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Abstract: Future wireless sensor networks are expected to provide various sensing services  

and energy efficiency is one of the most important criterions. The node scheduling  

strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the 

required sensing services in a periodic manner. In this paper, we are concerned with the  

service-oriented node scheduling problem to provide multiple sensing services while 

maximizing the network lifetime. We firstly introduce how to model the data correlation for 

different services by using Markov Random Field (MRF) model. Secondly, we formulate 

the service-oriented node scheduling issue into three different problems, namely, the  

multi-service data denoising problem which aims at minimizing the noise level of sensed 

data, the representative node selection problem concerning with selecting a number of active 

nodes while determining the services they provide, and the multi-service node scheduling 

problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service 

Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection  

and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node 
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Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, 

extensive experiments demonstrate that the proposed scheme efficiently extends the  

network lifetime. 

Keywords: wireless sensor networks; service-oriented; multi-service; node scheduling; 

Markov Random Field; energy efficiency 

 

1. Introduction 

Wireless sensor network is emerging as an important technology which includes a large number of  

self-organized sensor nodes connected with wireless communications [1]. The sensor nodes are  

generally equipped with sensing devices, micro-processor, limited memory, wireless transmitter and 

lower-energy batteries. The characteristics of the sensor networks, such as cheapness and  

self-organization, make it possible to deploy them in various applications, such as environment data 

collection, smart home, and machine health monitoring. At the same time, the rapid development of 

sensor technology leads to the emerging sensor nodes equipped with multiple sensing devices such as 

temperature, sound and motion, etc. One important trend for the future wireless sensor networks is to 

provide various sensing services. In the future service-oriented wireless sensor networks, one single node 

can simultaneously support multiple sensing services [2–9] rather than a single sensing service. How to 

solve the problem of resources sharing while providing different sensing services in an  

energy-efficient way is one of the most important problems in the future service-oriented wireless  

sensor network. 

The node scheduling scheme is an important way to solve the problem of resource sharing between 

different sensing services and extend network lifetime [10–16]. In some applications, sensed data should 

be collected from all nodes in the network, which is not an efficient way to collect all raw sensed data 

for the application, especially in densely deployed wireless sensor networks. It is generally tolerant if 

the final collected data for different services is within the given error thresholds since there are deviations 

between the raw sensed data and the physical values of the monitored targets [9,10]. Furthermore, the 

sensed data is generally correlated and redundant between nodes that provide one single service or different 

services since they observe the same targets in the same geographic region [15–20]. Therefore, a subset 

of representative nodes can be selected and every representative node provides its determined services 

within error thresholds guarantees, while the rest data is not sent to the application. This strategy can not 

only reduce the energy cost and prolong the network lifetime, but also contribute to solve some other 

issues in densely deployed wireless sensor networks [15], such as lower network throughput, 

transmission conflicts, etc. It shall be mentioned that the multi-service node scheduling problem also 

determines the sensing services that every representative node should provide when they are selected. 

Figure 1 shows a simple network with one monitored target t1 whose sensing radius is denoted as r. 

And target t1 falls in the sensing radius of four nodes, a, b, c and d. Two kinds of services, s1 and s2, are 

provided by each node in the network, and the sensed data for services s1 and s2 are listed above the node, 

i.e., the sensed data of node a is [30.3 20]. Note that the sensed data is a noisy version of the physical 

value, and the physical values of services s1 and s2 are generally correlated. Assume that the physical 
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value of service s1 is 10 less than that of s2 and the error threshold for the two services is 0.5. The selected 

representative node is marked with a black solid circle and the service data is marked in red color. As 

we can see, the observed data of node a, b, c and d for service s1 is 30.3, 30.5, 29.8 and 30.1 accordingly. 

Obviously, the last three values are within the error threshold of the first one. Furthermore, the sensed 

data of node a for service s1 is 30.3, and we can infer that the sensed data for s2 is 20.3 since the two 

services are correlated. Note that the observed data of node a, b, c and d for service s2 is 20, 20.5, 20.2 

and 20.3, and these data is within the error threshold of 20.3 too. In this way, node a can be selected as 

the representative node to provide two services and only the data for service s1 is required since the rest 

data is within the error threshold. 

Figure 1. An example of the representative node selection and the provided services in the 

wireless sensor network. 

 

However, it is not proper to select the representative nodes and determine the services they provided 

directly by the sensed data because it is a noisy version of the realistic data due to the affection of the 

environment, node parsimony and other factors [21]. Here we demonstrate an example to illustrate this 

issue. Assume that every node provides one service data and the error threshold is 0.5. Figure 2a–c show 

the results for the representative node selection problem with the noise-free data, noise-corrupted data 

and denoised data separately. There is one link between two nodes if they monitor the same target and 

the deviation between the data is smaller than the given error threshold. As we can see in Figure 2, the 

selected representative node set is {a}, {a, e} and {a} with noise-free, noise-corrupted and denoised data 

accordingly. In this example, the number of selected nodes with noise-corrupted data is larger than that 

with noise-free and that with denoised data, while they are the same with the latter two data. However, it 

is almost impossible to obtain the noise-free data in practice. In this paper, we introduce a novel idea to 

obtain the denoised data which is described in Section 4.2. 

Figure 2. An example of the representative node selection scheme: (a) using noise-free data; 

(b) using noise-corrupted data; (c) using denoised data. 

  
(a) (b) (c) 
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The efficiency of data denoising depends heavily on how to model the data correlation between the 

sensed data for one single service or multiple services. However, the sensed data in the wireless sensor 

networks has the property of Markov dependence due to the spatial continuous variation in the practical 

environment [22,23]. In this case, Markov Random Field (MRF) model is an important statistical tool to 

describe the distribution and correlation of data for one service or between two different services in the 

multi-dimensional domains via the probability functions. In this paper, we adopt the MRF model to 

describe the correlation of data for one service or two separate services, and propose a novel algorithm 

to denoise the sensed data for multiple services. The main contributions of this paper are summarized  

as follows: 

— We introduce the Markov Random Field (MRF) model to describe the correlation of data for one 

service or two separate services in wireless sensor networks; 

— We formulate the multi-service data denoising problem which aims at minimizing the noise level 

of sensed data, the representative node selection problem concerning with selecting a number of 

active nodes while determining the services they provide, and the multi-service node scheduling 

problem which aims at maximizing the network lifetime in the service-oriented wireless  

sensor networks; 

— We propose a Multi-service Data Denoising (MDD) algorithm and a novel multi-service 

Representative node Selection and service Determination (RSD) algorithm to efficiently select 

the representative node and their provided services; 

— We also present a novel MRF-based Multi-service Node Scheduling (MMNS) scheme based  

on the above two algorithms for the multi-service node scheduling problem to enlarge the 

network lifetime. 

The rest of this paper is organized as follows: in Section 2, we present the related works. Section 3 

describes the system model and the problem formulation. In Section 4, we describe the proposed scheme. 

In Section 5, we analyze the theoretical performance of our proposed algorithms. Section 6 presents 

simulation results and Section 7 presents the conclusions. 

2. Related Works 

The service-oriented network is one of the most important trends for the future wireless sensor 

network. It leads to a lot of challenging issues including the system architecture and other optimizing 

problem with this new architecture [16]. The node scheduling problem provides a new idea to extend 

the network lifetime by exploiting the characteristics of dense deployment and the correlation of data for 

multiple services. 

Some researchers proposed the general theoretical models for the service-oriented sensor networks. 

Gracanin et al. [2] proposed a service-centric model by viewing the wireless sensor networks as service 

providers. They also provided a general framework to express/evaluate the capabilities and 

functionalities of wireless sensor networks. Rezgui and Eltoweissy [3] introduced the service-oriented 

sensor-actuator networks which provide sensing and actuation services to any application rather than 

provide sensing and actuation capabilities to one specific application. 
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Some researchers have focused on building a service-oriented platform/middleware, which plays an 

important role in facilitating the design, development, and implementation of service-oriented wireless 

sensor network [4–6]. Mohamed and Al-Jaroodi [4] surveyed the current challenges and requirements 

of service-oriented middleware in wireless sensor network and reviewed some representative 

approaches. Edgardo Avilés-López et al. [5] proposed a service-oriented architecture called TinySOA, 

which provides a high-level abstraction for the development of applications in wireless sensor networks. 

TinySOA allows programmers to access the wireless sensor networks from their applications using a 

service-oriented API. Zhang et al. [6] designed an open community-oriented platform aiming to support 

federated sensor data as a service, featuring interoperability and reusability of heterogeneous sensor data 

and data services. 

An important design goal in the service-oriented sensor networks is to provide data of various  

services by satisfying the requirement of applications. Geyik et al. [7] proposed a graph-based model for 

describing sensor services and formulated the process of dynamic sensor service composition as a  

cost-optimization problem which aims to minimize the total cost of component services. Wang et al. [8] 

studied the cross-layer sleep scheduling problem to prolong the network lifetime while satisfying the 

service availability requirement on the application layer. They proved that the problem is NP-hard, and 

proposed two approximation algorithms based on LP relaxation. Cheng et al. [9] exploited the spatial 

correlation between multiple service data and aimed at selecting a minimum number of active nodes to 

provide services with data accuracy guaranteed [9]. However, the proposed algorithms did not consider 

the energy efficiency and might lead to bad performance. 

The sensed data of neighbors is generally correlated in densely deployed wireless sensor networks. 

This characteristic is helpful to reduce the transmitted data in the network and improve the energy 

efficiency [19,20,23]. Vuran et al. [19] studied the spatial and temporal correlations along with the 

collaborative nature of the wireless sensor network which can bring significant advantages for the 

development communication protocols. They [20] also exploited the spatial correlation on the Medium 

Access Control (MAC) layer. A theoretical framework was developed for transmission regulation of 

sensor nodes under a distortion constraint. Min et al. [23] considered the temporal and spatial 

correlations in wireless sensor networks and presented an approximate data gathering technique which 

is used to obtain the sensor data within the certain error bound. However, these works only considered 

the case that these services are fully separate and there is no correlation relationship between them. 

Markov Random Field (MRF) has been successfully used to simplify many complex multi-dimension 

applied problems in the wireless sensor network [24–26]. Perreau et al. [24] presented a general 

framework allowing sensor networks design by using Markov Random Field (MRF) theory. They 

explained how the principles underlying MRF theory naturally fit to design requirements in sensor 

networks, especially the need to rely on distributed methods to solve global optimization problems. 

Wang et al. [25] proposed a MRF sensor fusion algorithm based on the MRF model to solve the event 

region detection problems. The MRF was used to model the spatial correlation. Oka et al. [26] presented 

a stochastic recursive identification algorithm which can be implemented in a distributed and scalable 

manner in the wireless sensor network. However, few of them are used to model the correlations of data 

for different services in the network in order to reduce the number of service data that needs to be 

reported to the application. 
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The node scheduling scheme is an efficient way to prolong the network lifetime [10–16]. Researchers 

have proposed many scheduling schemes under different application backgrounds and assumptions. 

Zhao et al. [11] presented a sleep-scheduling technique which forms multiple overlapped backbones and 

works alternatively. The rotation of multiple backbones contributes to balance the energy consumption 

of all sensor nodes, which fully utilizes the energy and extend network lifetime. Kotidis et al. [14] 

introduced the idea of snapshot queries for energy efficient data acquisition in sensor networks. They 

elect a small set of representative nodes in the network to constitute a network snapshot and the snapshot 

can be used to provide quick approximate answers to user queries. Hung et al. [15] proposed a centralized 

algorithm and a distributed algorithm to determine a set of representative nodes with high energy levels 

and wide data coverage ranges. Cheng et al., concerned with the node scheduling problem for the  

service-oriented wireless sensor network [16], and proposed an Energy-aware Centralized Heuristic 

Scheme (ECHS) for the problem and present an Energy-aware Distributed Heuristic Scheme (EDHS) as 

the distributed version [9]. 

3. System Model and Problem Formulation 

In this section, we firstly introduce the system model as well as some related definitions, and then 

formulate the multi-service data denoising problem, the representative node selection problem and the 

multi-service node scheduling problem. For convenience, the symbols used in this work are summarized 

in Table 1. 

Table 1. Notation of the symbols. 

Symbol Description 

ni The i-th node in the network 
si The i-th service in the network 
ti The i-th target in the network 

rai, j The j-th value range of si 
ɛi, j Error threshold for the value range rai ,j of si 
psti Target monitored by node ni 
r Sensing radius 

energyi Residual energy of node ni 
xi, j, yi, j, y'i, j Noise-free, Noise-corrupted and Denoised data of sj sensed by node ni 

ei, j Noise in the data of yi, j node ni 
NBi Neighbor node set of node ni 
NSk, i Neighbor correlated service set of si sensed by node nk 

DCRi, j Data coverage range of the data of sj sensed by node ni 

inferk, l, j 
Data for service sj and sl are correlated, and the data for sl in node nk inferred by 
the data of sj sensed by the other node is inferk, l, j 

3.1. System Model 

We consider a wireless sensor network in the plane consisting of a set of nodes V = {ni|1 ≤ i ≤ n}. The 

network needs to provide m sensing services S = {si|1 ≤ i ≤ m}, such as temperature, sound, humidity, 

motion, etc. There is a set of targets T = {ti|1 ≤ i ≤ k} randomly located in the monitored area and each 
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target needs to be provided a subset of sensing services S. The value of each service can be divided into 

several ranges according to the user’s interests, such as the value of si can be divide into l ranges, i.e., 

RAi = {rai,j|1 ≤ j ≤ l} = {[ai,j, bi,j]|1 ≤ j ≤ l}, and each rai,j of si has a corresponding error threshold ɛi,j The 

node in the network is powered by a battery and its initial energy is denoted as E0. The node can provide 

multiple sensing services simultaneously, and it also knows the Euclidean distance to the sensed target, 

which is within its sensing radius r [25,26]. For conveniences, in this paper we assume that each service 

has an identical sensing radius and nodes only provide sensing service for one target within its sensing 

radius. The case that node ni provides sensing services for the tk is denoted as psti = tk The energy cost 

for a node to provide each sensing service is assumed identical. Let energyi be the remained energy of 

node ni in current epoch and the energy cost for a node to provide a sensing service during an  

epoch is a constant. 

Let xi,j represent the noise-free data sensed by node ni for sj. The sensed data yi,j is generally corrupted 

by noise in the environment as well as the sensing device, which can be formulated as: 

yi,j = xi,j + ei,j (1)

where ei,j is the noise and it is a Gaussian random variable which is independent and identically 

distributed, i.e., ei,j ~ N(0, (σi,j)2). 

For convenience, we use X and Y, respectively, to describe the noise-free data and noise-corrupted data 

in the network, i.e., X = {xi,j|i ϵ V, j ϵ S}, Y = {yi,j|i ϵ V, j ϵ S}. 

Definition 1: Neighbor Node Set (NB). The neighbor node set of node ni is denoted as  

NBi = {nj|dis(ni, nj) ≤ r, psti = pstj}, where r is the sensing radius and dis(ni, nj) is the Euclidean distance 

between ni and nj. 

Note that that node ni ϵ NBi. In this paper we assume the sensing radius of each sensing device is 

identical in the network. It is obvious that nj ϵ NBi in case that ni ϵ NBj. Node ni and nj are neighbors in 

this case. 

Definition 2: Neighbor Correlated Service Set (NS). The neighbor correlated service set of service si 

which is sensed by nk is denoted as NSk,i = {sj|the data for service sj and si are correlated while sj is sensed 

by nl ϵ NBk}. 

It is obvious that si ϵ NSk,i. 

Definition 3: Data Coverage Range (DCR). Given datai,j ϵ raj,h and the error threshold ɛj,h, the  

data coverage range DCRi,j of datai,j denoted as DCRi,j = {datak,l|d(inferk,l,j, datai,j) ≤ ɛj,h, nk ϵ NBi,  

datai,j ϵ raj,h}, where d(inferk,l,j, datai,j) = |inferk,l,j − datai,j|, inferk,l,j denotes that the data for sl and sj are 

correlated, while the data for sl in node nk inferred by the data sensed by node ni for sj is inferk,l,j. 

In Definition 3, datak,l can be the noise-free data, noise-corrupted data or denoised data. The data datai,j 

cover any data in DCRi,j and each data in DCRi,j is covered by datai,j. It shall be mentioned that one service 

data sensed by a node may be in the DCR of the data sensed by another node for one same service, or in 

the DCR of the data sensed by the same node or the other node for different service. 

Definition 4: Representative Node Set (RNS) and Their Provided Services. Given a set of sensor  

nodes V, the representative node set is a subset of V, and their provided services are part of the service data 

they sensed, and the sensed service data of each node ni ϵ V is either in the RNS’s provided service data or is 

in the DCR of RNS’s provided service data. Each selected node in RNS is one representative node. 
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Note that in this paper, the selected representative node can provide one or several service data 

simultaneously during the given epoch. 

Definition 5: The A Priori Probability and A Priori Probability Distribution. For a given node ni in the 

network, the a priori probability of data xi,j is denoted as P(xi,j). The A Priori Probability Distribution P(X) is 

a set of a priori probabilities for noise-free data of nodes in the network, i.e., P(X) = {P(xi,j)|i ϵ V, j ϵ S}. 

Definition 6: Neighbor Relationship Graph (NG). Given a set of sensor nodes V and the neighbor 

relationship NB, the neighbor relationship graph of the given network is described as NG = (V, NE), where 

NE = {(i, j)|ni ϵ V, nj ϵ NBi}. 

Definition 7: Clique. Given a neighbor relationship graph NG = (V, NE), a clique c is a subset of V and 

every two node in the subset is connected. 

The collection of single-node, pair-node and triple-node cliques will be denoted by C1, C2 and C3, 

respectively, where C1 = {(ni)|i ϵ V}, C2 = {(ni, nj)|ni, nj ϵ V, nj ϵ NBi} and C3 = {(ni, nj, nk)|ni, nj, nk ϵ V,  

ni ϵ NBj, ni ϵ NBk, nj ϵ NBk}. Figure 3 shows the clique types associated with a wireless sensor  

network with three nodes. The time complexity to compute all cliques for a given network is exponential to 

the maximum order of the cliques. It is helpful to reduce the time complexity by choosing these clique  

types with smaller size. In this paper, we only considered the single-node cliques C1 and pair-node  

cliques C2 [27]. 

Definition 8: The A Posteriori Probability Distribution. Given the raw noise-corrupted data Y as the 

evidence, the a posteriori probability distribution P(X|Y) is the conditional probability distribution of X. 

Figure 3. An example of clique types for a wireless sensor network. (a) A wireless sensor 

network with three nodes; (b) Three different clique types: single-node, pair-node and  

triple-node cliques. 

 
(a) (b) 

3.2. Markov Random Field Model and Data Correlation 

The Markov Random Field (MRF) model is an efficient statistical tool to describe the multi-service 

data distribution and correlation in multi-dimensional domains with probability functions. It can obtain 

global characteristics via local information and it is widely used in multi-dimensional complex 

applications, such as power control, event area detection and resource allocation [24–26]. MRF has two 

distinct characteristics when it is used in the wireless sensor networks: (1) MRF can illustrate the 

correlation of data for one service or two separate services in wireless sensor networks, and it also  

can propagate the correlation in the network which makes it possible to describe the correlation with 
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low-order MRF; (2) MRF can reflect the uncertainty as well as the distribution of sensed multi-service data; 

(3) MRF model also has some other advantages such as scalability and high numerical efficiency [28]. 

Also, there is local correlation for data of two different services in case that the data is noise-free [14]. 

The correlation between the noise-free data can be expressed in form of conditional probability as shown 

in Formula (2): 

,, , , ,| ) ((  | )
i i ji j i j i j NB NSP x X x P x x− =  (2)

where X − xi,j is the set difference which contains all sensed data in the network except xi,j, and: 

, ,, ,, { | }
i i j k lNB NS i i jk lx x NB NS= ∈ ∈  (3)

In Formula (2), xi,j is only correlated with data that belongs to NSi,j and is sensed by nodes in NBi. This 

property demonstrates that the sensed data in the multi-service wireless sensor network can be modeled 

with the proposed MRF model. However, it is difficult to calculate the prior probability via Formula (2). 

Hammersley–Clifford Theorem shows that MRF is equivalent to Gibbs Random Field (GRF) [27].  

It means the conditional probability of MRF can be obtained with GRF. 

The GRF can be built with the correlation probability distribution of the noise-free data X as follows: 

( ) ( )1
  U XP X exp

Z
= －  (4)

where 1 2( ) ( ) ( , )
i

i i j
i V i V j N

U X V x V x x
∈ ∈ ∈

= +   is the prior energy of X, V1(xi) and V2(xi, xj) are the  

potential functions for cliques in C1 and C2 respectively, and Z is a normalizing constant used as the 

partition function. 

Now consider the noise version of the sensed data yi,j compared with the noise-free data xi,j. The 

conditional probability for Y is formulated as:  

( | )

2
1

1
( | )

2

U Y X

n m
i

p Y X e−

×
=

=
Π πσ

 (5)

where U(Y|X) is the likelihood energy, n × m is the number of sensed data in the network.  

There is a negative correlation between the posterior probability and the likelihood energy of sensed 

data, and we have the correlation with Formula (6): 

( | )( | ) X YUeP X Y −∝  (6)

where: 

( | ) ( | ) ( )X Y Y XU XU U= +  (7)

As we can see from Formulas (6) and (7), GRF is helpful to obtain the posterior probability P(X|Y) in 

MRF, and it provides a simple method to calculate the joint probability P(X|Y) by specifying the clique 

potential functions and choosing the proper potential functions for desired correlated system. 

3.3. Multi-Service Data Denoising Problem 

The multi-service data denoising problem concerns with the issue of minimizing the noise level of 

sensed data by utilizing the correlation of data for multiple services. As described in the introduction, this 
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problem is helpful to reduce the number of service data which is reported to the application. One intuitive 

method for the multi-service data denoising problem is to obtain the optimal data Y' by minimizing the 

conational probability as follows: 

'
' arg min ( ' | )

Y
Y P Y Y=  (8)

According to Formula (6), the object of the multi-service data denoising problem is to minimize the 

likelihood energy as follows: 

'
' arg min ( ' | )

Y
Y U Y Y=  (9)

There is Markov dependence in the multi-service sensed data due to the spatial continuous variation 

and multi-service correlation in the practical environment [19,23]. To calculate the optimal data Y' in 

Formula (9), we adopt the clique potential functions U(Y'|Y) = U(Y') + U(Y|Y') as follows: 

(1) U(Y') is used to present the correlation between data for one single service. The data sensed by 

one node for a service is correlated with data sensed by adjacent nodes for the same service. Thus we 

have Formula (10):  

' ' '
1 , 2 , ,( ) ( , )( ')=

i

i k i k j k
k S i V k S i V j NB

V y V y yYU
∈ ∈ ∈ ∈ ∈

+    (10)

where 
' ' 2

1 , , ,( ) ( )i k i k i kV y y y−=
 
and

 
' ' ' ' 2

2 , , , ,( , ) ( )i k j k i k j kV y y y y= − . 
(2) U(Y|X) is used to present the correlation between data for different services. The service data sensed 

by one node is correlated with data sensed by adjacent nodes for another service because there is correlation 

between two different services. Thus we have Formula (11): 

, ,

' ' '
1 , , 2 , , , ,( | ) ( | , | )( | ')

i k i k i

i k i l i k i k j l j l
l NS k S i V l NS k S i V j NB

V y y V y y y yU Y Y
∈ ∈ ∈ ∈ ∈ ∈ ∈

= +      (11)

where ' ' 2

1 , , , , ,( | ) ( )i k i l i k i l kV y y y infer= −
 
and

 
' ' ' 2

1 , , , , , , ,( | , | ) ( )i k i k j l j l i k j l kV y y y y y infer= − . 
Therefore, the likelihood energy is described as follows: 

,

, ,

' 2 ' ' 2
, , , ,

' 2 ' 2
, , , , ,

( ' | ) ( ) ( )

                 ( ) ( )

i

i k

i k i k i

i k i k i k j k
k S i V k S i V j NB

i k i l k j l k
l NS k S i V l NS k S i V j NB

U Y Y y y y y

y infer y infer

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈

= +

+ −

− −

+ −

  

      (12)

According to Formula (12), the likelihood energy of a single service data y'i, j is deduced as follows: 

,

, ,

,

' 2 ' ' 2
, , , , ,

' 2 ' 2
, , , , ,

,( | ) ( ) ( )

                             ( ) ( )

i

i j

i i

i j i

j

j i

NB NSi j i j i j i j k j
k NB

i j i l j k l j
l NS l NS k NB

y y y y

y infer y infer

U y y
∈

∈

′

∈ ∈

− −= +

+ − + −



  
 (13)

3.4. Representative Node Selection Problem 

During each epoch, a set of representative nodes are selected and their provided services are also 

determined, and they can cover the data of other nodes in the network within the given error threshold. 

Note that the representative nodes should retain with high residual energy so that they can provide the 

determined services during the given epoch.  
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Definition 9: Representative Node Selection Problem. Given a set of sensor nodes V, the neighbor 

relationship graph NG = (V, NE), the denoised data Y', {energyi|i ϵ V}, error threshold {εi, j|i ϵ S, j ϵ rai} 

and the correlation of data for multiple services, the representative node selection problem is to select a 

number of representative nodes and determine their provided services to minimize the energy cost during 

a given epoch, and ensure the selected representative nodes with high residual energy. 

3.5. Multi-Service Node Scheduling Problem 

The network lifetime is one of the most important metrics for the wireless sensor networks, and there 

are various measurements for it, such as the first node to die, the number of survived nodes, and the fraction 

of survived nodes [29]. Due to the fact that the sensor network is generally densely deployed, the network 

can still keep on providing the required services although the first node is dead. In this paper, we use the 

fraction of survived nodes to measure the network lifetime. Let SN(t) denote the number of nodes that 

are survived to provide services at time slot t, the network lifetime TL is defined as follows:  

TL = max{t: SN(t) ≥ τ × SN(0)}, (14)

where τ denotes a given survived nodes threshold. 

It is obvious that the network lifetime indicates the time period during which the wireless sensor network 

can keep on providing the required multiple services. The wireless sensor network collects data in a periodical 

manner, and the time duration to collect all service data to the application is called an epoch.  

The representative node selection problem aims at reducing the number of service data that is reported 

to the application and minimizing the energy cost during a given epoch. However, these selected 

representative nodes might deplete the energy if they are always keep on working and thus the network 

will rapidly run to death. The multi-service node scheduling problem is to select a set of nodes and 

determine the services they provided in a periodical manner [30]. When the timer expires, a new set of 

nodes is selected and their provided services are also determined. In this way, the energy consumption 

keeps balanced in the network. This method is helpful to enlarge the network lifetime especially in 

densely deployed wireless sensor networks in which network lifetime is one of the most important 

metrics [31]. The definition of the problem is shown as follows. 

Definition 10: Multi-service Node Scheduling Problem. Given a set of sensor node V, sensing radius r, 

the noise-corrupted data Y = {yi,j|i ϵ V, j ϵ S}, error threshold {εi,j|i ϵ S, j ϵ rai}, {energyi|i ϵ V} and the 

correlation between different services, the Multi-service Node Scheduling Problem is to select a set of 

representative nodes and determine their provided services in a periodical way and aim at maximizing 

the network lifetime TL. 

4. Proposed Scheme 

As described in Section 2, the sensed data is correlation and redundancy occurs in the network. The 

node scheduling scheme is an important way to solve the problem of resource sharing with different 

services. At the same time, an efficient data denoising algorithm before the node scheduling can efficiently 

reduce the number of data that is sent to the application during a given epoch. In this section, we firstly 

propose a Multi-service Data Denoising (MDD) algorithm for the multi-service data denoising problem; 

Secondly, we introduce the multi-service Representative node Selection and service Determination (RSD) 
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algorithm for the problem in Definition 9; Finally, the MRF-based Multi-service Node Scheduling 

(MMNS) scheme is proposed to solve the problem in Definition 10. 

4.1. Multi-Service Data Denoising (MDD) Algorithm 

The multi-service data denoising problem defined in Formula (9) is an un-constrained optimization 

problem. In this paper, we propose a Multi-service Data Denoising (MDD) algorithm to solve the 

problem by referring to the Iterative Conditional Modes (ICM) algorithm [27]. The ICM algorithm uses 

a “greedy” strategy in the iterative local maximization: Given the data Y, the ICM algorithm sequentially 

updates each Y′ik into Y′i(k+1) by maximizing P(Y′|Y), where k denotes the k-th iteration. Due to the 

negative correlation between the posterior probability and the likelihood energy defined in Formula (6), 

we sequentially denoise the selected sensed data by minimizing U(y′i,j|yNBi, NSi, j) which is defined in 

Formula (13). 

In Formula (13), the likelihood energy function of node nj is a quadratic function and there is only 

one minimum value in the real number range. We calculate the extremum of U(y'i,j|yNBi, NSi, j) in real 

number range with Formula (16) when derivative of U(y'i,j|yNBi, NSi, j) in Formula (15) is zero: 
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Then we have the optimal opt(y′i, j) as follows: 
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Algorithm 1. Multi-service Data Denoising (MDD) algorithm. 
Input: NG = (Temp, NE), Y = {yi, j|i ϵ Temp, j ϵ S}, {εi, j|i ϵ S, j ϵ rai}, {energyi|i ϵ Temp}, the Correlation of 
Data for Multiple Services; 
Output: Y′ = {y′i, j, i ϵ Temp, j ϵ S} 
1. Set the state of all service data sensed by nodes in Temp as UN-DENOISED; 
2. Change = 1; 
3. While Change 
4. Change = 0; 
5. For each node ni in Temp 
6. For each UN- DENOISED service data yi, j sensed by node ni 
7. Calculate the optimal opt(y′i, j) with Formula (16); 
8. If opt(y′i, j) ≠ yi, j then 
9. yi, j ← opt(y′i, j); Change = 1; Set the state of yi, j as DENOISED; 
10. End if 
11. End for 
12. If the state of all service data sensed by node ni has been marked as DENOISED, then 
13. Temp ←Temp − {ni}; 
14. End if 
15. End for 
16. End while 
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As we can see from Algorithm 1, the proposed MDD algorithm is carried out in an iterative manner. 

Each survived node nj ϵ Temp checks its UN-DENOISED service data iteratively to ensure a local 

maximization of conditional probability. This check process is carried out with a local variable Change 

which is initialized as 1 (Line 2). The Change is set as 0 if no sensed dada can be denoised (Line 4).  

If one data can be denoised, the optimal value opt(y′j) is calculated with Formula (16) (Line 7). Then we 

denoise yi,j with opt(y′i,j) and set Change to 1 in case that opt(y′i,j) is not equal to yi,j (Line 8–10).  

In this way, we obtain the approximate optimal solution for the multi-service data denoising problem by 

greedily calculating the optimal value for all service data of nj ϵ Temp. 

4.2. Multi-Service Representative Node Selection and Service Determination (RSD) Algorithm 

In this section, we introduce a novel multi-service Representative node Selection and service 

Determination (RSD) algorithm by using the correlation of data for multiple services. The  

multi-service representative node selection problem in Definition 9 is also a multi-objective nonlinear 

optimization problem. There are already several solutions to this kind of problems for the single service 

wireless sensor networks [14,15]. In the service-oriented wireless sensor network, nodes can support 

multiple sensing services rather than one single service and these sensing services are correlated. How 

to solve the problem of resources sharing and provide all these different services in an energy-efficient 

way is an important problem in the wireless sensor network. 

 
Algorithm 2. Multi-service Representative node selection and Service Determination (RSD) algorithm. 
Input: Temp, Y' = {y'i, j|i ϵ Temp, j ϵ S}, NG = (V, NE), {energyi|i ϵ Temp }, {εi, j|i ϵ S, j ϵ rai}, the correlation 
of data for multiple services;  

Output: RNS and their provided services TPS. 

1. Calculate DCRi, j = {j|d(inferi, j, l, y'k, l) ≤ ɛl, h, nj ϵ NBi, y'k, l ϵ ral, h}, i ϵ V, j ϵ S; 
2. RNS ← Ø; TPS ← Ø; 
3. Mark all service data sensed by nodes in Temp as UN-COVERED; 
4. While there is UN-COVERED service data sensed by nodes in Temp 
5. Select service data y'i, j with maximum DCR size in the network; if there are several service data with the 
same maximum DCR, select the one with maximum residual energy; 
6. Recalculate DCRi, j for each service data y'i, j of node ni ϵ Temp; 
7. RNS ← RNS + {i}; TPS ← TPS + { y'i, j}; 
8. Mark the j-th service of node ni and all service data in DCRi, j as COVERED; 
9. If all service data sensed by node ni is marked as COVERED, then Temp ← Temp − DCRi − {i}; 
10. End while 

We adopt a greedy strategy to select the representative nodes and determine the services they provided. 

Initially, we calculate the DCR of each service data and mark the state of all service data as the state of 

UN-COVERED; Then, we select a service data with maximum DCR in a sequent way. The selected 

service data and the data in the DCR are marked as COVERED. Repeat this process until all service data 

are marked as COVERED. The pseudo code for RSD is shown in Algorithm 2. The process is carried 

out as follows. Firstly, we calculate DCRi,j for each denoised data y'i,j sensed by node ni in the networks 

(Line 1). Then, initialize the representative node set RNS and their provided services TPS as empty set 

(Line 2). Thirdly, mark all service data sensed by nodes in Temp as UN-COVERED (Line 3). Finally, 
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we select the representative node ni and its provided data of sj in an iterative manner in which the data 

of sj sensed by node ni can cover the maximum number of UN-COVERED service data in the network 

(Line 5–9). In case that a service data sensed by one node is already provided, the service data and all 

service data in its data coverage range are marked as COVERED (Line 8). In Line 9, in case that all 

service data sensed by one node is marked as COVERED, the node is removed from Temp. This process 

continues until the state of all service data is COVERED (Line 4–10). 

4.3. MRF-Based Multi-Service Node Scheduling (MMNS) Scheme 

The multi-service node scheduling problem in Definition 10 is NP-hard and a heuristic solution is 

generally an efficient approach to solve it [14]. As shown in Section 1, nodes scheduling during a given 

epoch can not only reduce the number of service data that is reported to the application and thus prolong 

network lifetime, but also contribute to solve some other issues in densely deployed wireless sensor 

networks. However, the selected RNS and their provided services should be reselected in a periodical 

manner: (1) The representative nodes need to report their provided service data, and thus they consume 

more energy than other nodes in the network, which means that the representative nodes should be 

reselected when they have less residual energy to avoid node failure; (2) The selected service data provided 

by representative nodes may not cover those service data in their DCR due to environmental changes; 

(3) The RNS and their provided services should be reselected in a periodical in order to balance the 

energy consumption in the network and thus prolong the network lifetime [30,31].  

The work proposed by [14,15] generally intended to select the representative nodes with the raw 

noise-corrupted data and ignored the noise in the raw data. As shown in Section 1, it is not an efficient 

way to select the representative nodes and determine the services they provided by raw noise-corrupted 

data. We introduce to denoise the sensed multi-service data before scheduling representative nodes and 

their provided services during a given epoch in the proposed scheduling scheme. 

 
Algorithm 3. MRF-based Multi-service Node Scheduling (MMNS) scheme. 
Input: V, r, Y = {yi, j|i ϵ V, j ϵ S}, {εi,j|i ϵ S, j ϵ rai}, {energyi|i ϵ V}, the correlation between  
different services; 
Output: Scheduling schemes. 
1. Temp ← V − {nj | energyi ≤ 0, i ϵ V}; 
2. Calculate NBi for node ni ϵ Temp through information exchange; 
3. Construct neighbor relationship graph NG; 
4. Model correlation of data for multiple services with the MRF model; 
5. Run MDD algorithm to denoise the sensed service data in the network; 
6. Run RSD algorithm to get the RNS and the provided services; 
7. Nodes in RNS collect and send their provided service data to the application during current epoch; 
8. Calculate the residual energy of nodes as well as SN(t), if SN(t) ≥ τ × SN(0) is not satisfied, go to 
Step 10; 
9. Go to Step 1 and start one new epoch;  
10. End. 

Algorithm 3 lists the pseudo code for the proposed MMNS. Firstly, we remove the dead node in the 

network and construct NBi for each node ni in the network through information exchange (Line 1–2). The 
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neighbor relationship graph NG is built in Line 3. In Line 4, the correlation of data for multiple services 

is modeled with the proposed MRF model. Then, run MDD algorithm to denoise the sensed multi-service 

data (Line 5). The RSD algorithm is carried out to get a RNS and their provided services (Line 6). Nodes 

in RNS report their provided service data to application during the current epoch (Line 7).  

In Line 8, the residual energy of nodes in the network is calculated as well as SN(t); and then check if 

the network dead or not after collecting sensed service data provided by RNS during the epoch, and go 

to Step 10 if the network dead (Line 8); otherwise, go to Step 1 to get a new RNS and determine their 

provided services (Line 9). Repeat this process until the network is dead, i.e., SN(t) < τ × SN(0). 

5. Time Complexity Analysis 

Theorem 1. The time complexity of MDP algorithm is O(n2 × k2), where k denotes the number of 

services in the network. 

Proof: The time complexity of setting the state of all service data sensed by nodes in Temp with state 

as UN-DENOISED is O(n × k), where k denotes the number of services in the network. The time 

complexity of selecting a service data with maximum DCR is O(n × k), and this process runs at most 

O(n × k) times. The time complexity of calculating the opt(y′i,j) is O(k × n_max), and the is process runs at 

most O(n × k) times, where n_max denotes the maximum number of nodes in the neighbor node set and 

n_max ≤ n. The time complexity of checking the state of all service data provided by a given node is O(k) 

and the time complexity of checking the state of all service data provided by all nodes is O(n × k).  

Thus, the time complexity of MDP algorithm is O(n × k) + O(n2 × k2) + O(n × k2 × n_max) +  

O(n × k) = O(n2 × k2). 

Theorem 2. The time complexity of RSD algorithm is O(n_max × k2 × n2), where n_max denotes  

the maximum number of nodes in the neighbor node set and k denotes the number of services in  

the network. 

Proof: It is easy to know that the time complexity of calculating DCR for all service data in the 

network is O(n_max × n × k) and the process runs at most O(n × k) times. The time complexity of 

marking all service data sensed by nodes in Temp with state as UN-COVERED is O(n × k). The time 

complexity of selecting the RNS as well as determining their provided services is O(n2 × k2): The time 

complexity of selecting a service data with maximal DCR is O(n × k) and the process runs at most  

O(n × k) times.  

In this way, the time complexity of RSD algorithm is O(n_max × n2 × k2) + O(n × k) + O(n2 × k2) = 

O(n_max × n2 × k2). 

6. Simulation Results and Analysis 

In this section, we evaluate the performance of our proposed scheme by demonstrating detailed 

simulation experiments. The related works [14,15] are most close to the problems we studied in this paper. 

Kotidis [14] proposed to select the representative nodes with the partially ordered tuple <data coverage 

range, residual energy>. Peng et al. [15] proposed to use the partially ordered tuple <residual energy, 

data coverage range>. Both of them do not consider the correlation of data for different services and thus 

they cannot be directly used to our problems in this paper. 
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Here we modify the above two schemes for possible comparisons: (1) The first scheme named as 

Multi-service Node Scheduling (MNS) scheme which is originated from [14]. MNS uses the partially 

ordered tuple <DCR, residual energy> to schedule node and determine the services they provided, where 

the definition of data coverage range is the same as that in Definition 3, but no denoising algorithm is 

applied before scheduling; (2) The second algorithm named the Energy priority-based multi-service 

Node Scheduling (ENS) scheme is originated from [15]. ENS uses the partially ordered tuple <residual 

energy, data coverage range> and selects the node with maximum residual energy and all its sensed 

service data will be provided. 

In addition, we design another scheme named Single service Node Scheduling (SNS) scheme for 

further comparison, which only considers the correlation for data of one service, but not correlation of data 

for two separate services. SNS adopts the partially ordered tuple <data coverage range, residual energy> to 

schedule nodes for each service independently, and the data coverage range only considers one single 

service. Then, in the simulation we compare the proposed MMNS scheme with MNS, ENS and SNS by 

running them in the same networks with same parameters in the environments. 

Here we adopt two main metrics to compare the performance, i.e., the energy cost during a given epoch 

and the network lifetime. The energy cost during a given epoch is an important measurement metric since 

energy cost during a given epoch denotes fewer service data. Meanwhile, the network lifetime is one main 

designing goal for wireless sensor networks [1]. 

6.1. Simulation Environments 

We adopt Matlab as the platform tool which is widely used in the simulation experiments of wireless 

sensor networks. The default experimental parameters are set as follows: nodes and targets are placed in a 

randomly manner over the monitored area. For convenience, we assume that each service data is 

transformed into the same value range and the initial value of each service data is randomly selected 

from [0, 50]. The value range of each service can be divided into three sub-ranges, i.e.,  

[0, 10], [10, 40] and [40, 50]. The default values of the simulation parameters are shown in Table 2. The 

demonstrated metrics are calculated by averaging the results of 10 different network topologies. 

We adopt the method of generating synthetic sensed data on the monitored area. In the synthetic data 

set, each service is randomly generate in every target with probability sgp = 0.6. One important issue is 

how to simulate the correlation of data for multiple services in wireless sensor networks. The basic  

idea is described as follows. Firstly, we generate the correlation of data for these five services.  

If there are two service data in a target falling into different ranges of the three ranges: ra1, 2, ra2, 2 and 

ra3, 2, then it is said that these two service data in the target can infer each other. If there are two service 

data in a target falling into different ranges of ra4, 1 and ra5, 1, then it is said that these two data can also 

infer each other. For example, there are two service data in a target, the first service data in the target is 

20 and it is falling into ra1,2, and the second data falling into ra2, 2. Then, we can infer that the value of 

the second data in the target is also 20. 

Then, we generate the service data in each target in a sequence way when the current service data has a 

correlation with any other service data. For example, we assume that a target need to generate the former 

two of the five service data, and the data for s1 generate randomly, then the data for s2 generates its data 

according to the data for s1. 
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Table 2. Default values for the simulation parameters. 

Parameter Description Default Value 

Monitored area size 100 m × 100 m 
Number of nodes in the network 300 

Sensing radius 10 m 
Number of targets in the network 40 

Number of services provided by the network 5 
Value of ε1, ε2, ε3 0.5, 1, 0.5 

Initial energy of each node 500 units 
Energy cost for collecting a service data during an epoch 1 units 

Fraction of survived nodes 75% 
Value of sgp 0.6 

Each node in the network equipped with five sensing devices and can sense those service data at the 

target. The sensed service data for a given node is produced accordingly to the nearest target within its 

sensing radius. The deviation σi,j between the actual sensed data and the real service data at the target is 

proportional to their Euclidean distance [28]. The value of σi,j is shown in Formula (17) [19]: 
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Here, targetk, j denotes the data for service sj in target tk. The value of each noise-corrupted service 

data sensed by a given node which monitors tk is simulated as follows: 

yi, j = xi, j + ei, j = targetk, j + ei, j, (18)

where ei, j ~ N(0, (σi,j)2). 

The value of each service data in a target changes over time with the value formulated as: 

targeti, j(t) = targeti,j(t − interval) + Z, (19)

where interval is the collection time of sensed data from all nodes to the application during an epoch, and 

Z is a random variable that satisfies the Gaussian random distribution with mean as 0 and variance as 0.5. 

6.2. Noise Level of Denoised Data 

As shown in Formula (20), we adopt the Sum of Square of Deviations (SSD) as the metric to compare 

the noise level between the raw noise-corrupted and denoised data in this paper:  
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The simulation result is demonstrated in Table 3. The number of nodes in the network is set varying 

from 100 to 500 with an increment of 100. As we can see, the noise of raw noise-corrupted data has a 

positive correlation with the number of nodes in the network, while the noise of denoised data is 

independent. The noise of denoised data is always smaller than that of raw noise-corrupted data with the 

incensement of network size. It means that the proposed scheme can efficiently enlarge the network 

lifetime without increasing the noise of collected data. 
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Table 3. The impact of the network size on the noise level.  

Network Size 100 200 300 400 500 

Noise-corrupted Data 90.0 176.1 252.9 327.2 416.8 
Denoised Data 44.8 48.4 49.1 50.1 49.6 

6.3. Comparison of Energy Cost 

In this section, we compare the energy cost of the selected representative nodes to provide their 

determined sensing services during a given epoch with the proposed MMNS, MNS, ENS and SNS via 

various parameters, including error threshold, network size and number of targets. 

6.3.1. Impact of Parameter ɛ1 

In the simulation, the error threshold ɛ1 varies from 0.1 to 0.5 with an increment as 0.1. The error 

threshold ɛ2 is double of ɛ1, while ɛ3 is equal to ɛ1. Intuitively, the increasing of error threshold demonstrates 

that more data deviations are tolerant in the network and the less energy cost is necessary to provide the 

sensing services during a given epoch. In Figure 4, the energy cost decreases obviously with the error 

threshold increasing with schemes SNS, ENS and MNS. This is reasonable because the size of DCR 

increases too with the error threshold increasing. However, this trend is not so significant with MMNS, 

because our denoising algorithm can efficiently enlarge the size of DCR when the error threshold is small. 

In case that ɛ1 = 0.3, the energy cost of MMNS is about 35.1%, 39.2%, and 41.5% of that of SNS, ENS 

and MNS. It shows that our proposed denoising algorithm can significantly reduce the energy cost by 

utilizing the correlation with the MRF model. More importantly, the proposed scheme runs stable 

compared with related schemes when ɛ1 varies from 0.1 to 0.5. 

Figure 4. The impact of the ɛ1 on the energy cost. 

 

6.3.2. Impact of Network Size 

The network size varies from 100 to 500 with an increment as 100. The simulation result is demonstrated 

in Figure 5. It shows that the energy cost ascends with network size increasing. However, this trend is 

not obvious when the network size is larger than a given point, i.e., 300. It is due to the fact that the services 

provided by a given set of representative nodes can cover all service data sensed by nodes in a network 

when the network is densely deployed. The new added nodes and their sensed service data is generally 
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covered by the current selected representative nodes. In all cases, our proposed scheme always has better 

performance compared with the other three schemes. In addition, the size of energy cost keeps stable 

compared with the increment of nodes in the network. 

Figure 5. The impact of the network size on the energy cost. 

 

6.3.3. Impact of Number of Targets in the Network 

The number of targets varies from 20 to 45 with an increment as 5 and the simulation result is 

demonstrated in Figure 6. It shows that the energy cost increases with the number of targets. It can also 

be seen that MMNS has better performance compared with the other three schemes regardless of the 

number of events. This trend is more obvious as the number of targets increases. 

Figure 6. The impact of the number of targets on the energy cost. 

 

6.4. Comparison of Network Lifetime 

In this section, we compare the network lifetime of proposed MMNS with MNS, ENS and SNS by 

various parameters, including the error threshold, network size and number of targets. 

6.4.1. Impact of Error Threshold ɛ1 

The error threshold varies from 0.1 to 0.5 with an increment as 0.1 in the simulations. As shown in 

Figure 7, the network lifetime increases along with the error threshold. In all cases, the network lifetime 
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with MMNS is always longer than the other three schemes. For example, in case ɛ1 = 0.3, there is about 

51.5%, 65.4% and 73.5% increment by comparing MMNS with MNS, ENS and SNS. 

Figure 7. The impact of the error threshold on the network lifetime. 

 

6.4.2. Impact of Network Size 

The network size is set from 100 to 500 with an increment as 100, and the result is demonstrated in 

Figure 8. It shows that the network lifetime increases along with the network size. This is reasonable 

because the new added nodes are helpful to increase the redundancy in the network and extend the 

network lifetime accordingly. As we can see from Figure 8, MMNS has better performance compared 

with related schemes regardless of network size in all cases. For example, in case n = 300, there is about 

20.3%, 30.1% and 40.8% increment by comparing MMNS with MNS, ENS and SNS. 

Figure 8. The impact of the network size on the network lifetime. 

 

6.4.3. Impact of Number of Targets 

The number of targets varies from 20 to 45 with an increment as 5 and the simulation result is 

demonstrated in Figure 9. It shows that the energy cost increases with the number of targets by using the 

correlation data generation process. It can be seen that MMNS has better performance compared with 

the other three schemes regardless of the number of events. 
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Figure 9. The impact of the number of targets on the network lifetime. 

 

7. Conclusions 

Energy-efficient multi-service node scheduling is an important issue in a wireless sensor network by 

exploiting the data correlation of data for multiple services. In this paper, we introduce the Markov 

Random Field (MRF) model to describe these correlations in the network. The raw noise-corrupted data 

is also discussed and the multi-service data denoising (MDD) algorithm is proposed to minimize the noise 

level of the sensed multi-service data. We also propose the multi-service Representative node Selection 

and service Determination (RSD) algorithm and MRF-based Multi-service Node Scheduling (MMNS), 

respectively, for the representative node selection and their provided Service Determination problem and 

the multi-service node scheduling problem. Experimental results on synthesized data sets show that RSD 

can obviously reduce the energy cost during a given epoch, and MMNS can obviously extend the 

network lifetime compared with related schemes. In future work, we will further consider the temporal 

correlation in the network and design an efficient multi-service node scheduling scheme with both spatial 

and temporal correlation considered. 
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