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Abstract 

This paper describes an iterated local search algorithm based on a 

Gray code global best-descent (ILS-GB) for the automatic design 

and cost minimization of reinforced concrete vaults for road con-

struction. The study involves a vault which measures 12.40 m in 

horizontal free span, 3.00 m in vertical height of the lateral walls 

and 1.00 m in earth cover. This problem includes 49 discrete de-

sign variables as well as penalty functions for unfeasible solutions. 

An objective methodology based on the extreme value theory is 

used to determine the number of experimental tests required to 

provide a solution with user-defined accuracy as compared to a 

global optimum solution. Results indicate that the local optima 

found by ILS-GB fits a three-parameter Weibull distribution so 

the estimated location parameter γ can be used as an estimation of 

the global minimum cost solution. The minimum value obtained 

by ILS-GB differed just 0.81% compared to the theoretical mini-

mum value so that, from the structural engineering perspective, 

the divergence was small enough to be accepted. Finally, the opti-

mization method indicates savings of about 7% compared to a 

traditional design. 

Keywords 
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1 INTRODUCTION 

Reinforced concrete (RC) vaults are essential in the construction of underpasses for roads, railways 

and waterworks. They are recommended when the length of the structure exceeds several hundred 

meters and the earth cover exceeds several meters. Typical free spans vary from a minimum of 4.00 

m for small hydraulic sections to a maximum of 13.00 m for road and railway tunnels. The con-

struction is usually done in segments of about 12.00 m in length. Characteristic features are the 

foundation slab, lateral walls and top semicircular vault. The current design of these structures is 

highly dependent upon the experience of the project designer. However, structural optimization 

methods provide an objective alternative to traditional design. 
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 Applying optimization methods to the design of RC structures is deemed both appropriate and 

feasible since the element design is made more efficient. Generally speaking, optimization methods 

used in structural design are classified as mathematical programming and heuristic search methods. 

Sarma and Adeli [28] provided an extensive review of studies on non-heuristic structural concrete 

optimization, but now it is possible to use heuristic search methods to provide good solutions with 

reasonable computation times. These heuristic methods include many probabilistic-based search 

algorithms which were inspired by natural phenomena (natural evolution, physical processes or 

social interaction simulation among members of a specific species in search of food): genetic algo-

rithms [15], simulated annealing [17], and ant colonies optimization [8], among others. In this con-

text, there is an increasing effort on applying optimization procedures to the problem of sizing, 

shape or topology optimization structural problems [10,29]. However, after reviewing the optimiza-

tion methods used in structural design, Cohn and Dinovitzer [6] emphasized the gap between theo-

retical and realistic applications, confirming that most research focused on steel structures, whereas 

only a small fraction dealt with RC structures. 

 The earliest studies into the optimization of structural concrete for beams date back to the late 

1990s [1,5]. Many later studies used evolutionary programming, and in particular, genetic algo-

rithms. Kicinger et al. [16] highlighted developments in evolutionary programming and structural 

design while the present authors’ research group has recently reported on non-evolutionary tech-

niques for optimization of retaining walls [30], bridge frames [26], building frames [23-25], pre-

stressed concrete precast pedestrian bridges [19], and bridge piers [20,21]. 

 Following this line of work, Carbonell et al. [3] developed a model for the optimum design of RC 

road vaults involving three types of neighborhood-based algorithms: a multi-start global best-

descent local search, a meta-simulated annealing and a meta-threshold acceptance. These algo-

rithms provide different results in each run due to the large number of random decisions and they 

all need a previous calibration. In contrast, this paper proposes an algorithm that does not require 

prior calibration, and also aims to determine the number of times the algorithm should be run to 

achieve sufficient accuracy. This method involves identifying an objective stopping criterion for a 

multi-start algorithm to reconcile the quality of the solution and the computation time required. If 

one accepts that the local optimum found by a stochastic search algorithm can be deemed as an 

extreme solution of a simple random sample consisting of solutions visited, then the Extreme Value 

Theory (EVT) can be applied to estimate the global optimum solution. The application of EVT to 

heuristic methods was described by McRoberts [22], Golden and Alt [14], and more recently Paya et 

al. [25]. 

 To continue in this line of research, this study focuses on the economic optimization of road 

vault underpasses. To the best of our knowledge, the iterated local search (ILS) scheme has not yet 

been applied to optimize RC structures. In addition, this study applies a method to determine the 

minimum number of computer runs that an ILS algorithm must perform to ensure that the best 

result obtained does not differ more than a predetermined threshold with respect to the global op-

timum estimation using the EVT. The methodology consisted of developing a computer evaluation 

module in which cross-section dimensions, materials and steel reinforcement were used as discrete 

variables. The module computed the cost for a solution and checked all the relevant limit states. 

The cost objective function was then calculated. An ILS algorithm based on a global best-descent 
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strategy (abbreviated herein as ITS-GB) was then used to search the soltuion space to identify a set 

of solutions with optimized values for the designer. The rest of this paper is organized as follows. In 

Section 2, we define the optimization problem while in Section 3, we explain the heuristic method 

developed. In Section 4, we describe the resulting computational experience with this algorithm, and 

in Section 5, we present the main conclusions and directions for future investigation. 

 

2 THE OPTIMUM DESIGN PROBLEM 

The structural design problem established for this study aims to minimize the cost of a RC vault, 

represented by the objective function F of Eq. (1), so that it meets the constraints contained in Eq. 

(2).  

 

1 2 1 2
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 Note that x1, x2,..., xn are the design variables whose combination is to be optimized. Each design 

variable can take on the discrete values listed in Eq. (3). The objective function F defined in Eq. (1) 

is the cost of the vault per linear meter (€/m), where pi are the basic prices (Table 1); mi are the 

measurements of the construction units (concrete, steel, formwork, etc.), and r is the total number 

of construction units. The constraints gj in Eq. (2) are all the service limit states (SLSs) and ulti-

mate limit states (ULSs) with which the structure must comply, as well as the geometrical and 

constructability constraints of the problem. The design variables and structural constraints consid-

ered in this study are described in full in a previously cited publication by Carbonell et al. [3]. They 

will only be summarized here for the readers convenience. 

 This study transforms constrained problems into unconstrained ones using the penalty function 

given by Eq. (4): 

 

jj
F F P  (4) 

 

 where F+ represents the penalized cost; F is the cost; j is the non-compliance percentage for a 

limit state, and Pj is the penalty considered. The percentage of non-fulfillment is obtained from 

(acting resultant/strength –1). The design is checked at each iteration. The final result requires no 

penalties for convergence. 
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Table 1  Basic prices of the cost function of the reported vault structure 

Unit Unit cost (€) 

m
3
 of earth removal 3.010 

m
3
 of earth fill-in 4.810 

m
2
 of foundation formwork 9.015 

m
2
 of wall formwork 12.621 

m
2
 of upper vault formwork 21.035 

m
3
 of vault scaffolding 10.818 

m
3
 of lower slab concrete (labour) 3.606 

m
3
 of wall concrete (labour) 5.409 

m
3
 of upper vault concrete (labour) 4.508 

m
3
 of concrete pump rent 4.808 

kg of steel B-500S 1.000 

m
3
 of concrete HA-25 43.724 

m
3
 of concrete HA-30 46.579 

m
3
 of concrete HA-35 49.434 

m
3
 of concrete HA-40 52.289 

m
3
 of concrete HA-45 55.144 

m
3
 of concrete HA-50 57.999 

 

 The analysis includes 49 discrete design variables that define the geometry, the grades of con-

crete and the reinforcement used. Variables include: a) five geometric values (the depth of the 

vault, the bottom and top depths of the lateral walls, the depths of the bottom foundation slab and 

its lateral toe), b) three different grades of concrete for the three types of elements, and c) 41 design 

variables to define the bar diameters, the spacing and the bar lengths of the reinforcement following 

a standard setup. The transverse and shear reinforcement variables considered in this study are 

provided in Fig. 1. A1–A8 are the basic internal and external reinforcement of the structure. A9-A12 

are the extra corner external reinforcement of the walls. A13 is the extra positive bending reinforce-

ment of the arch. A14-A17 and A20-A23 are the shear reinforcement of the structure. A18 is the extra 

internal reinforcement in the bottom slab. Finally, A19 is the extra internal reinforcement of the 

arch. The variables were represented with 178 bits of binary code, representing an exorbitant num-

ber of possible solutions, given the resulting combinatorial explosion (on the order of 1053). 

 

 

Figure 1 Reinforcement variables for the RC vaults. 
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 The analytical parameters are fixed quantities and thus are not subject to optimization. They 

relate to geometric values, properties of the ground and the earth fill, partial safety coefficients and 

durability data. The main geometric parameters are the horizontal free span, which is twice the 

radius of the vault, the vertical height of the lateral walls and the earth cover. The main parameter 

of the ground is the stiffness modulus of the foundation. The data of the fill are its density and its 

internal friction angle. Durability exposure conditions are in accordance with the Spanish Concrete 

Code [11]. The design parameters for this RC vault are summarized in Table 2. 

 
Table 2  Parameters of the reported vault structure 

Parameter Values 

Horizontal free span 12.40 m 

Vertical height of the lateral walls 3.00 m 

Earth cover 1.00 m 

Unit weight of the fill 20 kN/m
3
 

Internal friction angle of the fill 30º 

Ballast coefficient of the ground 10 MN/m
3
 

Uniform distributed load 4 kN/m
2
 

Heavy vehicle 600 kN 

Deflection of the free span limitation 1/250 

Partial safety coefficient for permanent loading 1.60 

Partial safety coefficient for life loading 1.60 

ULS safety coefficient for concrete 1.50 

ULS safety coefficient for steel 1.15 

Spanish Concrete Code ambient exposure IIa 

 

 Eq. (2) represents the constraints imposed by standard Spanish provisions to design this type of 

structure [11,12] and includes the verification of the ULSs of flexure and shear for the stress enve-

lopes from traffic loads and earth fill. In this respect, the Spanish Concrete Code [11] is followed, 

except for deflections of the free span where a limitation of 1/250 for the quasi-permanent loading 

condition is established as generally recommended in the Eurocode 2 [4]. Permanent actions were 

self-weight, the weight of the earth cover and the active pressure of the landfill. Earth fill pressures 

were taken for partial filling heights of ¼, ½, ¾ and total height, and three horizontal pressure coeffi-

cients of 0.20, 0.33 and 0.50 were considered. Additionally, a distributed load of 4.0 kN/m2 and a 

heavy vehicle load of 600 kN [12] were taken into account. The stress and reactions were calculated 

as a structural model with six elements, eight nodes and 50 control sections, and the analysis was 

linear elastic under plane strain. Out-of-plane flexure moments had to be assumed as a practical 

one-fifth proportion of in-plane flexure moments. Furthermore, it was assumed that the bottom slab 

was supported by elastic springs whose stiffness is proportional to the ballast coefficient of the 

ground. 

 

3 ITERATED LOCAL SEARCH BASED ON A GLOBAL BEST-DESCENT LOCAL ALGORITM 

The ILS-GB search algorithm developed for this study is an ILS algorithm based on a global best 

(GB) descent. The ILS is a simple but powerful stochastic local search method that basically aims 

to avoid entrapments in poor local optima using a perturbation of the incumbent local optimum, 
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originating a new intermediate solution, and then restarting the local search procedure from this 

modified solution. The perturbation is usually non-deterministic to avoid cycling. This procedure of 

alternating local searches and perturbation steps is repeated iteratively until a satisfactory criterion 

is met. The perturbation mechanism must not only be small enough so as to avoid a totally random 

restart point to exploit knowledge from previous iterations, but also large enough to escape the 

attractive basins around the local optimum. After a local search, the new local optimum can substi-

tute the incumbent local optimum under a particular acceptance criterion. There are several possi-

bilities, which range from never accepting the new local optimum unless there is an improvement 

and always accepting the new solution. Therefore, the key to ILS is that it focuses the search on a 

smaller subset defined by the local optima, where the perturbation operator performs a global ran-

dom search. An essential principle of ILS is to exploit the trade-off between diversification –

perturbation operator- and intensification –local search algorithm-. A thorough review of ILS algo-

rithms was conducted by Lourenço et al. [18]. 

 A general scheme of the ILS-GB framework proposed is depicted in Fig. 2. Our numerical exper-

iments were conducted as follows. First, the algorithm starts with a randomly generated solution s. 

Then, a GB internal local search explores all neighbouring solutions and replaces s with the lowest 

cost neighbour ŝ. This ŝ solution is the current record solution s*. A perturbation operator recon-

structs the current local optimum ŝ and provides some intermediate solution s’. Next, the GB local 

search improves s’ to another local optimum ŝ’. The best solution among the new local optimum ŝ’ 

and the current record solution s* decides which record solution is next. In this study, we adopted a 

random search acceptance criterion which always applies the perturbation to the most-recently vis-

ited local optimum. In addition, the ILS-GB algorithm stops after 100 iterations because, after sev-

eral experiments, there is no significant improvement in the last local optimum. 

 

 

Figure 2 Pseudo-code for the ILS-GB method based on a random search criterion. 

 

 The GB local search algorithm developed in this study can be described as follows. The value of 

each variable is transformed into an integer by dividing its value into a multiple of quantity. This 

integer value is later transformed into a binary code, and a string of 178 bits of binary code can 

then be defined to represent all possible values from the 49 variables, and the algorithm recognises 

the maximum and minimum values for each of them. However, unlike its decimal numeric equiva-

lent, binary coding is not homogeneous. For example, the number 15 is followed by 16 with a single 

digit change, but the corresponding binary codes, 01111 and 10000, requires five changes in digits to 

change from one to another. This is a well-known binary coding problem known as Hamming Cliff. 
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To avoid this problem, the well-known standard binary reflected Gray code can be used [2], which 

is an encoding of numbers so that adjacent numbers have a single digit differing by 1. This allows 

for an alternative representation by which the existing adjacency in the search space may be main-

tained in the space representing it. This GB local search consists in exploring, therefore, all solu-

tions in which only one binary digit in the Gray code differs from the current solution. This is a 

quick, simple and generic movement which does not require any calibration. 

As mentioned earlier, the perturbation operator partially destroys the current local optimum in a 

random manner. First, a number t of the variables are selected at random. Then, the chosen varia-

bles are modified by increasing or reducing their integer values by adding or subtracting an integer 

value given by Eq. (5): 

 

1 maxi ix x x X  (5) 

 

 where xi is the current value of the i variable; xi+1 is the new value of this variable; xmax is the 

maximum integer value of the i variable, and X is a normally distributed random variable between 

-1 and 1, with mean μ = 0. After several experiments, the number of variables selected at random 

was t = 10, and the standard deviation used for X was σ2 = 0.10. To this end, the suggested per-

turbation operator follows the previously stated principle: the perturbation should not completely 

disrupt the structure of the current configuration. 

 Finally, there is another question to solve that has not been taken into consideration by the 

mechanisms explained so far. The number of times the ILS-GB algorithm is run should be large 

enough to ensure that the difference between the minimum value obtained from all runs and the 

theoretical global minimum is less than a specified threshold. Thus, a method based on the EVT 

was used and is related to that proposed by our research group for the optimization of building 

frames [25]. 

 It is well-known that the three-parameter Weibull distribution belongs to the family of extreme 

value distributions, and represents the distribution of the smallest or largest values in random sam-

ples of increasing size. The Weibull cumulative distribution function can be expressed as follows: 

 

0
0

0

0

1 exp ,

0,

X

x
x

F x

x

 (6) 

 

 where 

 
, 0  (7) 

 

 where γ is the location parameter; η is the scale parameter, and β is the shape parameter. 

Accordingly, if the statistical distribution of the best solutions found by ILS-GB fits a three-

parameter Weibull distribution, then the estimated location parameter γ can be used as an estima-

tion of the global optimum. However, estimating the γ parameter involves variability, since its val-
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ue depends on the number of run solutions used to estimate it. To increase the significance of the 

estimator in question, the bootstrap method [9] is used to calculate the values of the minimum cost 

(Cmin), as well as the minimum (γmin) and the maximum (γmax) values of the location parameter of 

the samples taken of a certain size. If γmax – γmin and Cmin – γmin are lower than the two previously 

set limits, additional runs of the algorithm are not necessary. 

 

4 RESULTS FROM COMPUTATIONAL EXPERIMENTS 

In this Section, we examine the results from computational experiments involving ILS-GB optimiza-

tion applied to a vault measuring 12.40 m in horizontal free span, considering the parameters de-

fined in Table 1.The algorithm was coded in Fortran 95 with an Intel Fortran compiler 10.1. A 

personal computer with an Intel I7 processor with 2.94 GHz and 3 Gbyte RAM needed about 3.9 

minutes to run the proposed ILS-GB algorithm (100 perturbations and 211,275 GB descent local 

search iterations on average). 

 The results and the histogram for the sample of 1000 minimal cost solutions found by ILS-GB 

are given in Fig. 3 and Fig. 4, respectively. The statistical description of this sample is as follows: 

the maximum and minimum values are €5676.62 and €5126.37, respectively; the sample mean val-

ue is €5398.33, with a confidence interval of ±€4.74 for a 0.05 level of significance; the standard 

deviation of the sample is €76.36; the median is €5392.08; the percentile of 5% is €5284.27. The 

distribution is leptokurtic (kurtosis coefficient of €0.386) and positively skewed (skewness coefficient 

of €0.335). 

 

 

Figure 3 Cost results for 1000 ILS-GB runs. 

 

 To test the hypothesis that the 1000 results obtained by ILS-GB fit a three-parameter Weibull 

distribution function, one must verify that there is no reason to reject the null hypothesis that the 

histogram corresponds to a Weibull distribution; secondly, one must verify that the 1000 cost-

optimized solutions found by ILS-GB are independent (see Fisher and Tippett [13]); lastly, the cor-

relation coefficient of the Weibull distribution that best fits the 1000 numerical results must be high 

enough to provide a useful estimation. 

 Non-parametric tests such as Kolmogorov-Smirnov and Chi-squared statistics (see, e.g., Conover 

[7]) were computed assuming independence to assure that the ILS-GB solutions are Weibull-
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distributed. Since both statistics fell far below the critical value at 0.05 level of significance, there 

was no reason to reject the Weibull hypothesis. 

 

 

Figure 4 Histogram showing 1000 cost-optimized results. 

 

 One of the main assumptions underlying the use of EVT is that each ILS-GB solution is inde-

pendent of the others and this is achieved by starting the ILS-GB algorithm search process from a 

random solution. A Wald-Wolfowitz run test was applied to the 1000 solutions obtained in order of 

occurrence so as to confirm that ILS-GB best solutions are independent. This is a non-parametric 

test which may be used to determine randomness in a sequence, and it is based on the total number 

of runs and the number of cases on the same side of a cut point (see, e.g., Conover [7]). In this case, 

there were 500 runs with respect to the median; the 2-tailed significance value was 0.255. Therefore, 

the run test does not offer any reason to reject the hypothesis of randomness. 

 Lastly, the parameters of the Weibull distribution that best fit the 1000 results obtained by ILS-

GB were calculated, and this fit was quantified. To this end, ReliaSoft’s Weibull++7 software [27] 

was used to estimate the three parameters of the Weibull distribution function. Two estimation 

methods were used: the maximum likelihood parameter estimation and the rank regression on Y 

estimation (according to the least squares principle, which minimizes the vertical distance between 

the data points and the probability density function). In our case, both estimates of the value were 

γ = €5085.11 for the location parameter. This value is what the ILS-GB algorithm estimated to be 

provided for the global optimum of the problem using the EVT. The other parameters obtained for 

the regression on Y were η = 341.7644 and β = 4.8507. The Weibull fit had a correlation coefficient 

of ρ = 0.9857, which was high enough for numerical results. The difference between the minimum 

value obtained after 1000 runs and the extreme value estimated was €41.26, a difference of just 

0.81% compared to the theoretical minimum value. From the standpoint of structural engineering, 

this difference was small enough to accept the local optimum found by the proposed ILS-GB algo-

rithm. 

 The ILS-GB algorithm had to be run enough times to assure that the difference between the 

minimum value found and the value estimated by the probability distribution was below a specified 

threshold. However, the γ parameter estimate tends to vary since it depends on the sample used. To 

analyse this, a confidence interval for a γ parameter was obtained using the method developed by 
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Paya et al. [25]. Nine samples were taken from the set of 1000 solutions with replacement of the 

sizes 10, 25, 50, 100, 250, 500 and 1000. For each sample the minimum cost value Cmin was deter-

mined, and the γ parameter of the corresponding Weibull distribution was estimated. The minimum 

cost (Cmin) is given in Fig. 5 along with the minimum (γmin) and maximum (γmax) values of the 

location parameter of the nine samples taken of each size. 

 

 

Figure 5 Value of the minimum costs (Cmin) and the location parameter (γ) for nine samples with replacement for 

different numbers of ILS-GB algorithm runs. 

 

 As reflected in Table 3, the variability of the location parameter can be estimated using the dif-

ference between γmax and γmin. This range fell as the number of runs increased, and the relative 

difference with regard to γmin dropped from 14.082% for 10 runs, to 0.637% for 1000 runs. This de-

crease was also observed in the case of the relative difference between the minimum cost and the 

γmin parameter, dropping from 4.185% to 0.811% when the number of runs was increased from 10 to 

1000, respectively. 

 
Table 3   Minimum cost and estimated parameters for nine samples drawn with replacement of the set of 1000 runs 

 

Number of tests Cmin γmax γmin (γmax - γmin)/γmin (%) (Cmin - γmin)/γmin (%) 

10 5258.009 5757.456 5046.783 14.082% 4.185% 

25 5243.628 5254.539 5024.220 4.584% 4.367% 

50 5170.926 5233.396 5038.771 3.863% 2.623% 

100 5126.371 5220.134 5001.432 4.373% 2.498% 

250 5126.371 5201.192 5053.023 2.932% 1.452% 

500 5126.371 5117.512 5046.660 1.404% 1.579% 

1000 5126.371 5117.512 5085.107 0.637% 0.811% 

 

 As the number of local optima known depends on the runs carried out to estimate the parame-

ters, the bootstrap [9] technique may be used. This technique is based on treating a random sample 

of n observations as if they were the entire population, from which new samples are taken by re-

placing the individual samples selected. The variability estimation for the location parameter was 

repeated with nine samples obtained through a random selection with replacement from among the 

set of local optima found. Fig. 6 illustrates the evolution of both the minimum cost and the γmax 
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and γmin parameters corresponding to the nine samples drawn using the bootstrap technique for 10, 

25, 50, 100, 250 and 1000 runs. 

 The relative difference between γmax and γmin also diminished as the number of runs was in-

creased, from 13.736% in the case of 10, to 0.637% in the case of 1000. The relative difference be-

tween the minimum cost and the estimated γmin parameter dropped from 11.806% to 0.811%, when 

the GB algorithm was run from 10 to 1000 times. Here the increase from Cmin and γmin was 

stabalised to start with 1000 runs (see Table 4). 

 

 

Figure 6 Value of the minimum costs (Cmin) and the location parameters (γ) using the bootstrap technique for nine 

samples. 

 
Table 4   Minimum cost and parameters estimated using the bootstrap technique for nine samples 

 

Number of tests Cmin γmax γmin (γmax - γmin)/γmin (%) (Cmin - γmin)/γmin (%) 

10 5234.740 5325.131 4682.005 13.736% 11.806% 

25 5215.935 5269.513 4747.440 10.997% 9.868% 

50 5215.935 5191.065 5004.258 3.733% 4.230% 

100 5170.926 5121.616 4922.380 4.048% 5.049% 

250 5159.103 5173.776 5040.125 2.652% 2.361% 

500 5126.371 5126.371 5085.107 0.811% 0.811% 

1000 5126.371 5117.512 5085.107 0.637% 0.811% 

 

 Thus, an objective stopping criterion was established for a multi-start algorithm based on the 

local GB search. Starting from a random solution, a local search was applied until a minimum cost 

was achieved. With different starts, a sample of local optima was obtained using the bootstrap 

technique, which allowed nine samples to be drawn to determine 1) the difference between the min-

imum cost reached up to a certain time and the theoretical minimum estimated by means of a 

Weibull distribution as well as 2) the difference between the maximum and minimum value of the γ 

parameters estimated. The multi-start algorithm was stopped when neither the difference between 

the minimum and the theoretical solution found nor the variability of the location parameters ex-

ceeded a certain threshold. We assumed that the variability in the determination of the location 

parameter γ and the difference between the minimum and theoretical cost reached were lower than 

1%. Thus interpolating the data in Table 3, 339 runs would be required. Fig. 7 and Table 5 show 



686     Alfonso Carbonell, Víctor Yepes and Fernando González-Vidosa / Automatic design of concrete vaults using iterated local search and … 

 

 

Latin American Journal of Solids and Structures 9(2012) 675 – 689 

the variation of the cumulative mean and the standard deviation of the cost for 1000 runs of the 

ILS-GB. All this indicates that between 250 and 500 runs are sufficient to stabilize the results for 

the ILS-GB algorithm. Moreover, an approximate 95% confidence interval of the population mean 

for 339 runs is estimated with an error less than 9 euros (Table 5). This euro value is 0.155% of the 

average cost solution for 339 ILS-GA runs, which is low enough to be acceptable. 

 

 

Figure 7 Cumulative mean and standard deviation versus number of ILS-GB runs. 

 
Table 5 Results of the ILS-GA algorithm 

 

Number 

of runs 

Minumum 

cost (€) 

Average 

cost (€) 

Standard devia-

tion (€) 

Estimated 

error (€) 

Estimated error/ 

average cost (%) 

10 5234.740 5407.637 87.647 62.699 1.159 

25 5215.935 5412.153 90.330 37.286 0.689 

50 5215.935 5415.817 84.458 24.003 0.443 

100 5170.926 5407.103 79.313 15.738 0.291 

250 5159.103 5405.153 79.849 9.946 0.184 

339 5126.371 5400.608 78.394 8.375 0.155 

500 5126.371 5397.541 79.228 6.961 0.129 

1000 5126.371 5398.325 76.369 4.738 0.088 

 

 The cost of the best ILS-GB solution is 5126.371 euros/m, which considering the basic prices 

listed in Table 2, is 7.72% less than the cost of the vault designed in 2002 by the third author for 

the Valle Romano motorway in Malaga (Spain) following standard design office procedures. The 

top vault is only 0.25 m deep for the 12.40 m span. The depths of the top and bottom of the lateral 

walls are 0.40 m and 0.50 m, respectively. The bottom slab is 0.70 m depth and the toe 2.60 m. 25 

MPa concrete is used for the bottom slab, 30 MPa concrete for the top vault, and 35 MPa concrete 

for the lateral walls. The reinforcement setup is summarized in Fig. 8. This best ILS-GB solution 

costs 3.11% more than the best minimum cost reported by Carbonell et al. [3]. However, the varia-

ble action taken into account in [3] was only a superficial embankment uniform load of 10 kN/m2, 

whereas a distributed load of 4.0 kN/m2 as well as a heavy vehicle load of 600 kN [3] were consid-

ered in the present study. In addition, the meta-SA algorithm used by Carbonell et al. [3] required 
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approximately 24 h of computing time to calibrate the SA, while the ILS-GB algorithm developed 

in the present research does not require calibrating. 

 

 

Figure 8  Reinforcement for the ILS-GB best result, referred to a length of 1 m vault. 

 

5 CONCLUSIONS 

In this paper we describe an algorithm which is useful for the automatic design as well as cost min-

imization of RC vaults based on an iterated local search and a Gray code global best-descent local 

search named ILS-GB. This ILS-GB algorithm combines an iterated local search strategy, a global 

best local search and a random search acceptance criterion which always applies a perturbation to 

the most-recently visited local minimum. This algorithm does not require feasible solutions as initial 

solutions or calibration. The local optima found by this ILS-GB are extreme values forming a sim-

ple random sample fitting a Weibull distribution of three parameters, γ being an estimate of the 

global optimum which this algorithm could reach. The best value obtained by ILS-GB differed only 

0.81% compared to the theoretical minimum value. The study verified two objective stopping crite-

rion for a multi-start ILS-GB algorithm: 1) the difference between the minimum cost found and the 

γ parameter and 2) the confidence interval for this parameter are limited, e.g., to 1%. The parame-

ters for a vault are estimated from nine samples taken with the bootstrap technique. The results are 

quite encouraging and suggest that this approach may easily be adapted to other optimization prob-

lems. Moreover, the optimization results indicate a savings of about 7% compared to a traditional 

design. It is worth noting that the results obtained may certainly be improved, e.g., by extending to 

population-based ILS, which seems a worthy subject for future research. 
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