constant of L also equals 1; see [6] and [16, Proposition 1.d.4(iii)]).
Since T is 2-summing, a direct calculation (see [26, Proposition III.F.33,b)]) gives

‖TΦs‖2
L2(〈m,x′〉,Y) ≤ π2

2(T) sup
z′∈BL′

∫

|〈Φs(ω), z′〉|2d〈m, x′〉.
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Since ( fi)i is orthogonal with respect to 〈m, x′〉, the inequality above can be writ-
ten as

‖TΦs‖2
L2(〈m,x′〉,Y) ≤ π2

2(T) sup
z′∈BL′

s

∑
i=1

|z′i |2
∫

f 2
i d〈m, x′〉;

all the integrals in this expression are positive, so we also obtain

sup
z′∈BL′

s

∑
i=1

|z′i|2
∫

f 2
i d〈m, x′〉 = sup

τ∈B
(L′)2

s

∑
i=1

|τi|
∫

f 2
i d〈m, x′〉

= ‖(〈
∫

f 2
i dm, x′〉)s

i=1‖M < K.

This gives the desired inequality and proves the claim.
Now we just need to show that the requirements for the operators σN

a,L are
enough to apply an standard almost everywhere convergence criterion (see for
instance [26, III.H.22]). A direct calculation shows that for every natural number
s, the pointwise evaluation

ω 7→ ‖σa,L(Φs(ω))‖∞ (4.1)

gives the sequence of functions

gs(ω) := ‖σa,L(Φs(ω))‖∞ = max
n=1,...,s

|
n

∑
i=1

ai fi(ω)|.

Now we apply the claim for Y = ℓ∞ and T = σa,L. Then the sequence of norms

(‖gs‖L2(〈m,x′〉))
∞
s=1 = (‖ ‖σa,L(Φs(ω))‖∞ ‖L2(〈m,x′〉))

∞
s=1

=
((

∫

max
1≤n≤s

|
n

∑
i=1

ai fi(ω)|2d〈m, x′〉
)

1
2
)∞

s=1

is uniformly bounded, since for every s,

‖gs‖L2(〈m,x′〉) ≤ π2(σa,L)K.

Thus, the Monotone Convergence Theorem gives that the function

h1(ω) := sup
n≥1

|
n

∑
i=1

ai fi(ω)|

is also in L2(〈m, x′〉) and ‖h1‖L2(〈m,x′〉) ≤ π2(σa,L)K. If we consider the operators

σN
a,L instead of σa,L in (4.1), we obtain the same result for each N ∈ N, i.e.

hN(ω) := sup
n≥N

|
n

∑
i=N

ai fi(ω)|

also belongs to L2(〈m, x′〉) for every N ∈ N and ‖hN‖L2(〈m,x′〉) ≤ π2(σ
N
a,L)K.
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Thus, condition (2) in the statement of the theorem implies that the sequence
(hN)

∞
N=1 converges to 0 in L2(〈m, x′〉), and then there is a subsequence that con-

verges 〈m, x′〉-a.e. to 0. This clearly implies that the sequence itself converges
〈m, x′〉-a.e. to 0 since it is decreasing. Hence, for 〈m, x′〉-a.e. every ω ∈ Ω and
ε > 0 there is a natural number R such that for every N ≥ R,

|
N

∑
i=1

ai fi(ω)−
R−1

∑
i=1

ai fi(ω)| ≤ sup
n≥R

|
n

∑
i=R

ai fi(ω)| = hR(ω) < ε

and then the series ∑
∞
i=1 ai fi(ω) converges 〈m, x′〉-a.e.

Note that the almost everywhere convergence with respect to a measure de-
fined by a positive element x′ do not provide m-almost everywhere convergence,
since such measures are not in general Rybakov measures. This means that such
a measure can have more null sets in the σ-algebra Σ.

Remark 4.3. The requirements on L in Theorem 4.2 show that the problem of the almost
everywhere convergence of weak m-orthogonal series is closely related to the calculus of
estimates of 2-summing norms for the operators σN

a,L : L → ℓ∞ for suitable sequence
spaces L. The canonical examples of such spaces are sequence spaces that satisfy that the
inclusions ℓ1 ⊆ L ⊆ ℓ2 are well defined and continuous; take L = ℓp for 1 ≤ p ≤ 2.

Then (L′)[2] = (ℓp′)[2] = ℓp′/2. If we consider 1 ≤ q ≤ ∞ such that 1/q = 1/p− 1/p′ ,
then the space M satisfying M′ = ((ℓp)′)[2] is ℓq (c0 if p = 2). In the following section

we develop the case p = 1, for which (L′)[2] = (ℓ∞)[2] = ℓ∞, and then M = ℓ1.
Let us finish this section by giving two estimates for these norms (we give the esti-

mates for σa,L, the ones for σN
a,L are obtained with the same arguments). Note that a direct

application of the following inequalities to Theorem 4.2 provides formulas involving the
sequence ”a” that can be directly computed.

(1) The first one comes from an application of Grothendieck´s Theorem and
can be used for the case of operators σa,ℓ1 : ℓ1 → ℓ∞ that are still continuous

when defined as σa,ℓ2 : ℓ2 → ℓ∞. Consider a sequence a ∈ ℓ2. In this case

we can write a factorization of σa,ℓ1 as σa,ℓ2 ◦ id, where id : ℓ1 → ℓ2 is the
inclusion map. This map is 1-summing (see for instance 17.14 in [7]), which
implies that it is also 2-summing, and thus σa,ℓ1 is so. Moreover,

π2(σa,ℓ1) ≤ π2(id)‖σa,ℓ2‖ ≤ (
∞

∑
i=1

a2
i )

1
2 ,

(see e.g Exercise 11.5 in [7] for the estimate of π2(id)). Of course, the same
argument can be used for general σa,L : L → ℓ∞ whenever it can be factored
through id : ℓ1 → ℓ2.

(2) For the second one the argument is similar, but using the fact that the op-
erator σb,ℓ1 is integral —we write ι(T) for the integral norm of an operator
T—, where b = (1/log(i + 1))i (see the reference to the Bennet-Maurey-
Nahoum Theorem in [8, Section 4], and [7] for the definition and properties
of integral operators). Suppose that the sequence ”a” satisfies that

‖(ai log(i + 1))i‖L′ < ∞.
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This requirement is the natural generalization of the Menchoff-Rademacher
condition for a.e. convergence. We can obtain the factorization through ℓ1

given by σa,L = σb,ℓ1 ◦ Dc, where Dc is the diagonal operator defined by the
sequence ci = ailog(i + 1), since

π2(σa,L) ≤ ι(σa,L) ≤ ι(σb,ℓ1)‖Dc‖ ≤ ι(σb,ℓ1)‖(ai log(i + 1))i‖L′ .

The same factorization can be used for every sequence b such that σb,ℓ1 is
2-summing.

The following results combine Theorem 3.2, Theorem 4.2 and the remark above
to give several criteria for 〈m, x′〉-a.e. convergence of sequences in L2(m).

Corollary 4.4. Let m : Σ → X be a positive vector measure and consider a sequence
( fi)i ⊆ L2(m). Let L be a 2-concave sequence space and let M be a sequence space such
that (L′)[2] = M′. Let ∆ = (εi)i such that (εi)

s
i ∈ M for all s ∈ N, a = (ai)i a sequence

of real numbers and suppose that

(1) the operators σN
a,L : L → ℓ∞ are 2-summing and limN→∞ π2(σ

N
a,L) = 0 and

(2) for every finite sequence of non negative real numbers (γk)k such that ∑k γk = 1,
indexes ik, jk ∈ N, ik 6= jk, and θk ∈ {−1, 1},

〈(γk), (εik
+ ε jk)〉 ≤ ‖〈(γk), (ϕik ,jk,θk

)〉‖BS,∆
.

Then there is an element x′ ∈ X′ such that
1. the sequence (

fi√
ε i
)i is orthonormal in L2(〈m, x′〉) and

2. the series ∑
∞
i=1 ai fi converges 〈m, x′〉-a.e.

Corollary 4.5. Let m : Σ → X be a positive vector measure and consider a sequence
( fi)i ⊆ L2(m) such that (‖

∫

f 2
i dm‖)s

i ∈ M for all s ∈ N. Let L be a 2-concave
sequence space and let M be a sequence space such that (L′)[2] = M′. Let a = (ai)i be a
sequence of real numbers and suppose that

(1) the operators σN
a,L : L → ℓ∞ are 2-summing and limN→∞ π2(σ

N
a,L) = 0 and

(2) for every finite sequence of non negative real numbers (γk)k such that ∑k γk = 1,
indexes ik, jk ∈ N, ik 6= jk, and θk ∈ {−1, 1},

〈(γk), (εik
+ ε jk)〉 ≤ ‖〈(γk), (ϕik ,jk,θk

)〉‖.

Then there is an element x′ ∈ X′ such that
1. the sequence (

fi√
ε i
)i is orthonormal in L2(〈m, x′〉) and

2. the series ∑
∞
i=1 ai fi converges 〈m, x′〉-a.e.

Example 4.6. • For the case of ℓ1-valued measures and L = ℓ2, we obtain using
Remark 3.3 that the result is similar to the one that holds for scalar measures. Let
m : Σ → ℓ1 be a positive vector measure and consider a sequence ( fi)i ⊆ L2(m)
of norm one functions. Let a = (ai)i be a sequence of real numbers and suppose
that
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(1) the operators σN
a,ℓ2 : ℓ2 → ℓ∞ are 2-summing and limN→∞ π2(σ

N
a,ℓ2) = 0,

and

(2)
√

2 ≤ ‖ fi + θ f j‖L2(m) for all i, j ∈ N, i 6= j, and θ ∈ {−1, 1}.

Then Corollary 4.5 gives an element x′ ∈ ℓ∞ such that the sequence ( fi)i is or-
thonormal in L2(〈m, x′〉) and the series ∑

∞
i=1 ai fi converges 〈m, x′〉-a.e. For ex-

ample, a direct calculation shows that for x′ = (1, 1, 1, ...), the result holds.

• Let us show an application regarding Example 3.4 also for L = ℓ2. Let (ei)i be the
canonical basic sequence in ℓ∞ and take an ℓ∞ valued (countably additive) vector
measure ν, a sequence of functions ( fi)i ∈ L2(m) such that

∫

f 2
i d〈ν, ej〉 = 1 for

every i, j ∈ N and a sequence a = (ai)i such that the operators σN
a,ℓ2 : ℓ2 → ℓ∞

are 2-summing with limN→∞ π2(σ
N
a,ℓ2) = 0. Assume also that for every finite

sequence of non negative real numbers (γk)k such that ∑k γk = 1, indexes ik, jk ∈
N, ik 6= jk, and θk ∈ {−1, 1},

2 ≤ sup
i

∣

∣

∫

∑
k

γk( fik
+ θk f jk)

2d〈ν, ei〉
∣

∣.

Then by Corollary 4.5 there is an element x′ ∈ (ℓ∞)′ such that the sequence ( fi)i

is orthonormal in L2(〈m, x′〉) and the series ∑
∞
i=1 ai fi converges 〈m, x′〉-a.e.

5 Almost everywhere convergence in c0-sums of L2(µ) spaces.

In this section we use the representation of ℓ−sums of L2-spaces as spaces
L2(m) for a suitable m to apply our results. In particular, we develop the case of
c0-sums of L2-spaces.

Let be (Ω, Σ, µ) a finite measure space and consider a disjoint partition (Ei)i ⊂
Σ of Ω. Consider the sequence space c0. We define a countably additive vector
measure n : Σ → c0 by

n(E) :=
∞

∑
i=1

µ(E ∩ Ei)ei,

where ei is the canonical basis of c0.
Let µi = µ |Ei

be the restriction of µ to the subset Ei. We will denote by

⊕c0 L2(µi) the space of (classes of µ-a.e. equal) measurable functions f such that

(1) f χEi
∈ L2(µi), and

(2) (‖ f χEi
‖L2(µi)

)∞
i=1 ∈ c0.

The (lattice) norm for this space is given by

‖ f‖⊕c0
L2(µi)

:= sup
i

‖ f‖L2(µi)
, f ∈ ⊕c0 L2(µi).

The following result show that we can identify the spaces L2(n) and⊕c0 L2(µi);
for related examples, see [21, Example 8], [25, Example 10], [13, Example 4] and
[20, Example 6.47].
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Proposition 5.1. The natural identification map between L2(n) and ⊕c0 L2(µi) is an
order isometry.

Proof. We begin by proving that the identification f 7→ ( f χEi
)i ∈ ⊕c0 L2(µi), f ∈

L2(n) defines an isometry. Assume that f ∈ L2(n). Then for every i0 ∈ N,
ei0 ∈ ℓ1 = (c0)

′ and 〈n, ei0〉 = µi0 . Therefore f χEi0
∈ L2(〈n, ei0〉) = L2(µi0).

Furthermore, note that for every f ∈ L2(n) and ε > 0 there is a natural number
n ∈ N such that ‖

∫

∪∞
i=nEi

| f |2dn‖ < ε, since 〈
∫

∪∞
i=nEi

| f |2dn, ej〉 = 0 for any 1 ≤
j < n and

∫

| f |2dn ∈ c0. Then

‖ f ‖L2(n)=‖
∫

| f |2 dn ‖
1
2
c0
= lim

n→∞
‖
∫ n

∑
i=1

| f |2χEi
dn ‖

1
2
c0
=

= lim
n→∞

‖ (
∫

Ei

| f |2 dµi)
n
i=1 ‖

1
2
c0
=‖ ((

∫

Ei

| f |2 dµi)
1
2 )∞

i=1 ‖c0= ‖ f‖⊕c0
L2(µi)

.

Let us show now that if ( fi)
∞
i=1 ∈ ⊕c0 L2(µi) then f := ∑

∞
i=1 fiχEi

∈ L2(n). If

x′ = (λi)
∞
i=1 ∈ ℓ1, the scalar measure 〈n, x′〉 is given by 〈n, x′〉(A) := ∑

∞
i=1 λiµ(Ei ∩

A), A ∈ Σ. Clearly the functions gn := ∑
n
i=1 | fn|2χEi

, n ∈ N, converge pointwise

to | f |2 and

lim
n→∞

|
∫

gn d|〈n, x′〉| |= lim
n→∞

|
n

∑
i=1

|λi|
∫

Ei

| fi|2dµi |

≤‖ (λi)i ‖ℓ1 · ‖ (
∫

Ei

| f |2dµi)i ‖c0< ∞.

Then the Monotone Convergence Theorem gives that f is scalarly integrable, and

sup
x′∈B

ℓ1

∫

| f |2d|〈n, x′〉| < ∞.

A direct calculation shows that the formula
∫

| f |2dn = (
∫

| fi|2dµi)i ∈ c0 provides

the integral of the function | f |2 and ‖ f‖L2(n) = ‖(
∫

| fi|2dµi)i‖
1
2
c0

.

In this context we can apply all the results of Section 3. The proofs of the
following corollaries are straightforward applications of Theorem 3.2, Theorem
4.2 with M = L = ℓ1 and Remark 4.3 (1).

Corollary 5.2. Let X(µ) = ⊕c0 L2(µi) be the c0−sum of the spaces L2(µi), i ∈ N.
Let (ai)i ∈ ℓ2, and assume that there exists an element x′ ∈ (ℓ1)+ such that ( fi)

∞
i=1

is orthogonal with respect to 〈n, x′〉. If ‖(〈
∫

f 2
i dn, x′〉)∞

i=1 ‖ℓ1< ∞, then ∑
∞
i=1 ai fi

converges 〈n, x′〉-a.e.

Corollary 5.3. Let X(µ) = ⊕c0 L2(µi) be the c0−sum of the spaces L2(µi), i ∈ N. Let
(ai)i ∈ ℓ2, and assume that there is a sequence of positive real numbers ∆ = (εi) ∈ (ℓ1)+

satisfying the inequalities in (1) of Theorem 3.2 for the vector measure n. Then there is
a sequence 0 ≤ x′ ∈ Bℓ1 such that ( fi)i orthogonal with respect to 〈n, x′〉 and ∑

∞
i=1 ai fi

converges 〈n, x′〉-a.e.
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Let us finish the paper with a particular example of a sequence that satisfies
these corollaries.

Example 5.4. Let ([0, 1], Σ, µ) be the Lebesgue measure space. We consider the following
partition of the interval [0, 1].

E1 = [0,
1

2
], E2 = [

1

2
,

3

4
], E3 = [

3

4
,

7

8
], ..., En = [

2n−1 − 1

2n−1
,

2n − 1

2n
], ... .

For each i = 1, 2, ..., take a µ|Ei
-orthogonal sequence (g

j
i)

∞
j=1 satisfying

∫

g
j
i g

k
i dµi =

{

0 if k 6= j
2 if k = j .

Now we define for each n ∈ N the function fn by fn := ∑
∞
k=1 λn

k gn
k χEk

, where the scalar
numbers λn

k are given by

λn
k =







1

2
n−k+1

2

if k < n

1

2
k−n+1

2

if k ≥ n.

Let α := (αk)
∞
k=1 = ( 1

2k )
∞
k=1 ∈ Bℓ1 . It is easy to see that the sequence ( fn)∞

n=1 is

orthogonal with respect to any such measure 〈n, α〉. Thus,

‖(〈
∫

f 2
n dn, α〉)‖ℓ1 =

∞

∑
n=1

|〈
∫

f 2
n dn, α〉| =

∞

∑
n=1

(
∞

∑
k=1

〈
∫

f 2
n dn, e′k〉αk) =

∞

∑
n=1

(
∞

∑
k=1

(λn
k )

2αk),

and therefore,

‖(〈
∫

f 2
n dn, α〉)‖ℓ1 =

∞

∑
n=1

(
n−1

∑
k=1

(λn
k )

2αk +
∞

∑
k=n

(λn
k )

2αk)

=
∞

∑
n=1

(
n−1

∑
k=1

1

2n−k+1
αk +

∞

∑
k=n

1

2k−n+1
αk)

=
1

2

∞

∑
n=1

(
n−1

∑
k=1

2k

2n
αk +

∞

∑
k=n

2n

2k
αk) =

1

2

∞

∑
n=1

(
n−1

∑
k=1

1

2n
+

∞

∑
k=n

2n

22k
)

=
1

2

∞

∑
n=1

n−1

∑
k=1

1

2n
+

1

2

∞

∑
n=1

∞

∑
k=n

2n

22k
< ∞.

Thus, ‖(〈
∫

f 2
n dn, α〉)‖ℓ1 is bounded. Remark 4.3 (1) provides the required condition on

(ai)i and so ∑
∞
i=1 ai fi converges 〈n, α〉-a.e.
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