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Abstract

Look-up tables are commonly used in the automotive field for handling operating point varia-
tions. However, constant maps cannot cope with systems variations and ageing. Methods, such
as Kalman filter or Extended Kalman filter for non-linear cases, can be used for table adaptation
providing an optimal solution to the problem. But these methods are computationally inten-
sive, making difficult to implement them on commercial engine control units. The current paper
proposes a learning method for online updating of look-up tables or maps. This algorithm uses
precalculated membership functions based on a standard Kalman filter observer for weighting the
adaptation. The main contribution of the method is the derivation of a steady-state Kalman filter
observer that lowers the calculation burden and simplifies the implementation, against standard
Kalman filter implementation that requires higher computational cost. As far as table is up-
dated online while engine runs, this allows correcting drift errors and the unit-to-unit dispersion.
The method is illustrated for mapping engine variables such as λ−1 and NOx in a Diesel engine
by using an adaptive look-up table; and its characteristics make it suitable for implementing in
commercial engine electronic control units for online purposes.

Keywords: Kalman filter; adaptive models; maps; look-up table; automotive; sensor;
PACS: 5.70.a, 89.40.Bb

1. Introduction

The need of information about systems is crucial in engineering applications. Models are an
alternative to physical sensors, which are not always available or their responses are deficient
in terms of cost, delay and dynamics. Look-up tables allow engineers to model systems that
present complex expressions or are difficult to obtain, by means of mapping outputs with a set
of nD heuristic array structures. Table outputs depend on n inputs and are generally calculated
using interpolation between table elements. Tables are highly used in different engineering fields
but current paper centres on automotive engines. In this field, a lot of parameters and functions
must be modelled for the correct performance of systems. The increasing complexity of these
(i.e selective catalyst reduction, exhaust gas recirculation, variable geometry turbine or diesel
particulate filter, among others) requires each time a higher identification and calibration effort,
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Figure 1: Schematic view of the procedure for estimating xk [1].

both off-line and on-line. In addition to this, current engine control systems are commonly
confided to fixed calibrations, with different maps based on look-up tables for compensating
temperature, pressure or ageing variations, complicating even more the identification problem.

Main problem of using models for engine control is that variables change during lifespan
due to different reasons, and constant maps do not cover these changes. This leads to a drifted
response, where output presents bias that in general varies with time and other variables. For ex-
ample, common inputs used on Diesel engines are injection (m f ) and speed (n), which generally
define the engine operating point. (1) shows how table elements (θi j) vary with time and engine
operating point for a 2D case (n = 2),

dθi j

dt
=
∂θi j

∂t
+
∂θi j

∂n
dn
dt

+
∂θi j

∂m f

dm f

dt
+ . . . (1)

Adaptive modelling is a good solution for coping with this drifted performance. For this,
some feedback about the considered variable is needed. This information can be obtained from
different paths: sensor outputs (although these suffer delays and dynamical effects and are not
available in all cases) and other models (analytical, maps or others).

A possible application is shown in figure 1, where three main blocks can be seen: Learning
block, Inputs block and Kalman filter block.

The adaptation and interpolation of the table is included in the Learning block, where an
adaptive table is used for mapping a given variable xk. The table itself is a n-Dimensional matrix
that constitutes a static model depending on n inputs (u1, ..., un); F that represents the algorithm
that controls the updating, which is the core of the paper; and xk−1 that is the reference value used
for updating the table. Finally, x̂k is the output of the table that is obtained by linear interpolation
using the current table elements θi j, although other methods are possible.

Inputs block represents all the operations for obtaining the required n inputs (u1, ..., un) for the
model in the proper way: filtering, delaying, sensor outputs treatment, other modelisations, etc.
For example, for modelling NOx [2], EGR rate would have to be one of the inputs, but EGR is
not directly available on Diesel engines, and then a model for getting EGR rate must be built. In
addition to this, NOx output will respond to EGR variation with some delay and some dynamics.
This inputs block takes into account all these treatments. The Learning block will receive the
inputs already treated.
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Although table system represents a static model, matching the table output with a filter allows
tracking dynamics. Kalman filter [3] block is built for observing xk using the delayed table output
x̂k−τ as input for the observer and some information source yk as feedback. The discrete state-
space model built for this observer contains the considered dynamics, which are included in the
prediction block of the Kalman filter (see (21)). Variable innovation block uses yk for correcting
the observation xk. This last is used as reference input for the learning block. Other authors have
set out this kind of Kalman filter structure for bias cancellation of models from some information
feedback [4, 5, 6, 7].

In addition to these blocks, at least two delay blocks must be included. The first one shifts x̂k

for taking into account possible delay τ of yk. Typical examples are sensors, which in general
present some pure delay, transport delay and some physic delay with respect to inputs actuation
(although this last can also be treated in Inputs block). The second delay is included after the
observation of xk for delaying it just one iteration, because in every iteration, table output is the
result of the last updating; i.e. table updating will always be one sample shifted.

The key aspect for the adaptation is then the design of the learning algorithm F and its per-
formance depends highly on the existence of a reliable xk value that gives feedback for compen-
sating the error in every instant. In the field of adaptive look-up tables, some papers have been
published treating the table elements as parameters that are identified by means of an extended
Kalman filter (EKF) [4, 8]. Nevertheless, these methods present problems of calculation burden
and must solve the local unobservability of table elements that are not active. This formulation
also requires a big computational effort because heavy matrices must be calculated preventing
it from being implemented in commercial electronic control units (ECUs) for map adaptation.
The current paper proposes a novel learning algorithm that only affects matrix nodes involved in
the interpolation process and updates table elements by means of membership functions. These
functions have been previously calculated off-line from a derivation of a Kalman filter gain calcu-
lation. As in figure 1, the table system can be linked with a dynamic evolution like the proposed
in the Kalman filter block for mapping dynamic systems.

Regarding tuning of the state-space system used in the Kalman block and the delay, there is
a wide bibliography [1, 9, 10, 11, 12] on sensor characterisation and dynamical treatment using
both on-line and off-line procedures.

The structure of the paper is the following: section 2 presents the problem description, section
3 gives some comment about interpolation phase; section 4 presents a review of methods for up-
dating look-up tables on automotive applications and presents the proposed method for updating
table elements; section 5 shows results on simulating the method, one in 1D and a second one in
2D; section 6 shows table updating on real engine and finally section 7 outlines the work conclu-
sions. Section 2 to 5 are centred on Learning block, while section 6 recovers the full example of
figure 1 with real engine data.

2. Problem description

The paper addresses the updating of a n dimensional look-up table T , where each dimension
n presents dn nodes. Table output in time t is referred as x̂(t), which is calculated as function
of n inputs un by means of the interpolation of the 2n observed table elements involved in every
iteration:

x̂(t) = f (T (t), u1(t), ..., un(t)) (2)
3



Current computer and programming systems are based on discrete formulation as far as sys-
tems are sampled, and the paper formulation will be presented on a discrete basis (3). Normal
frequency for engine variables is in the order of 50 − 100Hz when these change fast.

x̂k = f (Tk, u1,k, ..., un,k) (3)

Electronic control units (ECUs) are extensively programmed using fixed calibrated look-up
tables (Tk = Tk−1 = ... = T1) where ageing effects, manufacturing discrepancies and in general,
effects that produce variations in the function are not taken into account. Main reason for this, is
the time and memory resources that adaptive algorithms consume, without forgetting the stability
of the programming against perturbations that can affect the model. Furthermore, tables are
usually calibrated off-line with specific test rigs that consume an important amount of human
and material resources.

Tk in (4) defines the table T in the instant k as a function of the previous elements of the
table, the inputs for the function un,k−1 and the learning algorithm F, according to the available
reference xk−1.

Tk = F(Tk−1, u1,k−1, ..., un,k−1, xk−1) (4)

With this scenery, the solution of the problem is designing a learning algorithm F, which from
certain reference about the system xk−1, updates the matrix Tk for inferring the estimation x̂k.
Uncertainties in xk can be taken into account as some noise ζk around the actual value xr,k that in
general is not known:

xk = xr,k + ζk (5)

The ability of the learning method for coping with errors in the reference is studied in section
5. Without any lack of generality and for the comprehension of the reader, the matrix T in instant
k can be defined for a 2D case as follows:

Tk =


θ1,1,k θ1,2,k ... θ1,d2,k

...
...

. . .
...

θd1,1,k θd1,2,k ... θd1,d2,k

 (6)

being
∏n

i=1 di the number of elements of the table and di the number of nodes in each dimension.
For giving numbers of the method performance (see section 5), Tr matrix is defined as the

actual reference of the matrix, where Tk must converge to Tr. θr,i j are the elements of Tr, in the
same way of Tk elements in (6). During each iteration, an scalar error ek in the estimation is used
for updating Tk:

ek = xk − x̂k−τ (7)

Although different error metrics can be defined, the current paper defines an scalar quadratic
error percentage for each iteration for seeing the convergence rate of the method, and is defined
in (8) for the 2D case. If ek tends to zero, convergence of the matrix can be ensured.

eqk = 100
d1∑
i=1

d2∑
j=1

(θi j − θr,i j)2/equ (8)
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where equ normalises the error for getting eq1 = 1.
To sum up, the system must keep the following properties:

• Convergence of the estimated matrix Tk to the actual value when Tr is the actual value.

lim
k→+∞

Tk = Tr (9)

• Method must ensure noise rejection in the updated elements when ζk appears in xk and must
cope with changes in Tr, ensuring convergence as in (9).

• Low memory use and reduced computational resources of the adaptation algorithm, for al-
lowing its use in commercial ECUs, which is one of the main contributions of the presented
method.

And to solve the problem, two main parts must be addressed:

• Interpolation problem; which defines the table output x̂k.

• Adaptation problem; which defines the learning algorithm F that updates the table.

Both issues are shown in figure 2 and will be discussed in section 3 and 4 respectively.

3. Look-up table interpolation

x̂k is obtained by means of linear interpolation of the table elements that are active in every
iteration (see (3)), 2n in total for the nD problem. These active nodes coincide with the observable
ones for every iteration. Linear interpolation, depending on the node distribution and system
to be modelled, is sufficient for getting enough accuracy with a reasonable calculation burden.
Anyway, other principles could be used, such as the nearest interpolation or B-splines. The
defined grid must have enough nodes (d1, ..., dn) and a sufficient density for tracking xk slope
variations [13].

For a 1D case, linear interpolation can be mathematically expressed as:

x̂k =
[
(1 − η) η

]
[θi θi+1]′ (10)
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where variable η is defined according to left plot in figure 3 that considers the normalised distance
of the new measurement point uk to the abscissa of the nodes i and i + 1.

For the 2D case and linear interpolation, η1 and η2 variables are defined in the right plot of
figure 3 according to the 2 degree of freedom of the table:

x̂k =
[
(1 − η1)(1 − η2) η1(1 − η2) (1 − η1)η2 η1η2

] [
θi, j θi+1, j θi, j+1 θi+1, j+1

]′
(11)

4. Look-up table adaptation

The design of the learning algorithm F is the key aspect of the problem and motivation of the
paper. Different kinds of adaptation principles for look-up tables can be found in the literature,
and some, specially those based on Kalman filter and proportional correction, are commented in
the following:

• [4] and [14] propose an extended Kalman filter (EKF) for updating table elements where
they are treated as states to be observed and updated using some system feedback. The error
covariance matrix Pk estimates the observation error adjusting a Kalman gain Kk in every
iteration. Pk elements related with locally unobservable elements have a linear growth of
noise (defined by the user), diminishing and approaching to zero when such elements be-
come observables, coping with own table ageing. A bigger covariance leads to a higher Kk.
The first problem of this system is that although unobservable elements do not affect the
updating in the given iteration, EKF must manipulate all elements of Pk. Global stability of
the method relies on the observability of the states and although during each iteration only
4 elements (in a 2D example) are locally observables and the rest of them unobservables,
the calculation involves all table areas. The second problem relies on the fact that system
matrices vary with time making impossible to derive an steady-state Kalman filter [15, 1].
This forces the use of a huge memory and computational resources for inferring Kk in every
instant. If the 2D matrix T has 100 elements (10×10), and 1 state variable is reserved for the
system dynamics, then the total size of the state vector is 101 × 1 (100 nodes plus 1 state).
Hence Pk used in the EKF is 101 × 101. This matrix needs to be updated and calculated
recursively and, since some of their elements can present an unbounded growth (due to un-
observability issues), it supposes severe computational instability challenges. Furthermore,
this method requires the storing of at least two dynamic memories for Pk and Kk (101 × 1)
extra with respect to the steady-state Kalman filter. Anyway, this idea is used as inspiration
for the proposed algorithm.
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• [16] treats the problem of table updating as a reverse interpolation problem but considering
that this is an ill conditioned one. A proportional weighting is used for updating all the
elements that were involved in the previous interpolation calculation. The author cites it
literally as multiple nodes proportional distribution. This weighting is calculated only from
inputs and previous output. In that way, the method does not take into account noise in the
measurement, and is not optimal by definition, as Kalman filter is. Main advantage of the
method is that during every iteration, only table values related with observable elements are
updated. This makes the system updating fairly simple, where only a simple expression
is solved for defining the weighting gain (equivalent to Kk in our method). The method
proposed in the current paper remains this property.

• There exist other possibilities in the literature, such as least-squares identification [13] or
non-uniform rational b-spline interpolation (NURBS) [17]. The first is fairly simple and
requires that table grid and data is well distributed for avoiding robustness problems (as the
authors literally claim); the second fits well with complicated profiles but is more indicated
for mapping complicated functions than for look-up tables on the automotive field, because
of the high computational resources needed.

4.1. A learning algorithm for look-up table adaptation

A novel algorithm is presented combining the accuracy and optimal solution presented by [4]
with the fast and simple one presented by [16]. Basic idea is deriving membership functions
similar to the ones used in [16], but from a Kalman filter representation as in [4]. In that way,
an steady-state representation of the Kalman filter is achieved under certain simplifications al-
lowing off-line calculation of Kalman gain Kk. This permits getting membership functions that
depend uniquely on the relative active position. Hence the resulting algorithm keeps some of the
properties of the Kalman filter but with a lower computational effort. This also avoids numerical
problems associated to the system unobservability due the unbounded growth of Pk. Anyway,
it remains evident that complete table adaptation requires enough excitation in all areas of the
matrix.

For that, the problem is stated as follows:

~θk = A~θk−1 + Q (12)
xk = Dk~θk + R (13)

For the 2D case, this system is applied uniquely to the table area that is active during every
iteration. This is similar to consider a system of dimension 4 that works only with observable
elements. System matrices and state vector ~θ, built from expanding active elements of Tk, are
shown in (14). This allows solving a reduced system every time.

A =


1

1
1

1

 ; Dk =


(1 − η1)(1 − η2)
η1(1 − η2)
(1 − η1)η2
η1η2


′

; ~θ =


θi, j

θi+1, j
θi, j+1
θi+1, j+1

 (14)

Two noise matrices representing the instant variation of the system and the measurement noise
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as white noises with a certain covariance are considered:

Q =


q(σ2

θ)
q(σ2

θ)
q(σ2

θ)
q(σ2

θ)

 ; R = r(σ2
x) (15)

Optimal observation of θk is ensured if the reference xk exists and then it can be obtained
through the Kalman filter formulation:

~θk = ~θk|k−1 + Kk(xk − D~θk|k−1)) (16)

where Kalman gain correction Kk is recursively defined through:

Pk|k−1 = APk−1|k−1A′ + Q

Kk = Pk|k−1D′k
(
DkPk|k−1D′k + R

)−1

Pk|k = (I − KkDk)Pk|k−1

(17)

where first and second equation define the prediction phase and third equation defines the up-
dating phase for Kalman gain correction; being Pk|k−1 the predicted estimate covariance, Kk the
kalman gain and Pk|k the updated covariance for observing the state vector ~θk of the system. This
formulation, similar to the one in [14], would allow to compute the optimal estimate of the table
nodes (θ) but with a high computational cost.

Now, if the problem is considered stationary (the same input is repeated once and again), then
Dk = D. In addition to this, if a noise ratio σ2

x/σ
2
θ is given, Kk in (17) converges after a given

number of iterations. That occurs although P does not converge and can be ill conditioned (see
Appendix A for a wider explanation). Then, a stationary equivalent is obtained and an analytical
expression can be derived, resulting:

ki, j = f (η1, η2, σ
2
x/σ

2
θ) (18)

where weighting functions ki, j are shown in (A.7) and only depend on the current engine operat-
ing point defined by η1 and η2 (derived from u1 and u2) in the 2D case.

Calculating only one of the ki, j functions is enough, as far as the rest of them are symmetrical
as shown in figures 4 and 5 for 1 and 2D cases (this is forced because the effect of variable Pk

is being neglected). The user can evaluate (A.7) for the 2D case in every iteration for a variable
noise or can map the functions off-line and fasten even more the calculation, which is the option
suggested by the authors. Table elements are then corrected during every iteration:

θi, j,k = θi, j,k−1 + ki, j(η1, η2, σ
2
x/σ

2
θ)ek (19)

Figures 4 and 5 also show how when operating point is close to one node, the correction is
generally bigger than when the node is further. Furthermore, when σ2

x/σ
2
θ relationship increases

is equivalent to increase the confidence in xk, and then ki, j tends to be higher. Non-observable
elements in every iteration will not present any correction, which is equivalent to say that ki, j

function for these is zero.
To sum up, ki, j functions for updating table elements have been derived from an standard

Kalman filter under certain hypothesis, and these are calculated and stored off-line. These hy-
pothesis neglect the effect of the variation of Dk along time and Pk variation. However, this
allows keeping a very low calculation burden; P is not calculated nor updated.
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This method itself is capable of tracking engine system ageing but does not estimate observa-
tion error in every iteration. If the user requires this, a simple count vector could be added for
increasing or decreasing the noise ratio in (18), and then increasing or decreasing ki, j; and for this
case, (A.4) analytical expression cannot be mapped off-line. Anyway, this vector would require
an extra dynamic memory of 100 × 1 and a simple evaluation of (A.4) for getting ki, j, which is
still much less than for the standard Kalman filter. This can be used during first iterations for
accelerating convergence in areas that have not been updated before.

5. Simulation of the learning algorithm

For simulation purposes, a Pentium Dual-Core PC computer with a mathematical program
is used. An stochastic distribution of 1000 points is prepared to show the adaptation perfor-
mance of the table using the proposed method. Table elements are initially zero. Two analytical
functions for 1D and 2D case are designed for checking the performance of the method. They
are represented in figure 6,including updated T matrix, which is calculated in next subsections.
Convergence and speed of the method are numerically studied using error metric eqk defined in
(8).
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Figure 7: Evolution of the quadratic error in 1D case and 2D case for different noises.

5.1. Updating with a reliable xk

Reference is supposed reliable and well-known, and then (5) leads to xk = xr. Simulation
results are shown in figure 7. eqk tends to zero for 1D and 2D cases in a short number of
iterations, which shows the convergence of the algorithm. In this figure, different noise sets are
checked, and best results are with lower σx/σθ. This is a logical conclusion as far as xk is now
the real reference and it is considered well-known. Then, σ2

x = 0 makes the fastest correction.
This case is ideal and demonstrates the feasibility of the method, but some perturbations must be
taken into account to see how the adaptation behaves.

5.2. Bias in the identification

Automotive engines operate under highly variable conditions, which combined with modelling
errors, lead models to suffer from bias. Furthermore, this bias varies with time, operating point
and others, provoking drift. This makes that table output x̂k suffers some drift if table elements
are fixed. For testing this, a constant bias to all elements of the function in the 2D case is applied
just after first 200 iterations of the method, provoking an step on the error and a sharp variation
of xk that anyway is considered known. This is by far the worst drift situation possible. The
result is shown in figure 8, showing clearly again how the noise set with σx = 0 is the optimal
one again.
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5.3. Noise rejection

In previous calculations, xk has been considered as a reliable reference, and all cases suggest to
select the biggest correction possible, whereσx tends to zero. Noise in real examples complicates
the identification. For this, an uniform noise distribution ζk with zero mean and amplitude of 0.2
is applied to the reference for seeing the influence in the error as in (5). Figure 9 shows the
results. Although case with σx = 0 is faster in the first iterations until 300, then the grey line
has a higher level of convergence than the black one, with a slower but more reliable updating.
Right plot of this figure shows the noise transmission from the input to the output of the table,
showing how in the black line, this is much higher. That is because higher corrections lead to
higher oscillations, compromising the stability and robustness of the method. It is evident that
user must tune noises taking into account these considerations.

To sum up, all cases have shown not only the correction speed of the method for different noise
sets but convergence, noise rejection and bias cancellation properties, where the final tuning of
the algorithm depends on the function or system to be analysed and the reliability of the reference.
Anyway, dynamical effects will affect the final tuning of the method, and this makes necessary
to check the method on engine.
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6. Method performance on real engine

Sections 2 to 5 have been devoted to the Learning block of figure 1. This section recovers
the complete system of the figure 1 for checking the validity of the method under real engine
conditions. For this, experimental data is obtained from a 2.2 common rail turbocharged diesel
engine coupled to a variable frequency eddy current dynamometer that allowed carrying out
dynamical tests (more information about test set-up can be found in [9]). External bypass of the
ECU is used for varying injection parameters. A real time hardware system was connected via
CAN with a rapid prototyping system connected via ETK with the engine. A commercial ZrO2
[18] sensor installed downstream of the turbine was used for getting NOx and λ−1 measurements.

An sportive driving profile in a mountain road (already used in [19, 20]) is selected as far as
it presents fast transients of both n and m f , causing sharp variations of exhaust variables, such
as λ−1 and NOx. This cycle is a good scenery for checking the method under severe dynamical
conditions. Objective is mapping NOx and λ−1, using a 2D look-up table being u1 = n and
u2 = m f . Initial values for table are zeros T1 = [0]. For n, an uniform grid between 500 and 5000
with values every 500 rpm is chosen, whereas for m f an uniform grid between 0 and 80 mg/str
every 5 mg/str is selected; covering all possible range of values (see [19]). Then, (3) can be set
out as:

x̂k = f (Tk, nk,m f ,k) (20)

where nk and m f ,k are both inferred by the engine inductive sensor and the ECU estimation
respectively. Although both inputs can be conveniently delayed or filtered if necessary, for the
current example, no dynamical treatment is made, as far as values are considered sufficiently fast,
at least comparing with NOx and λ−1 variables.

An standard Kalman filter for the Kalman filter block in figure 1 is built [1] for observing di-
rectly the sensor: including a parameter as a first order filter to model dynamics; xk the observed
state that will update table and x̂k the table output; vk and wk white noises with a selected constant
variance of 1 for both:

xk = (1 − a)xk−1 + ax̂k + wk

yk = xk + vk
(21)

Learning algorithm presented in section 5 is applied jointly with system (21), with σ2
x/σ

2
θ = 1

and choosing a = 1 for the example just for checking the method performance. If the sensor
dynamics are known, a Kalman filter considering the system (21) can be used for inferring the
actual value of the variable at each time iteration. This value will be then the input xk for the
table update process, as defined in (4). However, in this case, the engine output variables have
been directly mapped without considering any dynamics, as far as measured quantity yk has been
directly considered as the reference. Even with this simplification the table is able to behave
quite well according to Figures 10 and 11.

Figure 10 shows the results for λ−1. Left plot shows the adaptation of the table output: during
first iterations, the table is learning, and finally gets sensor output; right plot shows the simulation
of the learnt model (using last updated table in the whole cycle) in a segment of the cycle, clearly
showing the good agreement between sensor and model lines. Figure 11 shows same plots for
the NOx output of the sensor, again with a good agreement. In both cases, engine output has
been mapped, being the method also a powerful tool for characterising engine behaviour. Bias
that appears in figures is not a problem, as far as table is being updated during the whole cycle
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Figure 10: Left: Table adaptation; grey line is sensor yk , while black line is x̂k . Right: λ−1 identification from table in
engine tests.
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Figure 11: Left: Table adaptation; grey line is sensor yk , while black line is x̂k . Right: NOx identification from table in
engine tests.

coping with these variations. Right plot shows again the application of the last updated table to
a segment of the cycle for the NOx case.

7. Conclusion

The current paper proposes a novel learning algorithm for updating look-up tables using pre-
calculated membership functions based on an off-line use of Kalman filter gains. Table elements
are updated in a fast way ensuring the convergence, noise rejection and bias cancellation of the
system. The method has been checked under different conditions in simulation, and under hard
dynamic conditions in real tests, where the shown example is mapping λ−1 and NOx outputs of a
ZrO2 sensor.

The only requirement for the full table adaptation is running the engine in all the matrix areas.
Stability and convergence is ensured if an enough level of excitation similar to other adaptation
methods is presented. The memory saving and computational reduction that the method offers,
against other based on Kalman filter, make this algorithm suitable for being implemented on
commercial ECUs and open the possibility of using the method for online control purposes.
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Appendix A. Steady-state derivation of kalman gain for table updating

Given the system (12)-(17) and a noise set σ2
x/σ

2
θ , the value of Pk|k does not converge under

normal operation, making that value Kk varies. This is because Dk matrix is not constant and
depends on the engine operating conditions.

But if the operating point condition is constant, system runs in a constant point (Dk = D) with
σ2

x/σ
2
θ , then it is possible to derive a Kk constant value, although Pk|k value does not converge.

This fact can be observed in simulations and then it can be set out:

lim
k→+∞

Kk−1 = lim
k→+∞

Kk (A.1)

Taking into account the symmetric property of the problem, the simplest 1D table system is
considered simplifying matrices (14)-(15) to:
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A =

[
1

1

]
; Dk =

[
(1 − η)
η

]′
; ~θ =

[
θi

θi+1

]
(A.2)

Q =

[
q(σ2

θ)
q(σ2

θ)

]
; R = r(σ2

x) (A.3)

Using (17), matrices (A.2) and (A.3) and imposing (A.1) condition, the value of Kalman gain ki

related with element θi can be derived analytically with a certain effort, where η relative position
is defined as in left plot of figure 3:

ki(η, σ2
x/σ

2
θ) =

0.5(1 − η)(1 + s)
0.5(1 + s)(1 − 2η + 2η2) + σ2

x/σ
2
θ

(A.4)

where

s =

√
1 +

4
(1 − 2η + 2η2)

σ2
x

σ2
θ

(A.5)

showing clearly the dependance of ki value only with noise trade-off σ2
x/σ

2
θ and relative position

η of the current operating point.
This ki function is used for calculating gain correction for node i, when observable region is

between i and i + 1 in the 1D case. Using symmetric property:

ki+1 = ki(1 − η, σ2
x/σ

2
θ) (A.6)

For the 2D case, calculations of gains is direct from (A.5). Inputs η1 and η2 are defined in right
plot of 3:

ki, j = ki(η1, σ
2
x/σ

2
θ) · ki(η2, σ

2
x/σ

2
θ)

ki, j+1 = ki(η1, σ
2
x/σ

2
θ) · ki(1 − η2, σ

2
x/σ

2
θ)

ki+1, j = ki(1 − η1, σ
2
x/σ

2
θ) · ki(η2, σ

2
x/σ

2
θ)

ki+1, j+1 = ki(1 − η1, σ
2
x/σ

2
θ) · ki(1 − η2, σ

2
x/σ

2
θ)

(A.7)

This can be generalised for the nD case.
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