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Abstract Characterizing the spatial patterns of variability is a fundamental as-
pect when investigating the origin of the spreading of a multivariate phenomenon.
In this paper, a large multivariate dataset from the southeast of Belgium has
been analyzed using factorial kriging. The purpose of the study was to explore
and retrieve possible scales of spatial variability of heavy metals. This is achieved
by decomposing the variance-covariance matrix of the multivariate sample into
coregionalization matrices, which are, in turn, decomposed into transformation
matrices, which serve to decompose each regionalized variable as a sum of inde-
pendent factors. Then, factorial cokriging produces maps of the principal factors,
which can be compared with the underlying lithology. This comparison identified
a few point scale concentrations, which may reflect anthropogenic contamination,
it also identified local and regional scale anomalies clearly corresponding to known
mineralizations and underlying geology. The results from this analysis could serve
to guide the authorities in locating those areas which need remediation.

Keywords Factorial kriging analysis - Geostatistics - Coregionalization - Heavy
metal contamination - Wallonia geochemical data set - Belgium

1 Introduction

Quantifying spatial patterns of variability of soil properties is an important issue
in earth science and it becomes more important in the study of contaminated
soils. Depending on the nature and characteristics of the contamination source,
different spatial ranges of influence exist: point, local and regional (Xiao et al.
2010, Candeias et al. 2011, da Silva et al. 2013, Huang et al. 2013 and Krishna et
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al. 2013). For example, a geochemical halo around an ore body usually has a large
spread and is more likely to be observed at a regional scale, while contamination
resulting from a small mineralized vein or industrial wastes do not spread much
and would be observed only locally, or as a point signal.

These contaminations of different scale origin will manifest in nature as a com-
plex signal. The analysis and interpretation of this complex signal is difficult and
requires its decomposition into the different spatial components. Traditionally mul-
tivariate datasets are analyzed with statistical methods, such as principal compo-
nent analysis or correspondence analysis. For example, recent works like Rodriguez
Martn et al. (2007), Guagliardi et al. (2013), Candeias et al. (2011), Maria Astel et
al. (2011), da Silva et al. (2013), Khedhiri et al. (2011), Liebens et al. (2012) and
Huang et al. (2013) have discussed relevant case studies but showed limitations as
the focus was on the multivariate aspect of the problem and did not account for
the possible existence of the spatial components mentioned above. Geostatistical
factorial kriging analysis (FKA) was introduced as an alternative in the early 80’s
by Matheron (1982) and has been discussed thoroughly by Wackernagel (1988,
1989) and Goovaerts (1991, 1992, 1997, 1998) among others. After its introduc-
tion, we can easily notice an increasing use of FKA, mainly, but not limited, to
geochemical data analysis to identify spatial patterns of soil contamination (Yeh
et al. 2006, Queiros et al. 2008 and Guagliardi et al. 2013).

2 Materials and methods
2.1 Wallonia data set

In the early 80’s, 10 000 stream sediment samples were taken in the Wallonian
region. As reported by Sondag et al. (1984), the samples were collected along
the streams using a soil auger at the intersection of the lower edge of the bank
and the live bed, in flapping water area. Sampling density was approximately
uniform at 1 sample per square kilometer (Sontag et al., 1984). All samples were
analyzed for 20 geochemical elements, including many heavy metals. This study
uses directly the database generated at the time, focusing in the analysis of heavy
metals in the eastern part of the Wallonian region (Fig. 1), shortly referred to
as ESM (for “Entre-Sambre-et-Meuse” in French). This part of Belgium contains
1765 samples of the Wallonia data set. Table 1 displays descriptive statistics of
the data set for the elements of interest.

A decree adopted in the early 90’s demanded heavy and expensive remedial actions
when healthy limits of the heavy metal concentrations were surpassed. However, if
it could be proven that the contaminant concentrations had a natural origin then
no remediation was required. Therefore, it is very important to establish whether
contamination is of natural or human origin. Factorial kriging could be used to
distinguish scales of variability underlying the spatial distribution of heavy metal
concentrations; presumably, those contaminants relevant at the point scale would
be anthropogenic, whereas those with a regional scale would be natural. Wallonia
experienced in the past a dynamic mineral industry, and the region is well known
for its numerous mineralizations. The ESM geology, for instance, is dominated by
Palaeozoic silicated formations intersected by east-west parallel bands of Frasnian
and Devonian carbonates with several spreading metal mineralizations



Factorial kriging for spatial-pattern characterization 3

Table 1 Descriptive statistics of the ESM data set (values in ppm, except Fe in %).

STATS 7Zn Pb Cu Sr Ba La Y Fe

Nbr 1766 1765 1765 1769 1768 1769 1769 1769
Min 13 1 1 1 39 1 1 0.19
Max 860 567 133 346 744 33 39 24.6
Median 79 23 16 42 313 4 1 2.93
Mean 92.50 | 30.52 | 18.11 | 46.45 | 313.18 5.23 2.94 3.37
stand-dev 60.34 | 35.41 | 10.16 | 25.16 73.30 4.52 3.51 1.98
Variance 3640 1254 103 633 5373 20.40 | 12.36 3.92
C.V.(%) 0.65 1.16 0.56 0.54 0.23 0.86 1.19 0.59
Asymmetry 4.12 7.12 2.95 2.88 0.51 1.53 3.98 3.89
Kurtosis 29.92 | 77.10 | 19.22 | 18.41 2.56 3.40 25.15 | 26.61

]
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Fig. 1 ESM area geographical situation and sample distribution.

2.2 Factorial kriging - Theory

Here we present a quick review of factorial kriging analysis as applied to a multi-
variate data set. The reader interested in a deeper understanding of the theoretical
and implementation details of the method is referred to the paper by Goovaerts
(1992). Multivariate data sets are usually analyzed using statistical methods such
as factorial analysis (FA) in order to show existing associations of variables and
the relations among them. However, this approach does not explore the potential
spatial correlations of the variables. When two or more variables show a spatial
correlation (either at the point, local or regional scale) they are said to be core-
gionalized. Factorial kriging analysis (FKA) is a geostatistical method intended
to explain the reasons underlying the spatial variability of a multivariate set of
coregionalized variables. The FKA technique, which was first presented by Math-
eron (1982), is based on the assumption that the nested structures needed to fit
the simple and cross-variograms of the variables relate to the scales that control
their spatial correlations. The linear model of coregionalization (LMC) (Goovaerts,
1993) is adopted to fit the simple and cross semi-variograms and to establish the
common underlying spatial structures of the multivariate set. Usually, three spatial
scales can be observed: point, local and regional.
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Authors like Wackernagel (1989) have interpreted the point component as part of
the signal corresponding to a scale below the size of the sampling mesh. The local
component is seen as a small size scale, like the medium diameter of a geochemical
dispersion halo. And finally, the regional component is viewed as the large scale
of the geochemical signal.

2.3 Multivariate geostatistical model

Suppose that p variables ({z;(x);i = 1, ...,p}) have all been sampled at the same n
locations (o =1, ...,n). These samples can be interpreted as a realization of a set
of p correlated random functions {Z;(x);i = 1, ...,p}. The set of n X p observations
is noted {z;i(za);i=1,...,p; a=1,...,n}.

The spatial structure and correlations among the different variables can be char-
acterized by the simple v;;(h) and cross semi-variograms ~;;(h), which can be
assembled in a symmetric matrix I'(h):

Y11(R) .. 71p(h)
rm=| j (1)
Yp1(h) ... Ypp(h)

To ensure that the variance of any linear combination of the random functions is
not negative, the matrix I'(h) must be conditionally negative semi-definite. This
means that the functions used to model the variograms and semi-variograms must
meet certain restrictions. A sufficient set of restrictions are those given by the
linear model of coregionalization, which is used in this work.

2.4 The linear model of coregionalization

Under the linear model of coregionalization (LMC), it is assumed that each semi-
variogram and cross semi-variogram function (h) can be decomposed into a linear
weighted sum of the same basic functions g(h), each one related to a spatial scale.
This decomposition can be written in matrix form as:

Ns
T'(h) = Bogo(h) + Big1(h) + ... + Bsgs(h) = > Bugu(h) (2)

where Ng is the number of basic functions, g,(h) are the basic functions (each
one representative of a different spatial scale), and B, are the coregionalization
matrices.

The matrices B,, capture the multivariate structure at the different spatial scales.
The global variance-covariance matrix V is the sum of the coregionalization ma-
trices V.= Bg + B1 + ... + Bg. In the limit, for large h, I'(h) tends towards V
and variables become uncorrelated. This relationship between the global covari-
ance matrix and the coregionalization matrices indicates that V is a mixture of
the correlation structures found at different spatial scales.
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The condition of negative semi-definiteness of I'(h) is satisfied if each g, (h) func-
tion is negative semi-definite and if each matrix B,, is positive semi-definite (Wack-
ernagel, 1992):

biz >0 Vi,u and [bj| < (/DY Vi, j,u (3)
The linear model of coregionalization described by Eq. (2) assumes that each of the

p random functions {Z;(x);7 = 1, ...,p} can be decomposed into a set of orthogonal
random functions {Y,'(z);v =1,..,p;u=1,...,Ng}:

Ns p

Zl(m) = Z Z iy Yvu(x) (4)

u=1v=1

where aj, are the transformation coefficients. For an index u, the functions Y,'(z),
called regionalized factors, have as variograms the basic functions g, (h) in Eq. (2).
Eq. (4) can be rewritten in matrix notation as:

Ns
Z(x) = Zu(x) (5)
with
Zu() = Yu(z)(Au)" (6)

The components Z, (z) of Z(x) are called the spatial components, since they rep-
resent the behavior of the random function at each scale u, and their variance-
covariance matrix is given by the coregionalization matrix B,,.

Since the regionalized factors Y,'(z) are orthogonal, each matrix A, can be ob-
tained by a factorial decomposition of the coregionalization matrix B, (Wacker-
nagel, 1988):

B, = Ayu(Au)" (7)

The transformation coefficients in A, correspond to the covariances between
the regionalized factors Y,*(x) and the spatial components Z;*(x). The correlation
between the regionalized factors and the spatial components can be determined
by the expression:

au

= (8)
VLR
- Cartography of the multivariate spatial information: Three kinds of information
can be mapped to illustrate the behavior of the variables and their relationships
at different spatial scales (Wackernagel, 1988):

(i)- The regionalized variables themselves, Z;(x);
(ii)- The spatial components Z;*(x) of the regionalized variables at spatial scale u;
(iii)- The factors Y,*(x), which show essential information of a given spatial scale
for each variable.
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We have chosen to analyze the factors. Each factor will be estimated at point xg
by cokriging the n closest values of the p variables around x:

Y (w0) = Z Z AC (9)

where X}, are the cokriging weights. For the details on how to determine the weights
of the resulting cokriging system the reader is referred to Wackernagel (1988) or
Goovaerts (1992).

- Coregionalization model in practice: Adjusting a linear model of coregional-
ization to p variables requires the modeling of p(p + 1)/2 semi-variograms being
careful that I'(h) remains negative semi-definite. Goulard and Voltz (1989) devel-
oped an iterative procedure for automating this process. The main steps are: (i)
Decide how many spatial factors to consider, (ii) decide which are the shapes of
the basic variogram functions g, (h), (iii) decide the parameters of these functions,
(iv) determine the coefficients of the coregionalization matrices B.,.

3 Case Study - FKA applied to the ESM geochemical data set

- Variable grouping and semi-variogram models: The analysis of the experimental
semi-variograms computed for all the ESM variables identified groups of variables
with similar correlation structures, suggesting that each group had a common
originating process. The transition elements Fe, Co and Ni could be fitted by a
semi-variogram composed by a nugget effect plus a spherical semi-variogram with
a range of 2800 m plus a spherical semi-variogram with a range of 11000 m; while
the chalcophile elements Zn, Cu, Pb, Sr could be fitted by a nugget effect plus a
spherical semi-variogram with a range of 700 m plus a spherical semi-variogram
with a range of 7000 m. The other elements could be fitted with a the same
combination of structures but with different ranges (see Table 2).

Table 2 Models used to fit the experimental semi-variograms, when each variable is consid-
ered independently. All variograms are isotropic, and the number in parenthesis is the range

variables Groups semivariograms Decomposition

Fe, Co, Ni nugget effect + Sph(2800 m)+ Sph(11000 m)
Zn, Cu, Pb, Sr nugget effect + Sph(700 m)+ Sph(7000 m)
La, Y nugget effect + Sph(800 m)+ Sph(11500 m)
Ti nugget effect + Sph(2000 m)+ Sph(12000 m)
pH nugget effect + Sph(3300 m)+ Sph(12000 m)
Ba nugget effect + Sph(1100 m)+ Sph(8800 m)

The FKA will focus on the group of almost heavy metals Zn, Pb, Cu and Sr. Stron-
tium acting as an alternative to Ca, when the latter cannot analyzed. The ESM
carbonate rocks are home of many chalcophile vein mineralizations (Bartholomé
et al. 1977). In addition, due to their frequent association to sulphide altering
mineralizations, Fe, Ba, La and Y are also included in the analysis.

The analysis of the semi-variograms that could be fitted to the different variables
(when each variable is considered independently) serves as the basis to define



Factorial kriging for spatial-pattern characterization 7

the basic functions g, (h) of the LMC to be used in the FKA. It is clear that
three functions are to be used, a nugget effect plus two spherical (isotropic) semi-
variograms. The ranges of these semi-variograms as well as the coefficients of the
variance-covariance matrices were determined during the fitting process of the
LCM. The final ranges of the two spherical semi-variograms are set to 800 m and
8000 m, slightly larger than the range values used to fit the individual variograms
for Zn, Cu, Pb and Sr. The final fits of the 36 direct and cross semi-variograms,
after normalizing all variables to zero mean and unit variance, are shown in Fig.
2. The LCM provides the variance-covariance matrices B,,, and from them we can
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Fig. 2 Direct and cross semi-variograms of the normalized values of the variables studied.
Experimental (connected dots by solid line), and LMC model fitted (dashed line)

determine the matrices A, (Eq. 7), which contain the weights that each one of the
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spatial factors Y,; receives in the decomposition of each variable. The correlation
coefficients (Eq. 8) between these three factors and each of the variables are shown
in Tables 3, 4 and 5.

4 Results and discussions

To help interpreting major trends and its relationship to the underlying general
lithology in the ESM area, the three coregionalized factors for each spatial scale
that explain most of the variance were mapped using cokriging, and shown in Fig.
3, 4 and 5.

4.1 Point scale interpretation

The point scale corresponds, in fact, to distances smaller than the sampling grid,
which was about 200 m. The factorial analysis corresponding to the point scale is
summarized in Table 3, which shows, for the three factors explaining most of the
variance, the coefficients of correlation between the regionalized factors and the
variables, and the fraction of the total variance explained by each factor. These 3
factors account for 70% of the total variance. We can notice the following:

Table 3 Decomposition of the coregionalization matriz 1 (point scale). Only the three factors
that explain most of the variance are shown

Correlations regionalized factors-variables (point scale)
elements Y Y, Y
Zn 0.175 | 0.875 0.048
Pb -0.088 | 0.783 0.210
Cu 0.311 | 0.702 0.092
Sr -0.016 0.191 0.552
Ba 0.113 0.046 0.832
La 0.676 | 0.049 0.579
Y 0.786 | 0.059 0.206
Fe 0.836 | 0.254 -0.225
Percentage of total variance explained
[ 2794 | 23.04 | 1848

Factor 1 of point scale explaining 27.94% of the total variance: This factor main
correlations are with La, Y, and Fe, that is, rare earths and iron. The map of
this factor (Fig. 3, top left) shows a uniform distribution of values with few peaks
falling almost exclusively in the vicinity of carbonates. This reflects the dominant
silicates in the ESM basin and the presence of occasional high concentrations of
iron in contact with carbonate bands, what is consistent with reports on iron
ore bodies known in the area (Delmer, 1912-1913). Yet, these point anomalies
could also originate from mining or industrial activities from the past. In order to
remove any doubt about the origin of this contamination, an in situ verification is
necessary.

Factor 2 of point scale explaining 23.94% of the total variance: This factor main
correlations are with heavy metals Zn, Cu and Pb; at this scale, high values of this
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factor may be explained by some contamination event. This factor map (Fig. 3,
top right) shows areas of high values (dark colors) in the carbonate bands south of
Philippeville. The proximity to Philippeville may indicate an anthropogenic origin.
But, it could also come naturally from the known Pb-Zn mineralizations. Again,
in situ investigations are necessary. Furthermore, the orthogonality of factor 2 and
factor 1 makes it clear that chalcophile anomalies have nothing to do with the
oxy-hydroxides of Fe-Mn (known to be metal traps) or with iron deposits, which
are the most common forms of iron in the ESM.

4.2 Local scale (800 m) interpretation:

Factor 1 of local scale explaining 43.42% of the total variance: This factor main
correlations are with the chalcophile elements (Zn, Pb and Cu). The map of this
factor (Fig. 4, top left) shows a good correspondence between high values (dark)
and carbonate horizons, particularly in the southern part of the ESM (Frasnian),
where indices of Pb-Zn mineralization were reported. It suggests that this factor
corresponds to the numerous Pb-Zn vein mineralizations reported in the ESM
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Table 4 Decomposition of the coregionalization matriz 2. Only the three factors that explain
most of the variance are shown

Correlations regionalized factors-variables (scale 800 m)
elements Y72 Y2 Y32
Zn 0.764 | -0.400 0.424
Pb 0.741 | -0.336 -0.577
Cu 0.954 | 0.238 0.100
Sr 0.188 | -0.684 0.328
Ba 0.326 0.880 0.221
La -0.064 | -0.394 0.402
Y 0.097 0.045 0.477
Fe -0.262 | 0.913 0.110

Percentage of total variance explained

| 4342 [ 2446 | 17.59

carbonates. This is supported by the correspondence between the 800 m scale and
the average size of the metallic veins (about 1000 m) observed in the region.
Factor 2 of local scale explaining 24.46% of the total variance: This factor is
highly (positively) correlated with Fe and Ba, and also negatively correlated with
Sr. This opposed correlation reflects the mutual exclusion of ferrous mineralizations
and carbonates (Sr is an alternative to Ca or limestone). Indeed, Delmer (1912)
described iron deposits to often fill cavities of karstic dissolution in the carbonates-
silicates contact. Consequently, Factor 2 of 800 m scale reflects the few small veins
of Limonite existing in the area.

Factor 3 of local scale explaining 17.59% of the total variance: This factor is mildly
correlated with La, Y, Sr, Ba and Zn. This factor may indicate an accumulation
of different detrital materials, and other heavy minerals, due to the alteration of
the surrounding formations.

4.3 Regional scale (8000 m) interpretation:

Table 5 Decomposition of the coregionalization matriz 3. Only the three factors that explain
most of the variance are shown

Correlations regionalized factors-variables (scale 8000 m)
elements Y] Y3 Y}
Zn 0.318 0.052 0.792
Pb -0.013 | 0.234 0.836
Cu 0.601 | 0.255 0.433
Sr -0.045 | 0.889 0.317
Ba 0.097 | 0.573 0.027
La 0.647 | 0.695 0.182
Y 0.895 | 0.239 0.081
Fe 0.876 | -0.125 0.089
Percentage of total variance explained
| 30.84 | 26.65 | 19.78
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Factor 1 of regional scale explaining 30.84% of the total variance: This factor
main correlations are with Fe, Y, La and Cu, similar to factor 1 at the point scale.
Fig. 5 (top left) shows two major areas of positive values, stretched along NE-SW;
one of them is located around the triangle of Philippeville-Florennes-Walcot, and
the other one S-SE of Philippeville. Comparing this map to the lithological map
one can notice that these two areas coincide well with known ferrous indications in
the region. Consequently, this factor 1 of the regional scale corresponds probably
to large iron haloes in the area of Philippeville-Fraire-Morialmé. Because iron is a
very mutable material, it is easily spread in the environment, what would explain
its association with Famennian bands of terrigenous clay-schist and phyllite schist.

Factor 2 of regional scale explaining 26.65% of the total variance: This factor
is, by construction, orthogonal to the preceding factor 1, and is best correlated to
Sr, Ba and La. The corresponding map (Fig. 5, top right) shows areas of positive
correlation in the carbonates and their surroundings. This is particularly visible
with the Frasnian limestone bands in the south.

Factor 8 of regional scale explaining 19.78 % of the total variance: This factor
main correlations are with Pb and Zn, and it also displays a mild correlation with
Sr and Cu. This factor is marking the presence of regional Pb-Zn mineralized
zones and geochemical dispersion haloes linked to carbonates. In this factor map
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(Fig. 5, bottom right) the overlap of high factor values and limestones is evident,
particularly in the Frasnian bands in the southern part. This factor, also confirms a
remarkable feature, that the Frasnian carbonates seem to contain more chalcophile
evidence than its Devonian counterparts. This feature is very clear at this scale,
but it is also noticeable at the other scales.

5 Conclusion

The Factorial Kriging Analysis of a fraction of the Walonian geochemical dataset
showed quite interesting results for contamination remedial purposes. Three main
scales of variability have been identified, a point scale (below 200 m), a local scale
(800 m) and a regional scale (8000 m). For each scale, two main coregionalizations
were clearly noted. The first one composed of transition and detrital elements
(Fe, Y, La, Ba) and the second one composed of chalcophile heavy elements (Zn,
Pb, Cu). The comparison of the spatial patterns of the different factors with the
underlying lithology proves that heavy metal spreading in the ESM is regionally
controlled by the regional lithology and locally by numerous vein mineralizations.
Meanwhile, at the point scale, the revealed chalcophile heavy metal concentrations
are difficult to relate to the mineralizations and they are probably of anthropogenic
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origin. These concentrations, at the point scale identify contamination hazard areas
that should be first targeted in any early checking and remediation.
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