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Abstract 

A Cu-SAPO-34 material with very high activity for selective catalytic reduction (SCR) of 

NOx and hydrothermal stability has been synthesized following a sequential 

rationalized design. By using specific combinations of organic structure directing 

agents (OSDAs) and gel compositions in a “one-pot” method, it was possible to control 

Cu occupancy, framework Si distribution, and to maximize the yield of solids. The 

amount of Cu2+ is maximized and remains stable even after steaming at 750ºC for 13 

hours.          
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Highlights 

- A rationalized methodology has allowed the one-pot synthesis of Cu-SAPO-34 

zeotypes. 

- An optimized Cu-SAPO-34 shows high activity and hydrothermal stability for 

SCR-NOx. 

- Cu2+ species remain in the optimized Cu-SAPO-34 even after severe ageing.   

 

Keywords 

One-pot synthesis, silicoaluminophosphate, SAPO-34, selective catalytic reduction 

(SCR), nitrogen oxides (NOx) 
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1.- Introduction 

The design of an attractive heterogeneous catalyst for a relevant chemical process, 

involves the synthesis of materials with high activity, selectivity, and stability. 

Moreover, if the catalyst is mean to be used industrially, the synthesis procedure 

should be economically competitive. In many cases, the combination of innovative 

work together with accumulated knowledge allows to achieve new synthesis that not 

only improves the physico-chemical properties of the catalysts but can meet the 

economical targets.   

In the last years, the synthesis of small pore zeolites with large cavities containing 

extra-framework cationic metals, such as Cu2+, has received much attention thanks to 

their excellent activity and stability for the selective catalytic reduction (SCR) of NOx.[1]    

Traditionally, copper species are introduced in small pore zeolites by post-synthesis 

cationic exchange-impregnation methods.[1,2] However, the distribution of Cu within 

the zeolitic crystals following these procedures can be limited by diffusion of the Cu 

due to the presence of small pores (openings  3.5 Å), being the metal preferentially 

located close to the external surface.[3] To avoid this, different “one-pot” synthesis 

methods introducing organo-copper complexes in the synthesis gel have been recently 

described.[4] These direct procedures permit better metal dispersion within zeolitic 

crystals, and also allow reducing the overall synthesis steps required to achieve the 

final Cu-zeolite catalyst.[5] Diverse Cu-complexes and synthesis conditions have been 

reported in the last years to direct the “one-pot” preparation of different small pore 

chabazite (CHA) polymorphs, as Cu-SSZ-13,[4a,6] and Cu-SAPO-34.[4b,7] Despite the 

advances in the preparation, most of those materials present: low hydrothermal 

stability when treated under severe conditions (presence of steam at high 

temperatures),[4,7b] require the combination of expensive organic structure directing 

agents (OSDAs),[6] or their solid yields after crystallization are very low.[7a]   

In a previous report, we have described the direct preparation of Cu-SAPO-34 using a 

combination of diethylamine (DEA) and Cu-tetraethylenepentamine (Cu-TEPA) as 

organic structure directing agents (OSDAs).[4b] In that study, we were able to 

synthesize Cu-SAPO-34 materials with high solid yields (>90%wt of the initial oxide 

sources), and high catalytic activities for the SCR of NOx under severe reaction 
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conditions when fresh and steamed samples at 600ºC were tested. However, when the 

samples where more intensively steamed at 750ºC for 13 hours, a significant loss of 

catalytic activity was observed for Cu-SAPO-34 materials containing low Cu content, 

while the crystalline framework of Cu-SAPO-34 materials with medium-high Cu content 

collapsed.[4b]  

We present here an extensive and systematic study of the synthesis, characterization 

and catalytic testing of Cu-SAPO-34 that has allowed unrevealing the key catalyst 

variables that control synthesis yield and hydrothermal stability. Then, by means of a 

one-pot synthesis procedure, it has been possible to prepare an efficient, very active 

and highly hydrothermally stable Cu-SAPO-34 catalyst. Deep characterization, including 

infrared spectroscopy  (FTIR) using probe molecules, X-ray photoelectron spectroscopy 

(XPS) or temperature-programmed reduction (TPR) using H2 as reducing gas, have 

shown the nature of the active sites and how they are preserved after hydrothermal 

treatment at 750ºC.        

 

2.- Experimental 

2.1.- Synthesis 

2.1.1.- Direct syntheses of Cu-SAPO-34 materials 

In a general procedure for the Cu-SAPO-34 preparation, the Cu-complex was firstly 

prepared by mixing a 20%wt of an aqueous solution of copper (II) sulfate (98%wt, Alfa) 

with the tetraethylenepentamine (TEPA, 99%wt, Aldrich). This mixture was stirred for 

2 hours until complete dissolution. Secondly, distilled water and phosphoric acid (85% 

wt, Aldrich) were added and stirred for 5 minutes. Third, alumina (75%wt, Condea) and 

silica (Ludox AS40 40%wt, Aldrich) sources were introduced in the gel mixture. Finally, 

diethylamine (DEA, 99%wt, Aldrich), tetraethylammonium bromide when required 

(TEABr, 99%wt Sigma-Aldrich), and SAPO-34 seeds (5%wt of expected final yield) were 

added into the gel, and the mixture was stirred for 30 minutes. The resulting gel was 

transferred to an autoclave with a Teflon liner, and heated at 150ºC under static 

conditions for five days. Table 1 summarizes the experimental conditions used for the 

synthesis of each sample. Crystalline products were filtered and washed with abundant 

water, and dried at 100ºC overnight. The samples were calcined at 550ºC in air to 

properly remove the occluded organic species. 
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2.2.- Characterization 

Powder X-ray diffraction (PXRD) measurements were performed with a multisample 

Philips X’Pert diffractometer equipped with a graphite monochromator, operating at 

45 kV and 40 mA, and usig Cu Kα radiation (λ = 0,1542 nm). 

The chemical analyses were carried out in a Varian 715-ES ICP-Optical Emission 

spectrometer, after solid dissolution in HNO3/HCl/HF aqueous solution. The organic 

content of as-made materials was determined by elemental analysis performed with a 

SCHN FISONS elemental analyzer.  

MAS NMR spectra were recorded at room temperature with a Bruker AV 400 

spectrometer. 29Si NMR spectra were recorded with a spinning rate of 5 kHz at 79.459 

MHz with a 55o pulse length of 3.5 μs and repetition time of 180 s. 13C MAS NMR cross-

polarization (CP) spectrum was recorded at a sample spinning rate of 5 kHz. 29Si, and 

13C chemical shifts were referenced to tetramethylsilane, and adamantane, 

respectively. 

UV−Vis spectra were obtained with a Perkin-Elmer (Lambda 19) spectrometer 

equipped with an integrating sphere with BaSO4 as reference. 

Temperature programmed reduction (TPR) experiments were performed in a 

Micromeritics Autochem 2910 equipment. 

FTIR experiments were recorded with a Thermo “Nexus” spectrometer equipped with 

a DTGS detector. The infrared cell was designed to treat the samples in situ under 

vacuum or under flow conditions. For, CO and NO adsorption experiments, the sample 

has been activated under oxygen flow at 350ºC for 2h, followed by vacuum treatment 

(10-5 mbar) at 150ºC for 1h. Vacuum treatment under this condition is not reductive 

according to literature data.[8] After activation, the samples have been cooled down 

under vacuum conditions to -175ºC. At this temperature, CO or NO has been adsorbed 

in the pressure range between 0.2 and 2 mbar for CO and 0.05 and 0.6 mbar for NO. 

Decovolution of the IR spectra has been done using the ORIGIN software. 

X-ray photoelectron spectra were collected using a SPECS spectrometer with a 150-

MCD-9 detector and using a non monochromatic AlKα (1486.6eV) X-Ray source. 

Spectra were recorded at -175ºC, using analyzer pass energy of 30 eV, an X-ray power 

of 50W and under an operating pressure of 10-9 mbar. During data processing of the 
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XPS spectra, binding energy (BE) values were referenced to P2p peak (135.5 eV). 

Spectra treatment has been performed using the CASA software. 

 

2.3.- Catalytic experiments. 

The activity of the samples for the selective catalytic reduction (SCR) of NOx using NH3 

as reductor was tested in a fixed bed, quartz tubular reactor of 1.2 cm of diameter and 

20 cm length. The total gas flow was fixed at 300 ml/min, containing 500 ppm of NO, 

530 ppm of NH3, 7% of O2, and 5% of H2O. The catalyst (40 mg) was introduced in the 

reactor, heated up to 550 ºC and maintained at this temperature for one hour under 

nitrogen flow. Then, the desired reaction temperature was set (170-550ºC) and the 

reaction feed admitted. The NOx present in the outlet gases from the reactor were 

analyzed continuously by means of a chemiluminiscence detector (Thermo 62C). 

 

2.4.- Steaming procedures 

The hydrothermal treatment of metal-containing molecular sieves was performed by 

steaming the Cu-SAPO-34 samples with water (2.2 mL/min) at 750ºC during 13 hours. 

 

3.- Results 

3.1.- Previous direct syntheses of Cu-SAPO-34  

As referenced above, we were able to prepare different Cu-SAPO-34 materials in a one 

step synthesis procedure following a direct methodology that combines two different 

OSDAs, such as DEA and Cu-TEPA.[4b] Unfortunately, those Cu-SAPO-34 materials 

showed limited hydrothermal stability when aged under harder conditions (750ºC for 

13 hours).[4b] Indeed, the sample containing lower Cu content (see PXRD pattern of 

SAPO34-7_HT750 in Figure 1B) showed better hydrothermal stability after steaming 

than the sample containing higher Cu-content (see PXRD pattern of SAPO34-8_HT750 

in Figure 1B), whose initial CHA structure was transformed into dense phase tridymite. 

Different Cu-containing zeolites have all shown lower hydrothermal stability when 

increasing their Cu-content.[1d,9] Nevertheless, besides Cu content, there are other 
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factors that can strongly influence the hydrothermal stability of SAPO-34. For instance, 

improving the ability of the zeolite to stabilize the extra-framework Cu2+ species by the 

appropriate distribution of negative charges within the zeolitic framework should favor 

the hydrothermal stability of the isolated cationic active sites and, consequently, the 

hydrothermal stability of the final catalyst. In the case of silicoaluminophosphates, 

framework negative charges are created by the adequate isomorphic substitution of 

P5+ with isolated Si4+ atoms in tetrahedral framework positions.[10] However, several 

times this chemical replacement occurs through multiple substitutions of Al and P with 

Si atoms, resulting in the formation of silicon-reach domains or silicon islands.[11] These 

Si-enriched areas do not create negative charges in the zeolitic crystal, and therefore, 

cationic species would not be efficiently distributed within the microporous material or 

they will be stabilized by very weak interactions with connectivity defects. 

A further analysis of the catalytic activity for SCR of NOx of the Cu-SAPO-34 samples 

synthesized in our previous study (SAPO34-7 and SAPO34-8)[4b] indicates that the most 

stable catalyst (SAPO34-7, which contains the lowest Cu-content) suffered a severe 

loss of activity after the steaming treatment (see SAPO34-7 and SAPO34-7_HT750 in 

Figure 2). As introduced above, the overall hydrothermal stability after steaming of the 

SAPO34-7 is high from a crystallographic point of view (see the PXRD pattern of 

SAPO34-7_HT750 in Figure 1B), but nevertheless the catalytic activity was strongly 

diminished after the harsh hydrothermal treatment.  

SAPO34-7 sample was here studied by 29Si MAS NMR to evaluate the Si distribution 

into the final solid (see Figure 3). The results show that SAPO34-7 has more Si atoms 

forming Si-rich domains (signal at -110ppm) than isolated Si(4Al) environments (signal 

at -90 ppm). If this is so one can expect an inappropriate stabilization of cationic Cu 

species in the CHA cages by frameworks with Si-rich domains, and this could be a 

plausible explanation for the large catalytic activity loss after the steaming of the 

sample at 750ºC. On the other hand, SAPO34-8 catalyst has also been studied by 29Si 

MAS NMR. Though SAPO34-8 shows a slight increase in the content of isolated Si 

atoms, the fact that Si-islands are still predominant, together with its much higher Cu-

content (6%wt Cu), results in a weaker crystalline structure when treated under 

severe hydrothermal conditions (see PXRD in Figure 1B).       
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At this point we can conclude that an improvement of the hydrothermal stability of Cu-

SAPO-34 samples may require new synthesis conditions for the “one-pot” preparation 

that will drive into SAPO-34 samples with a better Si distribution, i.e. a larger amount 

of isolated Si-atoms through the zeolitic framework. Then, a good framework Si 

distribution combined with a low-medium metal content (less than 6%wt Cu), may 

direct towards more hydrothermally stable Cu-SAPO-34 samples. In other words, a 

one-pot synthesis procedure should be developed to control the total amount and 

dispersion of Si in framework positions.  

 

3.2.- Direct synthesis of Cu-SAPO-34 with controlled Si distributions 

3.2.1.- Synthesis and characterization 

We started the direct synthesis of new Cu-SAPO-34 materials with less Si (Si/Al ratios 

of 0.19 instead of 0.36) and less Cu-complex [Cu-TEPA/(Al+P) ratios of 0.025-0.05 

instead of 0.05-0.10] in the synthesis gels (see entries Cu-1 and Cu-2 in Table 1). To 

favor the nucleation and crystallization of CHA materials, a small amount of SAPO-34 

crystals (5%wt) was also introduced in the synthesis gels (see Table 1). The PXRD 

patterns of Cu-1 and Cu-2 solids reveal highly crystalline SAPO-34 materials (see Figure 

1A). 

However, very different solid yields have been obtained for both materials: (90%wt 

and 40%wt of initial oxide sources for Cu-1 and Cu-2 respectively, see Table 2). This 

result was surprising since the unique difference in the two syntheses was the amount 

of Cu-complex in the gels (0.05 and 0.025 for Cu-1 and Cu-2, respectively, see Table 1). 

The low solid yield observed for the Cu-2 catalyst would indicate that most of the 

heteroatoms introduced in the initial gel remained in solution after the crystallization 

process. Chemical analyses on those samples reveal that Cu-1 and Cu-2 samples show 

close Cu/TO2 ratios of 0.062 and 0.051, respectively (see Table 2).  

Moreover, both samples present a similar content of Cu-TEPA and DEA in the as-

prepared catalysts (see elemental analyses in Table 3). The UV-Vis spectra of the two 

as-prepared samples show a single band centered at 260 nm, which has been assigned 

to the presence of intact Cu-TEPA molecules (see Figure 4). Interestingly, if the metal 

content for those two samples is calculated in terms of metal atoms per cavity (note 

that the unit cell of CHA has 36 T-atoms, and each unit cell has two CHA cavities, see 
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Figure 5-a), it appears that in both cases almost one Cu specie per CHA cavity should 

occur (see Table 2). This is an important result, since it allows concluding that Cu-TEPA, 

even when present at low concentrations in the synthesis gels, has a higher directing 

effect towards CHA cages than diethylamine. In fact, it is possible to fill every CHA cage 

with one Cu-TEPA molecule. The results then would suggest that, under the two tested 

synthesis conditions, the crystallization of SAPO-34 material is limited by the Cu-TEPA 

content in the gel. Therefore, it seems that Cu-TEPA complex molecules not only show 

a high structure directing effect towards CHA cavities (one Cu-TEPA/cavity), but also 

they are able to determine the crystal growth and, consequently, the overall solid yield 

depending on their initial content. 

Observing the unique directing effects of Cu-TEPA, the role of DEA in the cooperative 

direct synthesis of Cu-SAPO-34 should be discussed. To find if DEA molecules play a 

significant role as co-OSDA for the efficient direct synthesis of Cu-SAPO-34 materials, 

blank experiments without DEA, under similar synthesis conditions to Cu-1 and Cu-2, 

were carried out. The solids obtained in absence of DEA were trydimite, confirming the 

importance of DEA molecules for the one-pot crystallization of Cu-SAPO-34.  

Concerning the silicon distribution within Cu-1 and Cu-2 catalysts as compared to 

previously reported SAPO34-7 and SAPO34-8, the results in Figure 3 indicate that Cu-1 

and Cu-2 materials present an improved Si distribution in the crystalline solids. Indeed, 

a considerably decrease of Si-rich domains (signal at -110 ppm) is observed within the 

samples. These results are in agreement with our hypothesis on the positive effect of 

reducing the Si content in the synthesis mixture. It is noticeable the ideal Si distribution 

achieved for Cu-2 catalyst, for which only well-distributed and isolated Si atoms (signal 

at -90 ppm) are observed. Therefore, different initial Cu-TEPA contents in the synthesis 

gels have an effect not only on the catalyst solid yield, but also on the Si distribution.     

3.2.2.- Catalytic activity and hydrothermal stability 

Taking into account all the above, it becomes clear that a correlation between 

synthesis conditions (i.e. gel composition), framework composition, catalytic activity, 

and zeolite stability, must exist. Then, firstly, the catalytic activity of calcined Cu-1 and 

Cu-2 materials has been evaluated for the SCR of NOx. As seen in Figure 2-A, Cu-1 and 

Cu-2 catalysts show very high NOx conversion with values above 95% under a broad 

range of reaction temperatures (250-450ºC). Their catalytic behavior is very similar to 
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the one observed for our previous optimum catalyst SAPO34-8, which presented 

similar Cu content, though SAPO34-8 shows low hydrothermal stability when steamed 

at 750ºC for 13 hours. This low stability was explained by the high content of Cu atoms 

combined with the presence of a large amount of Si-islands, which would prevent 

efficient Cu stabilization. The hydrothermal stability of Cu-1 and Cu-2 catalysts has also 

been evaluated in presence of steam at 750ºC for 13 hours. As seen in Figure 1-B, the 

PXRD pattern of Cu-1 material (Cu-1_HT750) reveals the complete loss of CHA 

structure after the steaming process, while the PXRD pattern of Cu-2 (Cu-2_HT750) 

mostly preserves the original CHA structure with a very small amount of trydimite 

dense phase formation (see small peak at 21.5 degrees). The low hydrothermal 

stability of Cu-1 can be attributed to its high Cu content (6.6%wt, see Table 2) and the 

presence of Si islands, while the Cu-2 sample performs much better when severely 

steamed due to the presence of some lower Cu-content (5.4%wt, see Table 2) 

combined with an excellent Si dispersion within CHA framework (see Cu-2 in Figure 3). 

The catalytic activity of Cu-2 catalyst after being severely aged has been studied for the 

SCR of NOx. As seen in Figure 2-B, this steamed material mostly retains its original 

catalytic activity, showing NOx conversion values close to 90% under a broad 

temperature range (250-450ºC). Very interestingly, the aged Cu-2 catalyst (Cu-

2_HT750) shows a much higher catalytic activity than our previous hydrothermally 

stable SAPO-34 catalyst at 750ºC (see SAPO34-7_HT750 in Figure 2-B).[4b]  

At this point, we can conclude that it is possible to design a Cu-containing SAPO-34 

material with excellent catalytic properties and hydrothermal stability by using a 

simple and inexpensive direct synthesis methodology. However, from an industrial 

point of view, the synthesized catalyst not only must show excellent physico-chemical 

properties, but also its synthesis procedure must be cost efficient. From this point of 

view, though synthesis raw materials used for the SAPO-34 preparation are reasonable 

low-cost, the zeolite yield should be clearly improved.   

 

3.3.- Direct synthesis of Cu-SAPO-34 materials with high solid yield and controlled 

Cu-content 

3.3.1.- Preliminary screening 
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The attractive results achieved in the previous section when low Cu-TEPA contents 

were introduced in the reaction mixture, directed us to systematically study other 

different synthesis conditions using low Cu-TEPA/(Al+P). The objective was to direct 

the crystallization of hydrothermally stable SAPO-34 materials with higher yields. Six 

new syntheses with three different P/Al ratios (0.8, 0.75, 0.7) and two different Cu-

TEPA/(Al+P) ratios (0.025, 0.05) were performed (see synthesis conditions in Table 1). 

As it can be seen in Figure 6-A, the PXRD patterns of all as-prepared materials show the 

CHA structure after 5 days at 150ºC. However, the three Cu-SAPO-34 materials 

synthesized using the lowest Cu-TEPA/(Al+P) ratio (0.025), show very low solid yields 

(<46%wt of the initial oxides, see Cu-4, Cu-6, and Cu-8 in Table 2). These results are in 

agreement with the solid yield achieved for Cu-2 material, that was also prepared with 

0.025 Cu-TEPA/(Al+P) ratio in the reaction mixture. Therefore, the results confirm that 

the crystallization of SAPO-34 under our synthesis conditions is limited by the Cu-TEPA 

content in the gel, and this variable is determinant for the overall solid yield achieved. 

Since our first aim is to find an efficient preparation for the Cu-SAPO-34 material with 

high solid yields, these materials were not considered further. 

The other three crystalline Cu-SAPO-34 materials synthesized using a Cu-TEPA/(Al+P) 

ratio of 0.05, give solid yields higher than 85%wt (see Cu-3, Cu-5, and Cu-7 in Table 2). 

Similar solid yield was achieved for Cu-1 zeolite, which was also synthesized using a 

theoretical Cu-TEPA/(Al+P) ratio of 0.05.    

When the catalytic activity for SCR of NOx of samples Cu-3, Cu-5, and Cu-7 was 

studied, results in Figure 7 show very high activity, with NOx conversions close to 100% 

in a broad reaction temperature range (200-500ºC). Interestingly, these samples 

exhibit different stability behavior after being steamed at 750ºC for 13 h. Cu-3 material 

presents the lowest hydrothermal stability after being aged at 750ºC, observing a large 

transformation of CHA structure into trydimite dense phase (see PXRD pattern of Cu-

3_HT750 in Figure 6-B). On the other hand, Cu-5 and Cu-7 are more stable, but some 

transformation into trydimite dense phase is also detected (see PXRD patterns of Cu-

5_HT750 and Cu-7_HT750 in Figure 6-B).    

ICP analyses of these three materials reveal comparable Cu-contents (6%wt, see 

Table 2), that would result in one Cu atoms per CHA cavity. The partial hydrothermal 

stability improvement of Cu-5 and Cu-7 materials would occur by the larger presence 



13 
 

of silicon atoms in the SAPO-34 frameworks (Si/TO2 values are 0.104, 0.112 and 0.122 

for Cu-3, Cu-5 and Cu-7, respectively).  

Thus, Cu-SAPO-34 materials with good solid yields and catalytic activities are achieved, 

but some hydrothermal stability improvement is still required. 

 

3.3.2.- Cu-SAPO-34 synthesis by triple-OSDA combination 

As observed previously for the SSZ-39 zeolite, which is a zeolite presenting also D6R in 

its structure, the hydrothermal stability of this small pore zeolite can be clearly 

improved by reducing the overall Cu content.[
1

d] However, we have reported in the 

present work a considerably decrease of the solid yield when the Cu-TEPA content in 

the reaction mixture is decreased and, at the same time, the crystallized Cu-SAPO-34 

materials always contain almost one Cu atom per CHA cavity (see Cu-2 and Cu-4 in 

Table 2). It seems that when very low amount of Cu-TEPA molecules are introduced in 

the preparative gel, our “one-pot” synthesis methodology is not able to direct the 

formation of crystalline Cu-SAPO-34 with significant lower Cu content (much less than 

one Cu atom per CHA cavity).  

We have found that small diethylamine (DEA) molecules are also incorporated in the 

final solids (see elemental analyses of Cu-1 and Cu-2 in Table 3, and solid 13C MAS NMR 

of Cu-2 in Figure 8), but they act as simply pore fillers. Therefore, a real competition of 

DEA with cationic Cu-TEPA complexes for templating CHA cavities cannot be claimed, 

and because of that, Cu content was always constant in the final solids. Therefore, if 

we want to decrease the incorporation of Cu-TEPA, a molecule with a stronger 

structure directing effect than DEA should be introduced. This will compete with Cu-

TEPA and by mastering the concentration of the new OSDA and Cu-TEPA in the 

synthesis gel, it could be possible to control the level of Cu present in the one-pot 

synthesis of Cu-SAPO-34. For doing that we have selected the tetraethylammonium 

(TEA) cation, which has been thoroughly described as an efficient OSDA for the 

synthesis of SAPO-34.[11] We were expecting that the TEA molecules will compete with 

the cationic Cu-TEPA complex during the nucleation and crystallization of SAPO-34 

allowing to reduce the total amount of copper atoms per unit cell while still achieve 

large solid yields.  
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Since the synthesis conditions used for the preparation of the Cu-7 material gave 

excellent solid yields and acceptable hydrothermal stability, those synthesis conditions 

were selected and a gel with TEA, DEA, and Cu-TEPA as triple-cooperative OSDAs was 

prepared and crystallized (see Cu-9 in Table 1). 

The PXRD pattern of the as-prepared Cu-9 material reveals a fully-crystalline SAPO-34 

structure (see Figure 9), with a final solid yield higher than 90%wt of the initial oxide 

sources (see Table 2). UV-Vis spectrum of the as-prepared Cu-9 sample indicates that 

Cu-TEPA complex molecules remain intact after the crystallization process within 

zeolitic crystals (see Cu-9 in Figure 4). In addition, ICP analysis on Cu-9 material shows 

that the Cu content has been clearly reduced to 3.3%wt Cu (see Table 2), which 

correspond to 0.6 Cu atoms per CHA cavity. In order to verify that the Cu-content 

decrease has occurred by the partial replacement of Cu-TEPA by TEA molecules, the 

as-prepared Cu-9 sample has been characterized by elemental analysis and solid 13C 

MAS NMR spectroscopy. The as-prepared Cu-9 shows a C/N ratio of 3.4, which is 

higher than the values observed for as-prepared TEA-free Cu-1 and Cu-2 samples (C/N 

 2.1-2.2, see Table 3). This analysis is not conclusive to claim that TEA molecules are 

partially replacing Cu-TEPA complex molecules in the as-prepared Cu-9 sample, since a 

possible increase of the DEA content would result also in an increase of the C/N ratio 

(note that TEPA, DEA, and TEA molecules show a C/N ratio of 1.6, 4, and 8, 

respectively). Nevertheless, the solid 13C MAS NMR spectrum undoubtedly show the 

characteristic two bands of TEA molecules at 6.3 and 52.1 ppm (see Cu-9 in Figure 8), 

confirming the partial replacement of Cu-TEPA by TEA molecules.  

The Si distribution in the calcined Cu-9 material has also been studied by solid 29Si MAS 

NMR spectroscopy. As seen in Figure 10, a mixture of isolated Si species (signal 

centered at -90 ppm), and Si-rich domains (signal centered at -110 ppm) can be 

observed in Cu-9 material. From what was said before, it appears that an ideal Si 

distribution has not been accomplished in Cu-9 as occurred with Cu-2 sample. 

Nevertheless, Cu-9 material shows much higher solid yield and controlled Cu-content 

(0.6 Cu atoms per CHA cavity), and deserves to be further studied to determine its 

catalytic activity and hydrothermal stability.   

 

3.3.3.- Catalytic activity and hydrothermal stability 
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The calcined Cu-9 sample has been tested for the SCR of NOx, and as it can be seen in 

Figure 11, this material shows very high catalytic activity with NO conversion values 

above 90% under a wide reaction temperature range (200-450ºC). Very interestingly, 

the PXRD pattern of the Cu-9 after being steam-treated at 750ºC for 13 hours presents 

a negligible presence of the trydimite dense phase (almost inexistent peak at 21.5 

degrees, see Cu-9_HT750 in Figure 9), revealing its high hydrothermal stability. Indeed, 

as we hypothesized above, the ability of preparing a Cu-SAPO-34 material with lower 

Cu-content by direct methods results in a more stable catalyst. 

The catalytic activity of the steamed Cu-9 material is analogous to the fresh Cu-9 

material (see Figure 11), probably indicating that the local copper environments have 

not significantly changed after the hydrothermal treatments.  

 

3.3.4.- Catalytic active sites characterization 

In order to determine the type of copper species before and after ageing procedures, 

fresh and steamed Cu-9 materials have been properly characterized by temperature-

programmed reduction (TPR) using hydrogen, FTIR spectroscopy of adsorbed probe 

molecules, as CO and NO and XPS.     

The H2-TPR results of fresh and steamed Cu-9 samples show very similar profiles (see 

Figure 12). The H2 consumption peaks observed from 200 to 500ºC indicate the 

presence of three different types of copper species coexisting in the catalysts. 

According to literature,[12] the peaks located at lower temperatures (250-270ºC) 

represent the reduction of isolated Cu2+,[13] the peaks centered at 350-370 represent 

the reduction of bulk CuO to Cu0,[14] and finally, the higher temperature peaks can be 

assigned to the reduction of Cu+ to Cu0.[13]  As seen in Figure 12, the higher intensity of 

the H2 consumption peak at 250ºC indicates that Cu2+ is the predominant cupric specie 

in both, fresh and steamed, Cu-9 samples. The asymmetry to lower reduction 

temperatures observed in the fresh sample point to some heterogeneity of Cu2+ ion 

species. On the other hand, the small peaks observed in both materials at 350ºC and 

450ºC, could be attributed to small amounts of CuO and Cu+ species, respectively. XPS 

data shows, in agreement to the TPR data, the existence of highly dispersed Cu2+ ions 

(BE 936.8eV), being this the predominant specie, in addition to CuO (BE 933.4eV), in 

both fresh and steamed Cu-9 samples (see Figure 13).[15] 
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To analyze in more detail the nature of Cu species, fresh and aged Cu-9 samples have 

been studied by FTIR spectroscopy using CO and NO as probe molecules. Both 

molecules are very sensitive to the local environment of Cu ions, being able to 

discriminate between different oxidation and coordination states. Thus CO is a very 

selective molecule for the determination of Cu+ species but does not allow the 

determination of Cu2+ cations.[16] In contrast, NO interacts efficiently with both Cu2+ 

and Cu+, being more selective towards Cu2+ species.[17]   

As seen in Figure 14, two main bands centered at 2175 and 2148 cm-1 appeared for 

both Cu-9 samples in the FTIR spectra of CO adsorption. These bands are associated 

with the symmetric and asymmetric stretching modes of the [Cu+(CO)2] complex.[16c,18]  

Therefore, Cu+ ions are present in both fresh and steamed samples, but their relative 

amount compared to Cu2+ ions cannot be determined by FRIR spectroscopy using CO 

as probe molecule. 

Regarding the nature of Cu2+ ions, the IR spectra of NO adsorption shows some 

heterogeneity evidenced by the coexistence of several bands in the 1950-1880 cm-1 IR 

region of the NO vibration on both fresh and aged Cu-9 samples (see Figure 15). NO 

molecules interacting with isolated Cu2+ ions in square pyramidal configuration has 

been evidenced at 1912 and 1905cm-1, while bands at higher frequencies has been 

assigned to associated Cu2+ sites. [16a,17] On the other hand, NO interacting with the OH 

group of Cu-OH+ species is expected at lower frequencies (1898-1880cm-1).[16a,19]  In 

the lower frequency region (1806-1780 cm-1), the IR band at 1755 cm-1 is associated to 

Cu+ mononitrosyl complex [Cu+(NO)].[20] According to the results obtained from FTIR 

characterization, Cu species in different coordination environment and oxidation state 

can be found in fresh and steamed Cu-9 catalysts. However, FTIR spectra of NO 

adsorption, XPS and H2-TPR clearly indicate that dispersed Cu2+ ions, either as isolated 

or low associated Cu2+ ions, are the predominate species in both Cu-9 samples. 

Interestingly, these Cu2+ species are very stable to harsh hydrothermal treatments, as 

indicated by the H2-TPR profile and FTIR spectra for Cu-9 after being severely steamed 

at 750ºC for 13 hours.  

Finally, the FTIR spectra of NO adsorption on Cu-9 and SAPO34-7 samples, both fresh 

and aged at 750ºC, have been compared. As it can be seen in Figure 16a, these 

catalysts show different intensities for the bands associated to Cu2+ species (1950-1880 
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cm-1). Among these species, while the nature of the active catalytic sites for the SCR of 

NOx remains open to discussion, our data, interestingly shows a linear correlation 

between the IR area associated to the 1910 and 1898 cm-1 IR bands in the NO-FTIR 

spectra and the catalytic activity for the SCR of NOx for each catalyst (see Figure 

16b).These results agree with the assessment of isolated Cu2+ ions in square pyramidal 

configuration or Cu-OH+ species as potential active sites. 

 

4.- Conclusions  

A sequential, rationalized synthesis design has allowed the “one-pot” direct 

preparation of Cu-SAPO-34 materials with very high solid yields, improved physico-

chemical properties, and high hydrothermal stability. It has been shown that the 

control of Cu-TEPA and Si contents in the synthesis gels combined with specific 

combinations of multiple OSDAs (Cu-TEPA, DEA, and TEA) allows tailoring the physico-

chemical properties of the resultant Cu-SAPO-34 catalysts. An optimized Cu-SAPO-34 

material presents excellent catalytic properties for the SCR of NOx and very high 

hydrothermal stability when steamed under severe conditions (750ºC for 13 hours). 

Cu-SAPO-34 catalysts were properly characterized by FTIR spectroscopy using probe 

molecules (CO and NO), XPS and temperature programmed reduction (TPR) using H2 in 

order to illustrate the catalytic active sites. A large proportion of Cu in the optimized 

Cu-SAPO-34 is in the form of Cu2+ species even after steam treatment.  
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Figure 1: PXRD patterns of as-prepared Cu-SAPO-34 materials synthesized following 

the synthesis conditions reported in Table 1 (A), and after being steam-treated at 

750ºC for 13 hours (B)   
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Figure 2: Catalytic activity for the SCR of NOx reaction of fresh Cu-SAPO-34 materials 

synthesized according Table 1 (A) and after being steam-treated at 750ºC for 13 

hours (B) 
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Figure 3: Solid 29Si MAS NMR spectra of Cu-SAPO-34 materials synthesized according 

Table 1 
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Figure 4: UV–Vis spectra of Cu-TEPA complex in solution, and as-prepared Cu-SAPO-

34 materials synthesized according Table 1
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Figure 5: Unit cell of CHA zeolite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Figure 6: PXRD patterns of as-prepared Cu-SAPO-34 materials synthesized following 

the synthesis conditions reported in Figure 1 (A), and after being steam-treated at 

750ºC for 13 hours (B)   
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Figure 7: Catalytic activity for the SCR of NOx reaction of fresh Cu-3, Cu-5, and Cu-7 

materials synthesized according Table 1 
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Figure 8: Solid 13C MAS NMR of as-prepared Cu-2 and Cu-9 samples, and liquid 13C 

MAS NMR of DEA, TEA and TEPA  
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Figure 9: PXRD patterns of the as-prepared Cu-9 sample (Cu-9_a.p.) and after being 

hydrothermally treated at 750ºC for 13 hours (Cu-9_HT750) 
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Figure 10: Solid 29Si MAS NMR of calcined Cu-9 sample 
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Figure 11: Catalytic activity for the SCR of NOx reaction of fresh Cu-9 material, and 

after hydrothermal treatment at 750ºC for 13 hours 
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Figure 12: H2-TPR profile of calcined Cu-9 (A) and after being aged at 750ºC for 13 

hours (B) 
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Figure 13: Cu2p3/2 XPS line of the Cu-9 and Cu-9_HT750 samples 
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Figure 14: FTIR spectra of CO adsorbed at -175ºC on calcined Cu-9 (A) and after being 

aged at 750ºC during 13 hours (B). Each sample has been measured at increasing CO 

pressures: 0.45-0.50 (a), 0.65-0.71 (b), 0.85-0.90 (c), 1.0-1.10 (d), 1.25-1.35 (e) and 

1.45-1.52 mbar (f)  
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Figure 15: FTIR spectra of NO adsorbed at -175ºC on calcined Cu-9 (A) and after being 

aged at 750ºC during 13 hours (B). Each sample has been measured at increasing NO 

pressures: 0.10-0.12 (a), 0.20-0.23 (b), 0.28-0.31 (c), 0.45-0.51 (d), and 0.57-0.62 mbar 

(e)  
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Figure 16: (A) FTIR spectra of NO adsorbed at -175ºC on fresh and steamed at 750ºC 

SAPO34-7 and Cu-9 catalysts. These spectra have been acquired at similar NO 

pressures (0.6 mbar). (B) Relationship between the catalytic activity at 350ºC for 

the SCR of NOx and the IR-NO area associated to Cu2+ species (1910+1898 cm-1) for 

fresh and steamed at 750ºC SAPO34-7 and Cu-9 catalysts. 
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Table 1: Molar ratios used for the synthesis of each Cu-SAPO-34  

Sample P/Al Si/Al Si/(Al+P) Cu-TEPA/(Al+P) DEA/(Al+P) TEA/(Al+P)e 

SAPO34-8 0.8 0.36 0.2 0.1 0.4 --- 
SAPO34-7 0.8 0.36 0.2 0.05 0.45 --- 

Cu-1 0.9 0.19 0.1 0.05 0.45 --- 
Cu-2 0.9 0.19 0.1 0.025 0.475 --- 
Cu-3 0.8 0.2 0.11 0.05 0.45 --- 
Cu-4 0.8 0.2 0.11 0.025 0.475 --- 
Cu-5 0.75 0.25 0.143 0.05 0.45 --- 
Cu-6 0.75 0.25 0.143 0.025 0.475 --- 
Cu-7 0.7 0.3 0.176 0.05 0.45 --- 
Cu-8 0.7 0.3 0.176 0.025 0.475 --- 
Cu-9 0.7 0.3 0.176 0.05 0.15 0.3 

a All materials were prepared with H2O/(Al+P) = 10 and 5%wt of SAPO-34 crystals as seeding; 
b All materials were crystallized at 150ºC for 5 days; c Cu-tetraethylenepentamine; d 

diethylamine; e tetraethylammonium 
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Table 2: Chemical analyses and solid yields for the synthesized Cu-SAPO-34 materials  

Sample Si/TO2 Cu/TO2 %wt Cu Cu/cavity 
Solid yield 

(%wt) 

SAPO34-8 0.180 0.054 6.1 1.1 90 

Cu-1 0.106 0.062 6.6 1.1 88 

Cu-2 0.106 0.051 5.4 1.0 40 

Cu-3 0.104 0.059 6.2 1.0 85 

Cu-4 0.109 0.049 5.2 0.9 46 

Cu-5 0.112 0.058 6.1 1.0 87 

Cu-6 N.D.d N.D. N.D. N.D. 46 

Cu-7 0.122 0.057 6.0 1.0 86 

Cu-8 N.D. N.D. N.D. N.D. 40 

Cu-9 0.141 0.031 3.3 0.6 94 
a Cu atoms per CHA unit cell (each CHA unit cell has 36 T atoms); b Cu atoms per CHA cavity 

(each CHA unit cell has 2 cavities); c calculated as %wt of the oxides introduced in the 

synthesis gel; d N.D.: not determined. 
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Table 3: Elemental analyses de Cu-2 and Cu-9 

Sample %wt N %wt C C/N)real %TEPA %DEA 

Cu-1 5.1 9.3 2.1 79 21 

Cu-2 4.6 8.9 2.2 75 25 

Cu-9 3.2 9.3 3.4 --- --- 
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