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Abstract 

 

This paper deals with the economic optimization of reinforced concrete (RC) bridge piers 

with hollow rectangular sections and describes the efficiency of three heuristic algorithms:  

two new variants of the ant colony optimization (ACO) algorithm, the genetic algorithm (GA) 

and the threshold acceptance (TA) algorithm. The GA and TA are used for comparison with 

the new ACO algorithms. The total number of variables is 95. All variables are discrete in 

this analysis. The calibration of the new ACO algorithm recommended a 250-member ant 

population and 100 stages. The best solution costs 69,467 euros, which means savings of 

about 33% as compared to experience-based design. Finally, results indicate that the new 

ACO algorithms are potentially useful for optimizing the costs of real RC structures. 

  
Keywords: structural design, economic optimization, ant colony optimization, concrete 
structures. 
 
 



3 

 
 
 
 
 
1  Introduction 

 

The design of bridge piers is crucial for the design of prestressed concrete viaducts. The 

piers make up between 20% and 50% of the total cost of the viaduct depending on pier 

heights and foundation conditions. Rectangular hollow cross-sections as described in the 

present paper are most frequently used. Current designs of such reinforced concrete (RC) 

structures are highly conditioned by the experience of structural engineers. Design 

procedures usually adopt cross-section dimensions and material grades based on 

commonly sanctioned practice. Once the geometry and materials of the structure are 

specified, the reinforcement of the pier is tentatively defined according to experience. The 

first-order stress resultants are analyzed and second-order (buckling) stress resultants are 

then estimated according to simplified and conservative formulae or following a more 

general method that accounts for second-order deformations and includes the non-linear 

stiffness of the column. Tentative passive reinforcement must then satisfy the limit states 

prescribed by concrete codes. Should the dimensions, the material grades or the 

reinforcement be insufficient, the structure is redefined on a trial-and-error basis. This 

process leads to safe designs, but the cost of the RC pier is, consequently, highly 

dependent upon the experience of the structural designer. In contrast to designs based on 

experience, artificial intelligence has been applied to a variety of fields including the solution 

of constrained problems. The design of RC structures is a problem of selecting design 

variables as subject to structural constraints for which artificial intelligence is aptly suited.  

 

   Exact methods and heuristic methods are the two main approaches to structural 

optimization. Exact methods are usually based on the calculation of optimal solutions 

following iterative techniques of linear programming of the expressions of the objective 
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function and the structural constraints [1,2]. These methods are computationally quite 

efficient when the number of variables is limited since they require a small number of 

iterations. However, they must solve the problem of linear conditioned optimization in every 

iteration of the analysis, which is computationally laborious when there is a large number of 

variables. In addition, exact methods require explicit expressions for the constraints which 

are not available in the present case of a non-linear buckling column. The second approach 

involves the heuristic methods based on artificial intelligence procedures. These methods 

include a wide range of artificial intelligence search algorithms, such as genetic algorithms, 

simulated annealing, threshold accepting, tabu search, ant colonies, and the like [3-7]. 

These methods involve simple algorithms, but they also require a considerable 

computational effort, since they include a large number of iterations in which the objective 

function is evaluated and the structural constraints are checked.  

 

As regards RC structures, early applications include the work of Coello et al. [8], who 

used genetic algorithms to optimize RC beams, and that of Leite and Topping [9], who 

applied GA algorithms to prestressed concrete beams. Another early GA application to 

concrete members is reported in the 1998 study by Kousmousis and Arsenis [10] while 

Rafiq and Southcombe [11] applied genetic algorithms to RC columns. Recently, a variety of 

RC applications has been discussed in the literature. Examples include the work of Hrstka 

et al. [12] and Leps and Sejnoha [13], who optimized several types of RC beams; Lee and 

Ahn [14] as well as Camp et al. [15], who both optimized RC building frames by genetic 

algorithms. And more recently, research by Rafiq et al. examined the design of biaxial 

columns [16]. Since 2005, our research group has also studied the application of mainly 

simulated annealing and threshold acceptance to the optimization of RC walls, bridge 

frames, building frames, bridge piers and vault underpasses [17-22]. It is worth noting that 

RC heuristic studies are only a small fraction of the number of structural applications 

reported in the literature, the applications mostly being devoted to steel structures. 

Pioneering GA applications for steel structures can be found in the 1992 studies by Jenkins 
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[23] and Rajeev and Krishnamoorthy [24]. A recent application to steel trusses is reported 

by Lamberti [25], while a literature survey on evolutionary algorithms applied to structures 

can be found in Kicinger et al. [26]. 

 

   The rectangular hollow section piers object of this study are those commonly used in the 

construction of cast-in-place prestressed concrete road and railway viaducts. They are 

mainly used with heights of more than 20 m, and they are regarded as the most functional 

solution for the intermediate supports of viaducts. The external perimeter usually includes 

reliefs for aesthetic purposes, which does not reduce generality from this study of 

rectangular hollow sections. The parts of the hollow rectangular pier are the following (see 

Figure 1): the foundation that is either a surface footing or can include deep piles, the main 

hollow shaft and the top part that sustains the reactions of the pair of bearings of the bridge 

deck. The construction is normally done in column stages of about 5.00 m in height. The 

depth of the cross-section is usually taken as 1/10 to 1/15 of the pier height, and the 

thickness of the walls is between 0.25 m and 0.40 m. The dimensions of the footing depend 

on the permissible ground stress. Alternatively, a piled foundation is required when there is 

not enough ground strength. The main data or parameters that affect pier design are the 

pier height as well as the vertical and horizontal loads that transfer the deck and the 

permissible ground stress. They are generally calculated to sustain the actions prescribed 

by the loading code considered in the analysis [27] and must fulfil the limit states prescribed 

by the concrete code under consideration [28].  

 

The objective of this study is to examine the heuristic optimization of this type of RC 

structure. The method followed consisted in developing an evaluation computer module in 

which cross-section dimensions, materials and steel reinforcement are taken as discrete 

variables. This module computes the cost of a solution and checks all the relevant limit 

states. ACO, GA and TA algorithms are then used to search the solution space. It is 

important to note that the present study is an updated and revised version of the conference 
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study by Martinez et al. [21], which was an initial analysis that concentrated on ACO 

algorithms and did not include the GA and TA algorithms for comparative purposes. In 

addition, the ACO part of the initial paper has been expanded with previously unreported 

data and tables as well as a new treatment of the required number of runs.  

 

2 Optimization problem definition 

 

2.1  Problem definition 

In this study, the problem of structural concrete optimization involves an economic 

optimization to minimize the objective function F in expression (1), satisfying as well the 

constraints of expression (2). 
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Note that x1,x2,…,xn are the design variables for the analysis described in section 2.2. The 

remaining data necessary to calculate a pier are the parameters of the problem described in 

section 2.3. The objective function in expression (1) and section 2.4 is an economic function 

expressed as the total unit prices multiplied by the construction unit measurements 

(concrete, steel, formwork, etc.). The constraints in expression (2) and section 2.5 are all the 

service and ultimate limit states that the structure must satisfy, as well as the geometrical 

and constructability constraints of the problem. 

2.2 Design variables 

Variables define the geometry, the type of concrete in the different parts of the pier and 

the reinforcement setup for the pier. The other data necessary to calculate a pier are 

defined as parameters of the analysis. Logically, parameters are not part of the optimization 
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procedure, although they will be necessary for later design space studies. The pier 

considered in this paper is pier P-1 of the viaduct over the river Palancia on the motorway A-

23 Sagunto-Somport (Spain). The pier is the most heavily loaded pier of a viaduct whose 

span lengths are 60-90-60+6x49 m. The pier supports a 60-m span on the left side and a 

90-m span on the right side. The deck width is 11.80 m.  The height of the pier is 23.97 m, 

built in the six stages specified in Figure 1. The solutions of this rectangular hollow pier are 

defined by a total of 95 variables. 

 

The 95 variables include 79 variables to define the column and 16 to define the 

foundation. The first 10 variables of the column are geometrical and correspond to the 

frontal and lateral thicknesses of the 5 hollow column stages into which the pier is split. The 

thicknesses of each stage must be equal to or smaller than those of the stage underneath. 

Thicknesses can vary between 0.25 m and 0.75 m in steps of 0.025 m. The next 6 column 

variables are the concrete qualities of the 6 column stages, which must decrease with the 

height. These qualities can vary between the HA-25 and the HA-50 considered by the 

structural code EHE, the number indicating the characteristic compressive cylinder strength 

at 28 days. The remaining 63 column variables correspond to reinforcement. The 

longitudinal reinforcement of the column is defined by the spacing and the diameter of the 

bars, which is different for the frontal and lateral walls and for the outer and inner faces. This 

means 8 variables per stage and a total of 48 variables in the six stages. The spacing varies 

from 0.10 to 0.30 m in steps of 0.02 m, and the diameters considered are 12, 16, 20, 25 and 

32 mm. The number of bars in a stage is the same as in the stage below, or it may be 

reduced by half if the number is even or by half plus one if the number is odd. The diameter 

of the bars must be equal to or smaller than that of the stage below. The shear 

reinforcement accounts for 3 variables per hollow stage: the vertical spacing and the bar 

diameters in the frontal and lateral sides. The spacing varies from 0.10 to 0.30 m in steps of 

0.025 m. This reinforcement involves a total of 15 variables (3 by 5 hollow column stages).  

These 15 variables, together with the 48 defining longitudinal reinforcement, total 63 
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variables for the reinforcement. Finally, the reinforcement of the top stage of the pier is 

calculated and added to the measurement of passive reinforcement. It is important that all 

variables are discrete and not continuous. The tables of reinforcement include bar diameters 

and spacing, so all the ultimate limit states (ULS) and service limit states (SLS) can be 

checked in detail. 

 

 There are 16 variables that define footing values. The first 5 are geometrical and define 

the total depth of the footing, the plan dimensions of the footing and the plan dimensions of 

the plinth. The depth of the plinth is equal to half the total depth of the footing.  The depth of 

the footing varies between 1.00 and 4.00 m in steps of 0.10 m, and the plan dimensions of 

the footing measure between 8.00 and 15.00 m in steps of 0.25 m. The plan dimensions of 

the plinth range from 4.00 to 15.00 m in steps of 0.25 m. Another variable defines the type 

of concrete and the 10 remaining variables define the reinforcement of the footing and the 

plinth. 

 

The set of value combinations for the 95 variables may be defined as the solution 

space. Such space is, in practice, unlimited due to what is known as combinatorial 

explosion; the number of combinations in this case is on the order of 1043. Each vector of 95 

variables defines a solution whose economic cost is given by expression (1). Solutions that 

satisfy the constraints of the limit states in expression (2) will be called feasible solutions. 

Those that do not satisfy all constraints will be deemed as unfeasible solutions. 

 

2.3  Parameters 

The parameters of the analysis are all the magnitudes taken as fixed data. They are 

required to calculate the pier, but they do not vary during the optimization analysis. The 

parameters can be grouped as geometrical, actions on the pier, ground properties, partial 

factors of safety and durability exposure conditions. As previously mentioned, the main 

geometrical parameter is the height of the pier (23.97 m). Other geometrical parameters are 
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the dimensions of the cross-section of the pier. The frontal side is 4.84 m (data given by the 

soffit of the bridge deck). The lateral dimension is fixed at 2.60 m as in the built pier. This 

value could have been the object of optimization, but it has been kept constant in this study 

to allow for the direct comparison of results with the built pier without modifying the outer 

dimensions of the cross-section. (Logically, the optimization of the lateral dimension of the 

pier and its possible variation with the height has been the subject of additional research by 

Martinez [29].) The actions considered together with the main parameters studied are 

summarized in Table 1. These parameters are kept constant for the calibration of the 

algorithms described in section 4. 

 

2.4  Cost function 

The objective function considered is the cost function defined in expression (1), where pi 

are the unit prices while mi are the measurements of the units into which the construction of 

the RC pier is split. The cost function includes the price of materials (concrete and steel) 

and all the entries required to evaluate the full cost of the pier, including, among others, the 

excavation of the foundation and its lateral fill. The basic prices considered are given in 

Table 2. These prices were obtained from national contractors of road construction in 

October 2007. 

 

Given the 95 variables of the present problem, the measurement and cost evaluation of 

a particular solution are straightforward. The majority of the computational work is required 

for the evaluation of the constraints of the limit states in the following section 2.5. It is 

important to note that many studies transform constrained problems into unconstrained 

ones using penalty functions. Penalty costs are small for slight breaches in compliance and 

greater for major ones. This work is restricted to feasible solutions for the ACO and TA 

algorithms, while the GA algorithm requires using penalty functions. 
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2.5  Structural constraints 

The structural constraints in expression (2) are all the limit states with which the column 

and the foundation must comply. Once the 95 variables defining a pier are set, then 

geometry, materials and passive reinforcement are fully defined. No attempt is made to 

compute the passive reinforcement according to usual design rules. Such common design 

procedures follow a conventional order to obtain reinforcement bars from flexural-shear ULS 

and, then, checking SLS and redefining if necessary. This order is effective, but it ignores 

other possibilities that heuristic search algorithms do not. In this sense, for example, it is 

possible to suppress shear reinforcement by increasing flexural reinforcement, which may 

result in more economical designs, as previously demonstrated for earth retaining walls [18]. 

 

The column must comply with the ULS for buckling, shear and fatigue, and the SLS 

for cracking. The ULS for buckling requires the greatest amount of computing time. It was 

checked with the stiffness method as reported by Manterola [30] and described in the 

following. This method takes into account the longitudinal and transverse stiffness on top of 

the pier due to the rest of the bridge, the values being 7749 kN/m in the longitudinal and 

14483 kN/m in the transverse directions. First, an eccentricity is adopted in the weak 

direction from the construction imperfection, for which the value on top is that of section 

4.3.5.4 in the Eurocode 2 [31], and a sine shape is assumed for the imperfection. From the 

factored actions and the construction imperfection, the deformed shape is then calculated 

with the stiffness method, considering the stiffness of the different pier sections calculated 

from the corresponding moment-curvature diagrams. This deformed shape gives the 

second-order bending moments on the pier which, added to the first-order bending 

moments, equals the total bending moments. It is then necessary to check the biaxial 

bending of all the sections which results in a new calculation of deformations. Should the 

biaxial bending moments exceed the resistance values, the solution is considered as 

unfeasible. Deformations are calculated successively, and the column is accepted as stable 

when the increment in deflections decreases and converges. The process is repeated until 
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the longitudinal and transverse deflections differ by less than 5% from the value of the 

previous iteration. The procedure checks that compression and biaxial bending moments 

are acceptable in all iterations. The integration of cracked sections is performed with the 

Gauss-Legendre quadrature proposed by Bonet et al [32]. As regards the stress-strain 

relationships and the ULS domains for deformation, the procedure uses those proposed in 

the EHE [28] corrected by 1+φ*, where φ* is the coefficient of reduced creep that takes into 

account the percentages of axial and bending moments due to permanent loads as 

compared to the total values. 

 

Computing the SLS for cracking checks the relation between the crack width and the 

maximum width allowed depending on exposure conditions. Moreover, the ULS for shear 

verifies that the two ultimate values are larger than the factored acting shear. The ULS for 

fatigue ensures that the stress increments are smaller than those specified by the Eurocode 

2 for concrete bridges [33]. In addition, the procedure checks all the constraints for minimum 

amounts of reinforcement due to flexural, shear and geometry as prescribed by EHE [28]. 

The footing is checked from the ground stresses calculated in the SLS.  A trapezoidal block 

is used unless there is lifting, in which case a triangular distribution is used. Peak values can 

increase by 25% compared to the permissible ground stress. Reinforcement is checked in 

accordance to the EHE prescriptions, including verification of flexure, shear, cracking and 

fatigue. 

 

 

3  Applied heuristic search methods  

3.1 Proposed ant colony procedure 

The first two procedures used in the present work are two variants of the ant colony 

optimization, which was originally proposed by Dorigo et al. and Bonabeau et al. [34,35]. 

The algorithm is based on the behaviour of ant colonies in their search to find sources of 



12 

food. A single ant cannot do much on its own, but a group of ants behaves as an intelligent 

system. When they leave the nest, the first trajectory of individual ants is primarily random. 

However, the ants that find food mark the path with a trace of pheromone. Hence, the 

trajectory of a second group of ants searching for food will depend both on the trace of 

pheromone left by the first stage ants as well as a random component. Moreover, 

successive stages of ants strengthen the trace of already-explored paths or discover new 

and shorter paths, where the trace pheromone is quickly improved since more ants follow 

the path in less time leaving additional pheromone. Another factor is evaporation, which 

causes longer paths to lose the trace of pheromone over time in contrast to shorter paths 

where the pheromone is replaced faster. In any case, the random component of the search 

is never lost so that the diversity of the search is guaranteed. 

 

The application of the proposed ACO algorithm follows from expressions (3) to (6) 

and the explanations below: 
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The process of calculation includes a number of stages with H ants (solutions) generated in 

every stage. The first stage generates H ants by randomly selecting the values of the 

variables. The cost of the lowest cost ant is called Fmin, which will be, in the remainder of this 

analysis, the lowest cost of all the ants generated throughout all the stages of the algorithm. 

The increment in the trace left by a single ant, ∆T(t,k,i,j), is calculated by expression (3), 

where F(k) is the cost of the k ant; t is the number of stage; i is the number of variable; and j 

is the position in the list of possible values for the variable. Note that the exponent of 100 in 
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the expression is a coefficient of intensification such that low cost ants leave far more 

pheromone than do more expensive ants. (Note that other exponents were tentatively tried 

before the results reported in section 4 and that the 100 value was maintained.) It then 

follows the calculation of the increment in the trace left by the entire set of ants of the stage, 

∆T(t,i,j), which is given by adding in expression (4) the trace left by individual ants. Once the 

trace increment is known, the procedure calculates the total trace at the end of stage t, 

T(t,i,j) using expression (5), which depends both on the trace increment and on the total 

trace at the end of the previous stage. The value of Fmin,t is the cost of the lowest cost of the 

H ants generated in the current stage t. The formula also includes an evaporation coefficient 

ev, which is taken as unity. Finally, expression (6) indicates the probability of selecting the j 

position of the i variable, ant k and stage t.  The expression includes the term T(t,i), which is 

the addition of all the traces of all the positions of variable i after stage t. It is worth noting 

the inclusion of two coefficients, α and β, which determines if the choice prefers the trace or 

the random selection. R is a random number between 0 and 1. The results in the following 

section include results with initial values for α and β of 0.2-0.8, 0.5-0.5 and 0.8-0.2 so as to 

determine the influence of offering more or less random choice to the generation of ants. In 

any case, α and β are made to converge to 1 and 0 (α+β=1) in order to converge to full use 

of the trace search with no exploration (random) search. The convergence of  and  to 1 

and 0 is linearly made with the number of stages, i.e  = o + (1- o).t/tmax, where t is the 

number of stage, and tmax is the total number of stages. Once the probability of each position 

j is known, the procedure generates ants by means of the roulette, taking into account the 

high or low probability of choosing a position. 

 

 It must be stated that the generation of ants does not guarantee that all the ants are 

feasible solutions. Two algorithms were tested. In the first algorithm, ACO01 in section 4, 

the set of generated ant solutions is made up of feasible and unfeasible solutions, and the 

latter are discarded. The second algorithm, ACO02 henceforth, requires that the entire set 

of solutions be feasible. The proposed algorithms differ from the ant system (AS) and the 
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ant colony system (ACS) algorithms [35] in that the concept of visibility is not used, since 

such a concept makes sense in the travelling salesman problem (TSP) but is difficult to 

extrapolate to the present context of bridge pier design. Note that the concept of ant visibility 

is used in the TSP, where an ant following a tour of cities can see which cities are closest to 

its current position and hence decide the next city to visit following a probability transition. In 

this sense, the study by Camp et al. [36] mapped the design of steel frames into the form of 

a TSP and then applied an ACS algorithm. Thus, the proposed algorithms in this study do 

not reduce the structural problem to a TSP, but rather they make use of the concept of 

pheromone trace and random exploration in expression (6) as the basis for a new structural 

ACO application.   

 

3.2 Genetic algorithm procedure 

The second search procedure used in this study involves genetic algorithms (GA 

henceforth), originally proposed by Holland in 1975 [4]. They are based on principles from 

population genetics and evolution theory. GA begin the search process with a subset of 

solutions (population), which are usually random and distributed across the search space. In 

the process of building the next generation, five operators are used: selection, crossover, 

mutation, elitism and fitness scaling. To a certain degree, these operators resemble natural 

evolution. The selection operator is used to choose the solution, which will have a chance to 

pass part of its characteristics to the next generation. The selection is performed depending 

on the fitness of the individuals, and hence, high quality solutions have a higher probability 

of being selected. The crossover operator is responsible for the exchange of information 

between two selected solutions, thus stimulating to some extent information exchange 

through sexual reproduction of natural organisms. The crossover operator decides not only 

whether or not information is exchanged between two individuals, but also which information 

is transferred from each of the two individuals to the new solutions. The third operator, 

mutation, randomly changes some information of the new solutions. Finally, if the best 

solution of the current generation is worse than that of the previous one, the best solution of 
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the previous generation is reinserted in the current generation using the elitism operator. 

Fitness scaling ensures that the proportion of best and mean fitness individuals selected is 

constant by transforming the values of the objective function of those individuals. A detailed 

description of linear fitness scaling was given by Goldberg in 1989 [5]. Most GA 

implementations use a binary string, which can be understood in analogy to population 

genetics as a chromosome, so that mutation and crossover operate conveniently. Practical 

application of GA can be found in Dreo et al [3], Holland [4] and Goldberg [5]. A thorough 

review of penalty functions available in literature can be found in the study by Coello [37]. 

The present study considers two algorithms. The first algorithm, GA01 henceforth, is a 

classical algorithm in which all the constraints are evaluated to form the penalty function. 

The penalty function used for unfeasible GA01 solutions is Fp(k) = F(k) + A/f, where Fp is the 

penalized cost; f is a less than one coefficient of unfeasibility, and A is a constant equal to 

20,000 euros. The second algorithm, GA02 henceforth, is an algorithm that only uses the 

first violated constraint to form the penalty function. The penalty function used for unfeasible 

GA02 solutions is Fp(k) = F(k) + A/f, where Fp is the penalized cost; f is a less than one 

coefficient of unfeasibility, and A is a constant equal to 30,000 euros. 

 

3.3 Threshold accepting procedure 

The third search method used in this research is threshold accepting (TA henceforth), 

which was proposed by Dueck and Scheuer in 1990 [38] as an alternative to the simulated 

annealing algorithm. The present TA algorithm has already been reported in detail in the 

study by Perea et al. [19]. The algorithm starts with a feasible solution randomly generated 

and a high initial threshold accepting value. The initial working solution is changed by a 

small random move of the values for the variables. The new current solution is evaluated in 

terms of cost. Higher cost solutions are accepted when the cost increment is smaller than 

the current threshold accepting value. The current solution is then checked against 

structural constraints and if feasible, it is adopted as the new working solution.  The initial 

threshold accepting value is decreased geometrically by means of a coefficient k. A number 
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of iterations called cycles is allowed at each step of threshold accepting value. The 

algorithm stops when the threshold accepting value is a small percentage of the initial value 

(typically 1%). The TA method is able to surpass local optima at high-medium threshold 

values and gradually converges as the threshold value drops to zero. The TA method 

requires calibration of the initial threshold accepting value, the length of the cycles and the 

reducing coefficient. Adopted values for the example in this work are given below. The initial 

threshold value was adjusted as proposed by Medina [39]. Note that the codes of the 5 

optimization algorithms can be found in the web page of our research group 

(www.upv.es/gprc). 

 

4 Results of the optimization algorithms 

The optimization by ant colonies was applied to the same column (23.97 m in height) 

whose parameters are defined in Table 1. The application of the algorithm described in 

section 3 requires the definition of the initial values for α and β in expression (6), the number 

of ants in each stage, H, and the number of stages. First results were obtained for initial 

values of α=0.2 and β=0.8 and for initial values of α=0.8 and β=0.2. As explained above, the 

values for α-β are made to converge to 1 and 0 as the analysis progresses while α+β=1. 

Second, the number of ants considered in each stage is as follows: 50, 100, 250 and 500 for 

algorithm ACO01 and 10, 25, 50, 100 for algorithm ACO02. Third, the number of stages 

considered was 20, 40, 60, 80 and 100 for algorithm ACO01, whereas for algorithm ACO02 

the product of the number of ants multiplied by the number of stages was kept constant at 

5000 so as to maintain similar computing times. Due to the random nature of the results, a 

number of runs of each algorithm was performed for statistical purposes. The number of 

runs was fixed using a Student’s t-distribution and required that an approximate 95% 

confidence interval of the population mean be estimated with an error less than 382 euros. 

This euro value is 0.5% of the cost of a random walk solution of 25000 feasible solutions.  

The estimated error is given by 
N

s
tN

5.2

1 , where 5.2

1Nt  is the Student’s t-distribution coefficient, 
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s is the standard deviation and N is the number of runs. A maximum of 50 runs was also 

considered. 

 

   Tables 3 to 5 summarize the results for the ACO01 and ACO02 algorithms, while Figures 

2 and 3 illustrate typical evolutions of the cost with the computing time. Computer times 

were obtained using a processor Core 2 Duo of 1.86 GHz. Results in Tables 3 and 4 for 20-

40-60-80 stages are intermediate results of the 100 stage runs, i.e results in Table 3 and 4 

only include four independent groups of runs for a 100 stages. This shows the convergence 

of the estimated error with the number of stages. Similarly, Table 5 has four independent 

groups of runs. Results for the first four stages are intermediate results of the fifth stage 

result. Results indicate that there is an improvement in the cost optimization since the 

number of ants increases as does the number of stages. In this sense, Figure 4 clearly 

illustrates this tendency. However, it is worth noting that the best result is obtained in stages 

prior to the last stage. A comparison of Tables 3 and 4 reveals that the best results are 

obtained for initial α=0.8 and β=0.2, which means that it is essential, right from the 

beginning of the analysis, to give weight to the trace of ants, rather than to random choice. 

Additional results for α=0.5 and β=0.5 confirm this tendency. The best results are obtained 

for algorithm ACO01 (in Table 4) for H=250 and 100 stages. Similar results in terms of cost 

are obtained for algorithm ACO01 (in Table 4) for H=500 and 100 stages and for algorithm 

ACO02 (in Table 5) with computer running times of about 2000 seconds. The minimum cost 

of the best cost solution is 69,467 euros. Figure 5 highlights the main results of the ACO01 

analysis of the cross-section at the bottom of the pier which was built with class C45 

concrete. The sequence of concrete grades in the six stages of the column is 45-45-35-30-

25-25. The depths of the bottom walls are 0.375 and 0.250 m. The overall ratio of 

reinforcement in the hollow column is 70.73 kg/m3. It may, hence, be concluded that results 

of the optimization search tend toward slender and fairly reinforced structural piers. Results 

indicate savings of about 33% as compared to the design based on the bridge designers’ 

experience. 
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It is worth noting that Table 4 gives a time of 2756 seconds for 500 ants and 100 stages. 

This results in a total of 50,000 evaluations and about 0.055 seconds per evaluation. 

However, Table 3 indicates a time of 1031 seconds for 500 ants and 100 stages, which 

totals 50,000 evaluations and about 0.021 seconds per evaluation. The difference in 

computer time per evaluation is due to the fact that results in Table 4 have a larger 

percentage of feasible solutions. This leads to the conclusion that the average time required 

for an evaluation varies from one algorithm to another. This is so since the checking of limit 

states is done sequentially, and the verification of constraints is halted once the structure 

does not verify a single constraint in the list. The list of limit states is ordered so that less 

computer time demanding constraints are checked first, while the most demanding 

instability limit state is checked last. The fact that the average evaluation time varies from 

one algorithm to another explains why it is better to give computer times instead of number 

of evaluations. 

 

Tables 6 to 9 summarize the results for the GA and TA algorithms, while Figures 6 and 7 

compares typical evolutions of the cost and the computing times. Regarding the GA, results 

indicate that cost optimization is improved since the population size increases, although the 

computing time increases substantially. In Table 6 are the results for GA01 without elitism, 

and in Table 7, results for GA01 with elitism. A comparison of these tables shows that there 

is a clear improvement with elitism. The best results are achieved with elitism, a 500-

member population, 100 generations and a 0.75 crossover (see Table 7). This solution 

costs 69,343 euros, which is quite similar to the 69,467 cost of the ACO algorithm, the 

difference being 0.18%. As regards the GA02 results (Table 8), the best results are 

achieved with elitism, a 500-member population, 100 generations and a 0.50 crossover. 

This solution costs 69,368 euros, which again is quite similar to the 69,467 cost of the ACO 

algorithm. In addition, GA02 results improve substantially GA01 computer runs (compare 

Tables 7 and 8) and note that the computer runs of 250 population size and 100 generations 
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are quite similar to the ACO computer times without a significant loss of accuracy. 

Regarding the TA algorithm, the best results are achieved with 10-30% for the range of 

acceptances for the initial threshold, a reduction factor of 0.95 and a 1000 size for the cycle 

chains (see Table 9). The cost of this TA solution is 69,162 euros, which is substantially 

similar to that 69,467 euros of the ACO algorithm, the difference being 0.44%. Table 10 

summarizes the main differences in the results from the three algorithms. It is worth noting 

that the three algorithms yield similar results in terms of minimum cost found. Nevertheless, 

the TA 6th heuristic algorithm outperforms ACO and GA algorithms in terms of best result, 

mean and required computing time. Regarding the TA and GA solutions, Figures 8 and 9 

depict respectively the bottom section pier designs. Additionally, Figure 10 shows the design 

based on experience for the pier that was actually built. Finally, Table 11 compares the 

basic material measurements of the pier built and the results of the ACO01, ACO02, GA 

and TA algorithms. 

 
 

5  Conclusions 

Three efficient ACO-GA-TA algorithms for the design of rectangular hollow section piers 

are described. The ACO algorithm is oriented to structural concrete problems and combines 

ant memory trace intensification and random diversification. The proposed algorithm differs 

from previously reported ACO algorithms in that the concept of visibility is not used, since 

this concept makes sense in other combinatorial problems like the TSP, but it is difficult to 

extrapolate to the present context of structural design. The procedure includes the 

verification of a real concrete structure, which implies a design with the full code of practice 

verification of the RC structure against the loads prescribed by a code of bridge loading. Far 

from being an academic exercise, the present ACO design is applied to a real structure and 

reduces costs by about 33% with respect to a conventional design developed by the same 

authors. The proposed ACO algorithms yield the best results for α=0.8 and β=0.2 in 

expression (6), which means that it is crucial to give more initial weight to the trace of ants, 
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rather than to random choice, right from the beginning of the ACO analysis. The present 

study also presents a Student´s t-distribution procedure for estimating the number of 

computer runs required to attain a certain confidence interval of the population mean.  This 

procedure is used to compare with other metaheuristic algorithms, such as the GA and TA 

algorithms, so as to determine comparable running times with similar precision. The ACO-

GA-TA algorithms yield similar results, although the TA heuristic 6 outperforms ACO and 

GA algorithms in terms of best, mean and computing times. Regarding population 

algorithms, the ACO is more robust than the GA algorithms in terms of mean results while 

the GA outperforms ACO algorithms in terms of best results. Finally, future studies on the 

topic of bridge piers will focus on taller piers which normally include variable-in-height outer 

cross-sections and parametric studies of optimum designs for typical road and railway 

viaducts. 
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Figure 2: Typical cost variation for the ACO01 algorithm. 
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Figure 3: Typical cost variation for the ACO02 algorithm. 
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Figure 4: Cost versus computing time for ACO02, initial α=0.8 and β=0.2.  
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Figure 5: Optimized ACO design of RC pier at bottom section. 
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Figure 6: Typical cost variation for the GA01 algorithm. 
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Figure 7: Typical cost variation for the TA algorithm. 
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Figure 8: Optimized GA01 design of RC pier at bottom section. 
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Figure 9: Optimized TA design of RC pier at bottom section. 
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Figure 10: Built design of RC pier at bottom section. 
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Parameter Values 

   Transverse dimension of the pier 4.84 m 

   Longitudinal dimension of the pier 2.60 m 

   Height of pier 23.97 m 

   Height of top end block 3.00 m 

   Height of formwork stage 5.00 m 

   Number of bearings 2 

   Spacing of bearings 3.60 m 

   Transverse dimension of bearing 1.20 m 

   Longitudinal dimension of bearing 1.20 m 

   Earth fill density 20.00 kN/m3 

   Permissible ground stress  500.00 kN/m2 

   Reactions maximum load SLS 15445, 14241 kN 

   Reactions maximum torque SLS 15690, 11442 kN 

   Reactions minimum loading SLS 11724, 11708 kN 

   Bearing deformation force 725.25 KN 

   Braking horizontal force 262.12 kN 

   Wind horizontal force 1503.77 kN 

 

Table 1: Basic parameters of geometry and actions of the pier 
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Unit 
Unit cost  

(€) 
Kg of steel (B-500S) 0.73 

m2 of foundation formwork 18.00 

m2 of wall formwork 48.19 

m3 of footing concrete (labour) 6.20

m3 of wall concrete (labour) 6.50

m3 of concrete pump rent 6.01

m3 of concrete HA-25 45.24

m3 of concrete HA-30 49.38

m3 of concrete HA-35 53.90

m3 of concrete HA-40 59.00

m3 of concrete HA-45 63.80

m3 of concrete HA-50 68.61

m3 of earth removal  3.01

m3 of earth fill-in 4.81

 
Table 2: Basic prices of the cost function of the reported piers. 
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Ants Stages Runs 
Standard 
deviation  

Minimum 
cost(€) 

Average 
cost(€) 

Average 
time (sec) 

Estimated 
error 

50 20 50 4606.57 79331.25 88273.61 25.73 1302.94
50 40 50 3722.51 79331.25 85872.08 51.98 1052.89
50 60 50 2732.42 79291.41 84161.80 78.64 772.85
50 80 50 2527.46 78798.98 83182.16 105.12 714.87
50 100 50 2102.09 78007.95 82332.70 133.86 594.56
100 20 50 3060.28 79291.51 84675.24 47.69 865.58
100 40 50 2582.00 77380.72 83037.11 94.89 730.30
100 60 50 2039.45 77380.72 82082.97 143.21 576.84
100 80 50 2106.66 76885.82 81067.67 191.48 595.85
100 100 50 2093.82 75530.44 80231.88 239.26 592.22
250 20 50 1883.20 78676.38 82274.17 108.57 555.32
250 40 50 1709.14 77246.29 80670.89 216.64 504.00
250 60 50 1495.00 76790.77 79978.53 325.90 440.85
250 80 50 1310.01 76594.36 79193.78 432.39 386.30
250 100 50 1293.67 75993.42 78723.50 540.93 381.48
500 20 39 2339.76 74223.87 80500.89 212.26 757.19
500 40 39 1974.59 74223.87 79182.98 416.64 639.01
500 60 39 1709.59 74223.87 78579.22 619.70 553.25
500 80 39 1332.39 74223.87 77815.48 821.32 431.19
500 100 39 1159.18 73997.35 77297.74 1031.18 375.13

 
 
 

Table 3: Results of the ACO01 algorithm for initial α=0.2 and β=0.8. 
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Ants Stages Runs 
Standard 
deviation 

Minimum 
cost(€) 

Average 
cost(€) 

Average 
time (sec)

Estimated 
error 

50 20 50 4395.00 74741.91 81778.00 38.01 1243.09
50 40 50 2450.36 74741.91 79631.88 74.26 693.07
50 60 50 2023.05 74166.39 78267.75 110.82 572.21
50 80 50 2031.46 72709.63 77794.55 146.66 574.58
50 100 50 1943.79 71809.04 76695.13 183.45 549.79
100 20 37 2041.89 73106.54 76671.66 73.26 678.42
100 40 37 1608.10 72997.22 75503.25 144.16 534.29
100 60 37 1384.66 71441.13 74731.33 214.35 460.05
100 80 37 1094.78 71441.13 74214.90 287.51 363.74
100 100 37 1146.23 71406.67 73831.68 361.06 380.84
250 20 17 1521.28 70856.21 72976.27 213.38 782.21
250 40 17 957.70 69958.28 71569.62 494.45 492.42
250 60 17 913.83 69951.65 71218.49 779.87 469.87
250 80 17 640.35 69794.76 70766.00 1066.12 329.25
250 100 17 701.03 69467.42 70484.77 1372.04 360.45
500 20 16 1176.14 70309.11 72581.16 416.97 626.59
500 40 16 1288.96 70088.50 71412.19 980.10 686.69
500 60 16 875.53 70031.85 70871.19 1546.77 466.44
500 80 16 870.70 69807.73 70745.77 2134.39 463.87
500 100 16 707.98 69581.26 70609.27 2756.47 377.17

 

 
Table 4: Results of the ACO01 algorithm for initial α=0.8 and β=0.2. 
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Ants Stages Runs 
Standard 
deviation 

Minimum 
cost (€) 

Average 
cost (€) 

Average 
time (sec)

Estimated 
error 

10 2 12 7135.86 80065.45 90629.15 10.02 4533.94
10 125 12 759.75 72365.76 73664.03 579.68 482.73
10 250 12 613.58 71948.44 73118.29 1170.86 389.86
10 375 12 795.44 70715.02 72257.33 1756.79 505.40
10 500 12 590.29 70715.02 72057.46 2330.62 375.06
25 2 13 6722.92 80593.53 86622.66 23.43 4062.97
25 50 13 882.65 71970.75 72757.45 526.99 533.42
25 100 13 787.71 70520.48 71400.42 1066.55 476.05
25 150 13 547.27 69575.27 70916.94 1589.51 330.74
25 200 13 580.78 69575.27 70669.87 2113.29 350.99
50 2 13 3141.53 77565.20 80848.34 44.94 1898.57
50 25 13 698.00 70399.36 71795.84 507.17 421.83
50 50 13 710.11 69894.32 71110.95 1032.55 429.15
50 75 13 592.77 69894.32 70728.49 1567.15 358.24
50 100 13 590.72 69750.73 70582.47 2083.33 357.00
100 2 12 2141.96 74784.70 78603.83 97.86 1360.95
100 12 12 789.83 70372.24 71728.02 510.44 501.84
100 25 12 512.06 70372.24 71069.65 1026.39 325.35
100 37 12 543.56 69955.05 70833.15 1498.70 345.36
100 50 12 583.56 69823.82 70711.49 1986.83 370.78

 
 

Table 5: Results of the ACO02 algorithm for initial α=0.8 and β=0.2. 
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Pop. 
Size Gen. Crossover Runs 

Standard 
deviation 

Minimum 
cost (€) 

Average 
cost (€) 

Average 
time (sec) 

Estimated 
error  

50 100 0.25 50 2611.07 71890.48 76086.30 406.85 738.52 
250 100 0.25 50 1852.37 71033.59 73420.53 1708.54 523.93 
500 100 0.25 50 1467.93 70084.48 73043.40 3309.08 415.19 

50 100 0.50 50 3151.37 72536.91 76189.64 403.19 891.34 
250 100 0.50 50 2084.36 70632.12 73696.42 1783.69 589.55 
500 100 0.50 44 1253.07 71113.62 73460.80 3381.42 377.81 

50 100 0.75 50 1850.79 72628.01 75541.39 399.33 523.48 
250 100 0.75 21 839.67 71546.44 73830.43 1716.90 382.22 
500 100 0.75 35 1088.37 71042.83 73418.62 3341.39 371.80 

 
 

Table 6: Results of the GA01 algorithm without elitism. 
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Pop. 
Size Gen. Crossover Runs 

Standard 
deviation

Minimum 
cost (€) 

Average cost 
(€) 

Average 
time (sec)

Estimated 
error 

50 100 0.25 20 811.53 71994.52 72916.16 520.29 379.80 
250 100 0.25 21 834.32 70639.50 72554.43 2016.51 379.78 
500 100 0.25 24 898.39 69642.24 71309.74 4070.57 379.42 

50 100 0.50 28 984.65 70948.47 72716.20 515.50 381.84 
250 100 0.50 24 894.52 70901.98 72667.53 2113.64 377.79 
500 100 0.50 28 963.13 69692.45 72840.46 3630.26 373.49 

50 100 0.75 26 933.30 71946.87 73459.50 461.86 377.05 
250 100 0.75 50 1352.37 70262.69 72605.84 2329.96 382.51 
500 100 0.75 50 1535.83 69342.92 71982.30 3923.16 434.40 

 
 

Table 7: Results of the GA01 algorithm with elitism. 
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Pop. 
Size Gen. Crossover Runs 

Standard 
deviation

Minimum 
cost (€) 

Average cost 
(€) 

Average 
time (sec)

Estimated 
error 

50 100 0.25 50 2962.40 70558.15 74736.70 404.96 837.89 
250 100 0.25 50 1600.40 69631.39 72513.22 1885.40 452.66 
500 100 0.25 22 840.58 70224.95 71979.83 2836.67 372.76 

50 100 0.50 50 4251.30 70706.70 74308.97 391.33 1202.45 
250 100 0.50 28 985.90 69895.49 72648.66 1715.48 382.32 
500 100 0.50 33 1087.08 69368.52 71798.49 3170.75 382.45 

50 100 0.75 50 4060.59 70006.01 75163.99 389.38 1148.51 
250 100 0.75 47 1291.93 70240.03 72458.66 1677.60 376.89 
500 100 0.75 41 1193.23 69443.47 71965.29 3136.26 376.62 

 
 

Table 8: Results of the GA02 algorithm with elitism and death penalty. 
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Heur. 

Range 
Initial 
Thres. 

Thres. 
reduc. 

Chain 
length Runs

Standard 
deviation

Minimum 
cost (€) 

Average 
cost (€) 

Aver. 
time 
(sec)

Estimated 
error 

1 10%-30% 0.85 500 50 2586.15 69939.58 72139.45 55.68 731.47 
2 10%-30% 0.85 1000 45 1283.01 69218.42 71238.15 119.73 382.52 
3 10%-30% 0.85 2000 45 1266.19 69266.58 70749.19 225.67 377.50 
4 10%-30% 0.95 500 49 1315.34 69162.27 71144.79 151.12 375.81 
5 10%-30% 0.95 1000 50 1547.34 69162.20 71047.17 319.58 437.65 
6 10%-30% 0.95 2000 8 437.03 69372.52 69912.14 666.75 365.42 
7 30%-50% 0.85 500 50 1676.92 69917.32 72280.34 110.54 474.30 
8 30%-50% 0.85 1000 50 1384.57 69523.68 71823.46 210.72 391.62 
9 30%-50% 0.85 2000 50 1520.72 69510.74 71340.56 438.30 430.12 
10 30%-50% 0.95 500 42 1199.36 69202.23 71267.52 319.24 370.13 
11 30%-50% 0.95 1000 40 1189.96 69395.66 70826.86 640.78 380.25 
12 30%-50% 0.95 2000 5 254.57 69749.78 70022.77 1109.20 316.04 
13 50%-70% 0.85 500 50 1906.41 70060.42 73500.99 153.30 539.21 
14 50%-70% 0.85 1000 50 1646.09 69455.23 72280.82 335.70 465.59 
15 50%-70% 0.85 2000 50 1395.05 69488.63 71213.34 625.20 394.58 
16 50%-70% 0.95 500 50 1758.56 69476.01 72262.68 467.16 497.39 
17 50%-70% 0.95 1000 48 1321.22 69690.55 71288.45 940.18 381.40 
18 50%-70% 0.95 2000 6 333.41 69397.79 69993.02 1967.50 349.95 

 
 

Table 9: Results of the TA algorithm. 
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  TA ACO01 ACO02 GA01 GA02 

Min. cost (€) 69162.20 69467.42 69575.27 69342.92 69368.52 
Mean cost (€) 71047.17 70484.77 70669.87 71982.30 71798.49 

Time (sec) 319.58 1372.04 2113.29 3923.16 3170.75 
 

Table 10: Comparison of cost and time of the four heuristic algorithms. 
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Measurement Built pier TA ACO01 ACO02 GA01 GA02 

Kg of steel (footing) 26463.32 11020.99 11301.41 11124.41 11760.86 11826.30

m3 of concrete (footing) 396.75 188.60 188.60 188.60 188.60 188.60
Kg of steel (top block)  4208.92 3927.62 3927.62 3927.62 3927.62 3927.62

m3 of concrete (top block) 37.75 37.75 37.75 37.75 37.75 37.75
Kg of steel (hollow pier) 18855.15 5832.70 5604.41 6196.45 5585.11 5510.52

m3 of concrete (hollow pier) 111.38 86.13 79.23 75.06 72.76 72.76
Kg of steel (total) 49527.39 20781.30 20833.44 21248.48 21273.59 21264.43

m3 of concrete (total) 545.88 312.48 305.58 301.41 299.11 299.11
 
 
 
 
 
 

Table 11: Comparison of material measurements. 

 


