

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1142/S0218213013500024

http://hdl.handle.net/10251/50916

World Scientific Publishing

Agüero, J.; Carrascosa Casamayor, C.; Rebollo Pedruelo, M.; Julian Inglada, VJ. (2013).
Towards the development of agent-based organizations through MDD. International
Journal on Artificial Intelligence Tools. 22(2):1-34. doi:10.1142/S0218213013500024.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Towards the development of agent-based organizations through MDD

Jorge Agüero, Carlos Carrascosa, Miguel Rebollo, Vicente Julián

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera S/N, 46022, Valencia, Spain

{jaguero, carrasco, mrebollo, vinglada}@dsic.upv.es

Received (15 Nov 2010)
Revised (28 Feb 2012)

Accepted (Day Month Year)

Virtual Organizations are a mechanism where agents can demonstrate their social skills

since they can work in a cooperative and collaborative way. Nonetheless, the development
of organizations using Multi-Agent Systems (MAS) requires extensive experience in dif-
ferent methodologies and platforms. Model-Driven Development (MDD) is a technique
for generating application code that is developed from basic models and meta-models

using a variety of automatic transformations. This paper presents an approach to develop
and deploy organization-oriented Multi-Agent Systems using a model-driven approach.
Based on this idea, we introduce a relatively generic agent-based meta-model for a Vir-

tual Organization, which was created by a comprehensive analysis of the organization-
oriented methodologies used in MAS. Following the MDD approach, the concepts and
relationships obtained were mapped into two different platforms available for MAS de-
velopment, allowing the validation of our proposal. In this way, the resultant approach

can generate Virtual Organization deployments from unified meta-models, facilitating
the development process of agent-based software from the user point of view.

Keywords: Model-Driven Development, Virtual Organization, Multi-Agent Systems.

1. Introduction

Advances in new technologies that are mainly based on the Internet and the

Web, such as electronic commerce, mobile/ubiquitous computing, or social net-

works demonstrate the need to develop distributed applications with some intel-

ligent capabilities51,49,54. These advances have led to the development of a new

paradigm: service-oriented computing (SOC), that is, computing based on the in-

teraction between entities, where computing occurs through communication acts

among computational entities thereby becoming an inherently social activity36,58,57.

This implies that the computational capabilities are offered and requested by enti-

ties inside or outside of the computational system.

To fulfill these advances, this new paradigm requires the technology used to have

many features of interaction among independent entities and also to be somewhat

intelligent, with the ability to adapt, coordinate, and organize each other37,62,50,48.

1

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

2 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Therefore, the Virtual Organization (VO) approach is particularly promising as a

support to this paradigm and can be used as a regulatory system (framework) for

the coordination, communication, and interaction among different computational

entities13,56.

Virtual Organizations are formed by sets of individuals and institutions that

need to coordinate resources and services across institutional boundaries29,13. Thus,

they are open systems formed by the grouping and collaboration of heterogeneous

entities, having separated the form and function that require defining how a behav-

ior will take place. They have been employed as a paradigm for developing MAS,

where the most relevant approaches include: SODA55, Electronic Institutions26,

OperA22, OMNI23 and GORMAS7. Organizations allow that systems to be mod-

elled at a high level of abstraction. They include the integration of organizational

and individual perspectives and also the dynamic adaptation of models to organiza-

tional and environmental changes by forming groups with visibility boundaries14,27.

The organization describes the main aspects of a society that is based on different

viewpoints such as: Structure, Functionality, Norms, Interactions, and the Environ-

ment7,21.

These societies (organizations) require high levels of interoperability to integrate

diverse information systems in order to share knowledge and facilitate collaboration

among organizations. Thus, the organization needs to employ basic software com-

ponents that support the development of fast and easy composition of distributed

applications, even in heterogeneous environments, where the components are eas-

ily and cooperatively integrated into other applications to create flexible and dy-

namic processes. These levels of flexibility and cooperation among different software

components is achieved using what is called Agent-Oriented Software Engineering

(AOSE)42,34,53,47.

Software engineering based on Multi-Agent Systems is a powerful technology

with very significant applications in Distributed Systems and Artificial Intelligence
41,49,29,50. MAS, which support all of these developments, could require the creation

of platforms of highly heterogeneous agents, where agents work together through

different interactions to support complex tasks in a collaborative and dynamic

way34,47. One of the alternatives for providing these complex tasks is to consider

the notion of open systems, which are composed of groups of cooperative and het-

erogeneous agents, that work with local or individual goals to fulfill global goals.

However, existing MAS methodologies propose varying models that are suit-

able for different domains. Each MAS methodology and platform has their own

abstractions for conceptual and computational modeling. Thus, the developers of-

ten require the necessary acquisition of new skills to understand and design with

the MAS methodologies. As a consequence, the creation of applications is very hard

and difficult for the MAS developer, because there is no agreement about a com-

mon group of components that can be used across different MAS methodologies and

platforms. Therefore, a major challenge when designing MAS is to provide efficient

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 3

tools that can be used by non-expert users.

Synthesizing a unified set of components from existing agent-oriented method-

ologies is a challenge. However, the Model-Driven Development approach can facil-

itate and simplify the design process and the quality of agent-based software since

it allows the reuse of software8,24,60,12 and transformation between models. MDD

basically proposes the automatic generation of code using transformations from

models that have platform-independent components. These models are translated

into more specific components (or code) that depend on the execution platform,

which integrates specific details about the system.

In the MAS literature, researchers are beginning to strive to formulate a set of

models that guide the MAS development process using the Model-Driver approach.

Some works have concentrated their efforts on creating a very generic unified model

for analyzing and modeling different methodologies. Some of the most significant

proposals are: TAO61, FAML11, Agent UML(AUML)9, and AML19. These proposals

create only a conceptual framework to develop and design MAS, but they are not in-

tended to get the MAS deployments to run on specific platforms. Other works, such

as PIM4AGENT33 and CAFnE40, have a unified meta-model (a little less generic),

but these works can generate the MAS deployment to run on specific platforms.

Finally, other approaches use MDD as a modelling tool for some MAS methodolo-

gies, but they only generate MAS deployments for a single platform. Some of the

most significant proposals are: PASSI20, TROPOS46, and INGENIAS31. However,

despite some of the earlier proposals (MDD in MAS uses the concept of organiza-

tion in their meta-model), none of them focus the organizational development as

is proposed by the Virtual Organizations approach, where it is necessary to create

different deployments: one for the organization level and another for the agent level.

Thus, our purpose is to use the MDD approach for the design of Virtual Orga-

nizations. This work proposes an approach for developing MAS that can be imple-

mented in different organization-oriented platforms applying the ideas of MDD. This

paper first presents a relatively generic Virtual Organization meta-model, which was

created mainly using a bottom-up perspective iteratively over organization-oriented

agent methodologies. This paper then proposes two transformation models for trans-

lating the unified model of the Virtual Organization to two different platforms. This

process generates code templates automatically (specific target deployments) and

then the developer can write any additional code in these templates if deemed nec-

essary. This allows the MAS development to be an easy and fast process. These

transformations are proposed as examples, and they allow the feasibility of the pro-

posal to be verified. The organization-oriented target platforms used are: THOMASa

18 and E-Institutionsb26. However, this transformation process is not limited exclu-

sively to these agent platforms but is open to other platforms, simply by defining

new transformation rules.

ahttp://users.dsic.upv.es/grupos/ia/sma/tools/Thomas
bhttp://e-institutions.iiia.csic.es

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

4 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

The rest of the paper is structured as follows: Section 2 briefly describes the

main concepts used in this work. It reviews the different technologies and platforms

used to cope with organization development and MDD in the area of MAS. Section

3 details the different meta-models as orthogonal views that describe the complete

system to be modelled at a high level of abstraction. Sections 4 and 5 explain

how the proposed models can be used to design and develop a complete system.

The former details the steps that developer must follow. The latter shows how

transformation rules can be defined to generate automatic transformations between

models. THOMAS and E-Institutions have been chosen to illustrate the process,

and a usage scenario is described. Finally, conclusions of this work are presented in

Section 6.

2. Background

This section presents a description of the topics and concepts that are the most

relevant to the areas of Virtual Organizations and MAS development models. It

also describes some related contributions with respect to organization modeling in

agent-based systems and discusses some open problems. Finally, this section also

explains how these problems can be addressed by using the MDD approach.

2.1. Virtual Organizations

In the area of Multi-Agent Systems, the term Virtual Organization (VO) has

been primarily used to describe a set of agents that are coordinated with each

other through interaction patterns in order to achieve the overall objectives of the

system13. Therefore, we discuss the main characteristics of Virtual Organizations

(VOs) and which factors or dimensions are needed for analysis and modeling in

order to facilitate the development of Open MAS.

The first methodologies used in the MAS design were the agent-oriented

ones38,66,65. They assume an individualistic perspective, where the principal en-

tity is the agent, which follows its own individual targets based on its own beliefs

and abilities. They also consider that agents are benevolent, all have common goals,

and cooperate in order to achieve those goals. Therefore, they are only suitable for

closed systems. Furthermore, social structures are not modeled specifically but are

supposed to emerge as a result of the interaction of agents.

In recent years, some works on agent-based systems have focused on provid-

ing procedures and methods of designing open MAS, where agents may have self-

interested behavior or be selfish. The open MAS should also permit the participation

of heterogeneous agents with different architectures and even different languages22.

Thus, in order to support open MAS, there is an emerging trend in developers to

focus on the organizational aspects of the society of agents, to lead the system de-

velopment process using the concepts of organization, norms, roles, etc. This has

led to a new approach called organization-oriented methodologies.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 5

In organization-oriented methodologies, the MAS designer focuses on the or-

ganization of the system, taking into account its main objectives, structure, and

social norms. Two different trends can be observed when comparing several ap-

proaches. On the one hand, methods such as PASSI20, MOISE32, TROPOS46,

MESSAGE17, and INGENIAS59 detail system roles, groups, and relationships, but

they do not explicitly consider social norms. On the other hand, methods and frame-

works such as SODA55, GAIAExOA67, Electronic Institutions26, OperA22, OMNI23,

and GORMAS7 are focused on the social norms and explicitly define control poli-

cies to establish and reinforce them. The main aim of methods of this kind is the

design of open Multi-Agent Systems, in which agents with self-interested behavior

can participate. These agents can be controlled by means of social norms and a

proper organizational structure.

Virtual Organizations provide a framework for the activity and interaction of

agents through the definition of roles, expectations of behavior, and relations of

authority such as control67. VOs exist in a new level that is independent of their

constituent agents, which can be dynamically replaced. VOs provide a way to divide

the system by separating it into groups or units (entities) that maintain certain

relationships with each other (providing the context for interaction between agents

and different entities) and by taking part in patterns of interaction with other roles

in an institutionalized and systematic way.

A VO is represented in a way similar to human organizations, based on the Hu-

man Organization Theory6,7. This allows the description of the main aspects of an

organization: its structure, functionality, dynamism, environment, and norms. These

five elements describe those members (entities) that make up the organization, the

topology of the organization, the services and features that the organization offers,

the evolution of the organization over time, the environment where the organization

is situated, and the rules about the conduct of members, respectively.

Most of the analyzed methodologies do not include all the phases necessary

for developing the open MAS. They mainly exclude the latter phases, in which

the Virtual Organization specification must be converted into executable code for

specific agent-based platforms. The fundamental problem for obtaining executable

code for VOs is the lack of agent platforms that give support to complex systems

of this kind. Although there are currently different frameworks that support the

execution of agents (such as JADEc or JACKd) and some of the platforms deal

with organizational concepts, they cannot directly support the concepts that appear

in the development process of open MAS, such as norms, roles, or organization

topology.

Finally, we propose the use of this approach to create a basic organization-based

meta-model that is aimed at modeling open societies in which heterogeneous and

autonomous agents work together and that is focused on the integration of both

chttp://jade.tilab.com/
dhttp://aosgrp.com/

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

6 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Services and MAS technologies. Thus, entity functionality is described, published,

and accessed by means of services.

2.2. Model-Driven Development

The MDD is a fairly new resource in the software engineering field. The objective

of MDD is to build models that are readable by computers, that can be understood

by automatic tools in order to generate templates, code, and test models, and that

can integrate the code into multiple platforms and technologies8,24,60,12.

Model-Driven approximation uses and creates different models at different ab-

straction levels to fuse and combine them when needed to implement the application.

When the abstraction levels are too high, these models are known as meta-models

(the term “meta” means a higher level of abstraction). A meta-model is simply a

model of a modeling language that defines the structure, semantics, and restrictions

for a family of models. In MDD, Meta Object Facility (MOFe)52 is the language

that facilitates meta-model creation. MDD considers three kinds of models at dif-

ferent abstraction levels: the Computation Independent Model (CIM), which details

the system’s requirements in a model that is independent of the computation; the

Platform Independent Model (PIM), which represents the system’s functionalities

without considering the final platform where it is going to be implemented; and the

Platform Specific Model (PSM), which is obtained from combining the PIM model

with the specific details of the selected platform.

One fundamental aspect of the MDD is the definition of the transformation

model, which allows the models to be automatically converted. The transformations

allow a model with a given abstraction level to become another one with a different

level of abstraction25,45. Transformations can be applied to convert one specification

from PIM to PSM. This is known as vertical transformation because it allows a

more general model to be transformed into a more specific one. PIM-to-PIM or

PSM-to-PSM transformations can also be applied. These are known as horizontal

transformations. In general, all of these transformations are known as model-to-

model transformations; however, since executable code can be generated from the

PSM models, these transformations are known as model-to-code or model-to-text

transformations.

From the viewpoint of the MAS design, different methodologies have identified

a set of models to specify the different features of a system. These models can

be fitted or reflected in different MDD meta-models by specifying the concepts

that describe the MAS (roles, behaviors, tasks, interactions, protocols, etc). The

models can be used to model a MAS without focusing on platform-specific details

and requirements63. Then, it is possible to transform any agent model into agent

implementations for different platforms.

Currently, the application of MDD in MAS has different approaches according

eMOF Core Specification, http://www.omg.org/docs/ptc/04-10-15.pdf

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 7

to the work goals. However, some trends can be observed when comparing these

approaches. First, in works such as PASSI20, TROPOS16, INGENIAS31, Sage44,

MetaDIMA39, and others15, the use of model-driven approach is proposed in or-

der to wrap the natural complexity associated with the development of MAS. This

wrapping must be done by collecting the differences of various methodologies for de-

signing MAS in a specific and proprietary meta-model (rarely a unified meta-model)

and then generating deployments that can run on a specific platform. Second, works

such as TAO61, FAML11, Agent UML (AUML)9, AML19, and others64 pursue the

goal of creating a unified meta-model to design and model different MAS method-

ologies, but without worrying (pro tempora) about the MAS code generation, which

can be executed in a platform. The main goal of those works is to provide a Generic

and Unified Conceptual Framework to understand distinct abstractions, compo-

nents, and their relationships in order to support the agent design of different MAS

methodologies. Third, works such as PIM4AGENT33 and CAFnE40 are aimed at

creating a unified meta-model (less generic than the previous) that allows agent

design with some MAS methodologies and also allows the generation of agent code,

so that these deployments can run on different platforms.

An analysis of these approaches indicates that only a few of them support the use

of concept organization, for example, FAML, PIM4AGENT, and TAO, and none of

them support the use of organizations as another framework different from the MAS

framework. Other works propose their own model view with specific components,

which creates added complexity for developers. Also, only a few of them achieve

the implementation phase, and they only define high-level models. This enormously

complicates the work of the developers when they try to obtain executable code.

Following the trend of previous work, we propose using Model-Driven Develop-

ment in the organization-oriented MAS design. Therefore, we first create a set of

VO-based meta-models that allow the deployment to be generated for different MAS

platforms that support VOs: THOMAS and Electronic Institutions, as examples.

The meta-model proposed is a little less generic than the FAML or TAO, which

allow almost any MAS methodology to be analyzed by the framework. Neverthe-

less, the meta-models proposed are generic enough to support organization-oriented

methodologies, as evidenced by the transformations presented in Section 5.

3. Modeling Virtual Organizations with MDD

The goal is to provide the user with a unified, intuitive, visual organizational model.

Then, the user can use automatic transformations to allow flexible implementation

(including deployment) on different agent platforms with support for organizations,

to facilitate interoperability of the systems with minimal user intervention. Figure

1 shows a diagram that illustrates this process.

Our work is focused on the meta-model layer (PIM level), which defines different

meta-models developed for the open MAS (application domain). This set of meta-

models is called Platform-Independent Virtual Organization Model (πVOM). The

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

8 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Fig. 1. Relationships among the different MDD models and automatic transformations

creation of this set of meta-models is realized by the detection of common concepts

(bottom-up analysis) in existing agent and organizational methodologies (CIM level)

complemented by the top-down evaluation of necessary agent and organizational

concepts. After that, πVOM can be converted to a new model that is oriented

to the implementation platform of the MAS (PSM level). This is done through

a model-to-model transformation (PIM-to-PSM). Finally, the deployment of open

MAS is obtained by a model-to-text transformation, which corresponds to the code

generated by the model-driven methodology.

One fundamental challenge (when defining a platform-independent meta-model

of an open MAS) is to select the concepts or components that should be included

in order to model the organization. This is not a trivial task since existing method-

ologies propose very distinct and varied sets of abstractions that are suitable for

different domains. Each methodology has its own abstractions incorporated for con-

ceptual and computational modeling, and there is no agreement about a common

group of abstractions that can be used across different methodologies. Also, certain

concepts in one meta-model may be contradictory to concepts used in another MAS

meta-model.

These problems are addressed in πVOM in two ways. First, due to the growth

capability of the meta-model. πVOM can be tailored to different domains since it

employs common concepts that can be extended to accommodate new abstractions

for new domains, in a way similar to the TAO approach. Second, due to the ambi-

guity of natural language terms (different terms represent the same concept), the

semantics of the concept used in the meta-models can be interpreted very broadly

(in a way similar to the FAML approach). The developer may interpret the concepts

in the most convenient way; this concepts are represented by natural language.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 9

3.1. Integration of Meta-model Concepts

In organization-oriented methodologies, a VO is considered to be a social entity

that consists of a specific number of members that carry out different tasks or func-

tions. As discussed in Section 2.1, the main aspects of an organization are Struc-

ture, Functionality, Dynamic, Normative, and Environment. Therefore, to model the

characteristics of these components in our approach, five key concepts are used: Or-

ganizational Unit, Service, Environment, Norm, and Agent7. These concepts make

it possible to represent21:

• how the entities are grouped with each other in order to define the rela-

tionship between the elements and their environment.

• what functionality they offer, including services for the dynamic entry and

exit of agents in the organization.

• what restrictions exist regarding the behaviors of system entities.

The meta-model creation was an iterative process. Using a bottom-up perspec-

tive, iterations were made between the different MAS methodologies, and, finally,

the common subset identified was evaluated with a top-down perspective. This work

identifies commonly used concepts that developers often use in organization-oriented

methodologies. πVOM aims to combine several organization modeling language pro-

posals, especially AML19, AGRE28, MOISE+35, INGENIAS59, GORMAS7, and

OMNI23.

The Structural Dimension of πVOM takes into account the agent-group-role con-

cepts employed in AGRE; the group, role and link notions employed in MOISE+

and GORMAS; and also the organizational unit concept of AML and its related

usage in the Human Organization Theory. In AML, an organizational unit is seen

both as a global atomic entity and as an association of internal entities, which are

related to each other according to their roles, functionality, resources, and environ-

ment. Therefore, the structural dimension allows the specification of a system at a

high level of abstraction by means of role and organizational unit concepts.

The Functional Dimension is normally represented by means of tasks and goals

that are pursued by agents. For example, in MOISE+, global goals are defined

and decomposed into missions performed by agents. πVOM Functional description

extends previous proposals in three ways:

• Global functionalities are described as a ComposedService (complex ser-

vices) that is composed of several SingleService (atomic services), so a com-

plex service specification describes how agent behaviors are orchestrated.

• functionality is detailed in two ways: services that entities perform and

services that entities need.

• functionality in πVOM is described employing the OWL-S standard, which

allows the semantic description of services, enhancing their expressibility

(for example, representing service preconditions and effects).

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

10 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Therefore, our proposal focuses on expressing the functionality of a system and

its components by means of service descriptions. Thus, Service-Oriented Comput-

ing (SOC) concepts such as ontologies, process models, choreography, facilitators,

service level agreements, and quality of service measures can be applied to MAS.

The Normative Dimension contains a set of mechanisms for ensuring social order

and preventing self-interested behaviors. Our proposal makes use of the normative

approach of GORMAS, MOISE+, and OMNI. The norms define rules as the de-

scription of expected behavior. However, no deviation from the desired behavior is

possible. In this sense, they assume the existence of a middleware that controls all

agent interactions. Our proposal is not based on a centralized norm enforcer. Thus,

agents are free to decide to respect norms. The πVOM normative dimension defines

sanctions and rewards as a persuasive method for norm fulfillment.

The Environmental Dimension, which focuses on describing the elements of the

environment, has been mainly considered in works such as: AGRE, AML, GOR-

MAS, and INGENIAS. πVOM Environmental Dimension describes the environ-

ment components in a standard way, integrating the main abstraction of these ap-

proaches. The Resource concept has been adopted from the INGENIAS framework

and the GORMAS methodology. This concept is similar to the Body abstraction

of AGRE models, which indicates how agents perform actions on resources. More-

over, the Port concept of AML and GORMAS is also integrated in πVOM, which

represents an abstraction for accessing both system resources and published func-

tionality. Therefore, πVOM Environmental Dimension allows heterogeneous agents

to access to external functionalities and resources.

3.2. Meta-model Description: πVOM

The intention is that πVOM will provide a set of generic concepts and components

that are useful to a modeling language, while not necessarily providing all the details

required by every specific agent-oriented platform. πVOM is structured in different

meta-models or views. The different meta-models used in our approach are described

below.

3.2.1. Structural Meta-model

This meta-model (see Figure 2) describes the elements of the system (agents and

organizational units) and how they are related. The proposed πVOM defines an

Organizational Unit (OU) as a basic social entity that represents the minimum set

of agents that carry out some specific and differentiated activities or tasks, following

a predefined pattern of cooperation and communication6,32,67. This association can

also be seen as a single entity at the analysis and design phases, since it pursues

goals, offers and requests services, and plays a specific Role inside other units. An

OU is formed by different entities (has member relationship) throughout its life

cycle, which can be both single agents and other OUs. The Organizational Units

present different topologies and communication relationships depending on their

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 11

environment, the type of activities that they perform, and their purpose. The basic

topologies are34: (i) Simple Hierarchy, in which a supervisor agent has control over

other members; (ii) Team, which are groups of agents that share a common goal,

collaborating and cooperating with each other; and (iii) Flat, in which there is no

agent with control over other members. Any other structure can be defined in forms

of these three basic topologies.

An OU includes a set of roles that can be acquired by its members (has role)

and the sort of relationships with each other (has relationship). The Role concept is

defined by three attributes: Visibility, Accessibility, and Position. The Relationship

concept, which is based on 7,61,11, represents social connections between Roles. This

relationship connects agents that are entitled to know each other and communicate

relevant information. This relationship also implies a monitoring, supervision, and

controlling process of agent activity. Table 1 summarizes the main concepts used in

the Structural meta-model.

Fig. 2. Concepts used in the Structural meta-model

3.2.2. Functional Meta-model

This meta-model (see Figure 3) is focused on the integration of both Services and

MAS technologies. Services represent the functionality that agents or OUs offer to

other entities, independently of the concrete agent that makes use of it. Services can

be atomic (simple task) or formed by several tasks. These tasks can be performed

by the agent that offers the service, or they can be delegated to other agents by

means of service invocation, composition, and orchestration.

An Entity is described by an identifier and a membership relation inside a unit in

which it plays a specific Role. It is also capable of offering some specific functionality

to other entities. Its behavior is motivated by their pursued Goals. Moreover, an En-

tity can also publish its requirements of services (requires relation), so then external

agents can decide whether to participate inside, thus providing those services. Any

service has one or more roles that are in charge of its provision (provides) and others

that consume it. Furthermore, any service obviously has influence over system goals

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

12 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

(affects relation). The Service can also be composed of several sub-services, and a

“workflow” can be defined using the RelationType. Table 1 summarizes the main

concepts used in the Functional meta-model.

Fig. 3. Concepts used in the Functional meta-model

Table 1. Main concepts employed in the Structural and Functional meta-models

πVOM concepts Description

Entity Specification of something that has definite and individual ex-
istence inside of the organization.

Agent The entity agent as usually is represented in MAS methodol-

ogy. A rational and autonomous entity.

Organizational Unit Specification of a collection or group of cooperative entities
(Agents and OUs) to achieve organizational goals.

Role Specification of a behavioural pattern expected from some
members in a given organization.

Service A single activity (or complex block of activities) that repre-
sents a functionality of agent/organization.

ComposedService A collection of sub-services that make up a Service.

SingleService A single Service that represents a functionality.

Goal A specification of a state that the organization and agents are
trying to achieve.

Task Fundamental unit that represents the action performed by an
agent.

Profile Specification of a Service, including any preconditions and
post-conditions.

RelationType Specification workflow services or sub-services.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 13

3.2.3. Environment Meta-model

This meta-model is describes the environmental components, perceptions, and acts

on these elements and defines permissions for accessing them. The proposed En-

vironment meta-model (see Figure 4(a)) defines each element of the environment

as a Resource, which represents an environmental component. It belongs to an en-

tity (has resource), which can be a single agent or an organizational unit. In this

last case, an entity in charge of managing the access permissions to this element

is needed (has port). The resource is accessed and perceived through an Environ-

mentPort. On the other hand, the ServicePort concept details the registration of a

service in a service directory (registers) or its consumption (serves or requests). Each

port is controlled by an entity, and it is employed by one or more roles (use port).

A Port represents a point of interaction between the entity and other elements of

the model and serves as an interface to the real world. Table 2 summarizes the main

concepts used in the Environment meta-model.

Fig. 4. Concepts used in the Environment(a) and Normative(b) meta-models

3.2.4. Normative Meta-model

This meta-model assumes that the coordination between agents is achieved through

the use of social norms. These describe the expected behavior of the members, i.e.,

what actions are permitted, required, or necessary and which to avoid. They also

include penalties to be applied in the case of undesirable actions and the rewards

or recognition to be offered for those actions carried out as established by the

norm(or rule). Norms are used as mechanisms to limit the autonomy of agents in

large systems and to solve complex coordination problems. This meta-model (see

Figure 4(b)) specifies the set of rules and actions defined to control the behavior of

members of the organization, specifically the Roles of the organization.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

14 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Each OU has a set of norms that restricts its member behaviors (has norm).

A norm affects a role directly (affects), which it is obliged, forbidden, or permitted

to perform the specified action. Valid actions are service requesting, registering,

or providing. Sanctions and rewards are expressed by means of norms. There are

roles that are responsible for controlling norm fulfillment (is follower), whereas

defender and promoter roles are responsible for carrying out sanctions and rewards,

respectively. Table 2 summarizes the main concepts used in the Normative meta-

model.

Table 2. Main concepts employed in the Environment and Normative meta-models

πVOM concepts Description

Port This abstraction is a facility for receiving and/or transferring
information. Access point to a component that allows the in-
put/output of data.

EnvironmentPort Access point to interact with the environment (the communi-
cation with the world where the agents are located).

ServicePort Access point to use a service.

Resource Specification of something that has reasonable representation
in the environment, that can be perceived and shared.

Service A single activity (or complex block of activities) that repre-

sents a functionality of the agents/organization.

Norm A set of rules that are used as mechanisms to limit the auton-
omy of the organization members.

3.2.5. Agent Meta-model

An Agent is the basic entity of MAS that is within the organization and uses a series

of interaction protocols. The Agent meta-model is a set of interrelated components,

each serving a specific function for the agent definition. The main components are:

Behaviours, Capabilities, and Tasks (shown in Figure 5).

• Tasks represent the know-how of the Agent and are the components where

action or activity is implemented.

• Capabilities represent the different situations of the agent and control where

Tasks are applied. Capabilities follow a pattern of event-condition-action.

• Behaviours are roles that encompass/group these capabilities.

The main reason for splitting the whole problem-solving method is to provide an

abstraction that organizes the problem-solving knowledge in a modular and gradual

way. The Task concept is the concept that incorporates the needed know-how that

allows the agent to try to solve a problem. This concept is encapsulated in the

meta-model in a Capability, which is an event-oriented component to express the

circumstances under which a Task must be launched to execution.

Moreover, a set of Capabilities can be encapsulated into a Behaviour that models

the response of the agent to different situations. An agent state defines a situation

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 15

Fig. 5. Concepts used in the Agent meta-model

(which is represented by the current Beliefs and Goals) that activates a Behaviour

or allows it to go on being activated. Table 3 summarizes the main components and

concepts employed in the Agent meta-model.

Table 3. Main concepts employed in the Agent meta-model

πVOM concepts Description

Agent The entity agent as usually is represented in MAS methodol-
ogy. A rational and autonomous entity.

Behaviour It encapsulates a set of capabilities activated in specific cir-
cumstances; it represents the abstract concept of role.

Capability It represents an event-driven approach to solve a specific prob-
lem.

Task The know-how related to a specific problem.

Event It is employed to activate capabilities inside the agent. Oc-
currence of something that changes the environment and/or

agents.

BeliefContainer An abstraction employed to represent the agent knowledge.

Goal A specification of a state that the organization and agents are
trying to achieve.

Condition A specification of a set of constraints.

MsgQueue Specification of a collection of different messages (Input, Out-

put, Events).

Message The typical mechanism employed for intercommunication
among agents.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

16 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

4. Development Process

Once the set of models that characterize our proposal of Platform-Independent Vir-

tual Organization Model has been presented, the process for transforming the VO

into different platforms must be defined. The design process begins by selecting how

abstract concepts (which are part of the unified organization model) are mapped

onto the target platforms. In this paper, we focus on the study of transformations on

two platforms that support agent organizations: THOMAS18 and E-Institutions26.

The transformation defines a set of mapping rules. The first set of mapping rules

defines which concepts of the source meta-model (πVOM) are transformed to which

concepts of the target meta-model. This process is a model-to-model transforma-

tion (PIM-to-PSM), which is illustrated by dotted lines in Figure 6. The second

transformation translates the models into the code templates of the organization,

which can be optionally combined with code that is written manually by the user.

This process is a model-to-text transformation (PSM-to-code).

Fig. 6. Transformation from πVOM to different platforms

The Development Process constitutes a set of steps or phases that result in

the executable code; however, a set of tools that support the whole process is also

needed. The steps employed at each design stage and their required tools are ex-

plained in the following subsections.

4.1. Model Creation

The developer creates diagrams (through graphical tools) that model the different

units, roles, tasks, etc. of the developed system. To perform this step, the Eclipse

IDEf with a set of plug-ins is used. These plug-ins are mainly EMF, Ecore,GMF, and

GEF, which allow the user to draw the models that represent the VO. Obviously, the

fhttp://www.eclipse.org/

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 17

meta-models needed (πVOM, see Section 3) must be loaded into the development

environment (CASE tool) in order to generate the appropriate VO models.

To illustrate this phase, a case scenario for making flight and hotel arrangements

is used (see Section 5.3 for more detail). The programmer must draw (UML-like) the

VO that represents the Travel Agency. This scenario is modeled as an organization

(TravelAgency) inside of which there are two Organizational Units (HotelUnit and

FlightUnit). Each unit is dedicated to hotels or flights, respectively. Two kinds of

Roles can interact in the Travel Agency example: the Client role and the Provider

role. Figure 7 shows the TravelAgency structure, with its units, roles, and their

relationships with each other, using GORMAS notation. Similar diagrams must be

created in this phase according to the different models that are part of πVOM.

Fig. 7. Structural model of TravelAgency using πVOM

4.2. Platform Selection and Model Requirement

Once the PIM is complete by using the different views (structural, functional, norms,

environmental, agent), the developer must select the platforms that will be used to

execute the different components. The developer must select the platform on which

the user wants to execute the different agents that make up the VO. In this step,

the agents can be executed on different platforms according to the system modeling

(scenario). For example, a possible scenario is one where different ubiquitous agents

run on various embedded platforms (PDAs or cellular phones) that interact with

Virtual Organizations to request different services.

To do this, a model-to-model transformation (PIM-to-PSM) must be applied

using the Eclipse IDE and the ATL plug-in5 that incorporate the appropriate set of

transformation rules. It is important to note that the same general VO model can

be transformed into different specific VO platforms. The rules for the component

transformations between two VO meta-models (from πVOM to E-Institutions and

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

18 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

THOMAS) are explained in detail in Section 5. In this way, VO concepts are mapped

from source models to target models, and VO components are transferred, moved,

or changed from one model to another. This step is illustrated in Figure 8.

Fig. 8. Development Process for VO design using two stages of transformation

Transformation rules are hidden to the developer, and the programmer only uses

them when the execution platform (PSM) is selected. By applying transformation

rules, the developer obtains a specific model for the chosen platform. Different

platforms can be chosen for different parts of the system. After that, the developer

can refine the model to add the details that correspond to the new abstraction level.

To illustrate how the rules are defined in the ATL language, Figure 9 shows

Rule 9 (see Section 5, to view the definition of this rule). This rule generates all the

Scenes (in E-Institutions) from the OUs (in πVOM) using the same Class Name.

This code also shows the function getAllRoles(), which examines all the Roles

associated with each OU. This function will be mapped to the Roles Agent that is

used in the different Scenes (the function getAllRoles() will be used by the Roles

Rule).

helper context PIVOM!OrganizationalUnit
def : getAllRoles() : OrderedSet(PIVOM!OrganizationalUnit) =
self.children->iterate(child; hasRole: OrderedSet(PIVOM!OrganizationalUnit)=

if child.oclIsTypeOf(PIVOM!Roles) then
hasRole.append(child)

endif
);

rule OrganizationalUnit2Scene {
from

PIM : PIVOM!OrganizationalUnit(PIM.isOrganizationalUnit Root())
to

PSM : EInstitution!Scene (
name <- PIM.name

...

Fig. 9. Rule 9 (Organizational Unit to Scene) in ATL language

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 19

4.3. Code Generation

In the last step, the developer applies a model transformation to convert the de-

signed models into code. To do this, the developer must use a PSM-to-code transfor-

mation. In this case, MOFScript5, which is an Eclipse plug-in that uses templates

to do the translation process, is used. From a practical viewpoint, the transfor-

mation/generation of code consists of going through an XML file that describes

the components and relationships of the source meta-model and then generating

another XML file that contains the specification of the E-Institution or THOMAS

platforms that will be the application launcher. This step is illustrated in Figure 8,

assuming that the agent is running on a cellular phone.

Figure 10 illustrates how the transformation rule is implemented using MOF-

Script. This rule corresponds to Rule 2 (see Section 5). This rule generates code for

the Agent concept in the THOMAS platform. These templates have been developed

specifically for E-Institution and THOMAS. Additional transformations for other

execution platforms can be defined. Only the rules that map the concepts to the

target platform must be defined.

texttransformation UMLAGENT2THOMAS (in myAgentModel:uml2)
...
//Rule1: Agent transformation
uml.Package::mapPackage () {

self.ownedMember->forEach(c:uml.Class)
if (c.name != null) if (c.name = Agent) c.outputGeneralization()

}
uml.Class::outputGeneralization(){

file (package_dir + self.name + ext)
self.classPackage()
self.standardClassImport ()
self.standardClassHeaderComment ()
<% public class %> self.name <% extends Agent { %>

self.classConstructor()
<% // Attributes %>
self.ownedAttribute->forEach(p : uml.Property) {

p.classPrivateAttribute()
}
newline(2)

<%}%>
...
}

Fig. 10. Example of transformation of the Agent concept using MOFScript.

Finally, after completing these steps, the designer has a method for developing

agents in a fast and easy way by means of a design tool. First, the user creates

platform-independent models, drawing the agent organizations using a UML-based

approach. Second, the user selects the specific platform where the models are exe-

cuted, in order to do this the appropriate transformation process is applied (only

by selecting the appropriate option in the CASE tool), and thereby obtain the

corresponding deployments.

This facilitates the development process, as the rules and the transformation

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

20 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

process are hidden from the user point of view (the developer). CASE tools in-

ternally load the transformation rules of the specific platform and execute the

transformation process of model-to-model and model-to-code automatically. The

transformation from the user point of view is to select the target platform and run

the translation. This process generates code templates automatically and then the

user can write any additional code in these templates if deemed necessary.

5. Transformation Rules

Once the Virtual Organization meta-model (πVOM) and the Development Process

have been presented, the transformation rules from a PIM to different PSMs must

be described. To do this, a model-to-model transformation (PIM-to-PSM) must be

applied. The components and concepts are transferred, or changed, from one model

to another. These transformations are performed at two levels: the organizational

level (organization framework) and the agent level (organization members).

5.1. Organizational Level Transformation

This section explains how to translate the model that represents the organization

framework (PIM) into two target platform models (PSMs). The chosen PSMs are:

THOMAS and E-Institutions. The same process has to be done for any other plat-

form. The only limitation is that the platform must include organizational concepts.

5.1.1. THOMAS Architecture and Execution Framework

THOMAS (MeTHods, Techniques, and Tools for Open Multi-Agent Systems) is

a recent open Multi-Agent System architecture that consists of a related set of

modules that are suitable for the development of systems applied in environments

that work as a “society”43. Due to the technological advances of recent years, the

term “society” needs to meet several requirements:

• Distribution, constant evolution, and flexibility to allow members to enter

or exit the society.

• Appropriate management of the organizational structure that defines the

society.

• Multi-device agent execution including devices with limited resources, and

so on.

The THOMAS platform uses EMFGormas30g, which is CASE tool to support

it. This is an organization-based CASE tool that allows agent and Virtual Organi-

zations to be modeled.

The πVOM meta-model presented in this paper is very similar to the model of

the organization programmed in THOMAS since both works are partially based on

ghttp://users.dsic.upv.es/grupos/ia/sma/tools/EMFGormas

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 21

the methodology and artifacts proposed by GORMAS (these meta-models can be

found at 7). For this reason, the automatic transformations are relatively easy to de-

scribe. Almost all of the abstract concepts of πVOM are represented in THOMAS,

so the model-to-model transformation rules are expressed almost as one-to-one re-

lationships. It is convenient to note that some concepts in THOMAS have a more

detailed feature than πVOM because THOMAS is a platform-specific model. The

main transformation rules that must perform the translation between different mod-

els are shown in Table 4 (from Rule 1 to Rule 8). Since there is a 1 to 1 mapping

between both models (PIM and PSM), the transformation rules are not described.

Table 4. Rules from πVOM to THOMAS platform

Rule Concept Transformation to THOMAS

1 Organizational Unit πVOM.OU ⇒ THOMAS.OU

2 Agent πVOM.Agent ⇒ THOMAS.Agent

3 Role πVOM.Role ⇒ THOMAS.Role

4 Service πVOM.Service ⇒ THOMAS.Service

5 Norm πVOM.Norm ⇒ THOMAS.Norm

6 RelationType πVOM.RelationType ⇒ THOMAS.Process

7 Resource πVOM.Resource ⇒ THOMAS.Resource

8 Goal πVOM.Goal ⇒ THOMAS.Goal

5.1.2. E-Institutions Platform

E-institutions provide a set of tools that is widely used with agents in order to

model organizations. E-institutions can be effectively designed and implemented as

electronic institutions composed of a vast number of heterogeneous (human and

software) agents that play different roles and interact by means of speech acts26.

This platform is based on traditional human institutions and offers a general agent-

mediated computational model that serves to create an agent-mediated electronic

institution platform. Table 5, shows the main components of E-Institutions.

The relationships between these components are shown in Figure 11. This is

the target meta-model used in the transformation process (model-to-model) from

πVOM to E-Institutions.

The main transformation rules from πVOM to E-Institutions are shown in Table

6 (from Rule 9 to Rule 16).

Some details of the main transformation rules are described below:

• Rule 9. This rule indicates that each OU is a Scene. These are the entities

where agents collaborate to perform the actions of the organization.

• Rule 10 and Rule 11. These rules have a 1 to 1 mapping, since both the

Agent and Role concepts are represented on both platforms (i.e., Agents

are part of the organization on both platforms and each is assigned a Role

to Play).

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

22 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Table 5. Core concepts used in E-Institutions

E-Institution concepts Description

Agent A rational and autonomous entity inside of the E-Institutions.

Role Specification of a behavioural pattern expected from the E-
Institution agents.

Scene A scene is a pattern of multi-agent interaction.

State Represent a node of a finite state oriented graph, which de-

scribes Scene protocol.

Transitions Specification of the workflow among the Scenes.

Illocutions Valid expressions of the agent communication language, which
are the arcs between States.

Ontology The knowledge of the agent and the E-Institutions.

World Access point to interact with the environment.

Norm A set of rules that are used as mechanisms to limit the auton-
omy of the E-Institution agents.

Fig. 11. Core concepts used in E-Institutions (target meta-model)

Table 6. Rules from πVOM to E-Institutions

Rule Concept Transformation to E-Institutions

9 Organizational Unit πVOM.OU ⇒ EI.Scene

10 Agent πVOM.Agent ⇒ EI.Agent

11 Role πVOM.Role ⇒ EI.Role

12 SingleService πVOM.Service ∈ OU ⇒ EI.State ∈ Scene

13 RelationType πVOM.RelationType ⇒ EI.Transition OR EI.Illocutions

14 Norm πVOM.Norm ⇒ EI.Norm

15 Goal πVOM.Goal ⇒ EI.Norm

16 Resource πVOM.Resource ⇒ EI.World

• Rule 12. The Service represents the functionality of the OU and simi-

larly a set of States provides functionality in a Scene. Therefore, when a

functionality of an OU is modeled with a ComposedService, this Composed-

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 23

Service must be transformed to a set of States (i.e., a SingleService should

be translated as a State).

• Rule 13. The RelationType describes the level of Services workflow. This

rule is closely related to Rule 12 because when the composition between

the services corresponds to SingleService, the RelationType must be trans-

formed to Illocution. Now, when the RelationType represents the flow be-

tween ComposedService, the mapping should be to Transition.

• Rule 14 and Rule 15. The Norms describe what an agent can do within

each Scene and State (in E-Institutions). For this reason, the Norms and

Goals pursued in πVOM are translated into E-Institutions Norms. They

specify what the agent is allowed to do, and what the agent must do to

achieve specific norms (Goals).

• Rule 16. The Resources describes the objects or artifacts (in the environ-

ment) that are accessible by agents or entities. Thereby, these Resources

are transferred to the abstract concept of environment in E-Institutions, to

the world concept.

Summarizing, the transformation rules show that our meta-model has enough

generality to transfer the MAS design to two organization-oriented platforms. How-

ever, the transformation process is not limited exclusively to these organization-

oriented agent platforms (E-Institutions and THOMAS), but it is also open to

other platforms. Thus, our meta-model is relatively generic to define new transfor-

mation rules to new platforms, simply by defining new rules for the specified target

platform.

Finally, the above transformation rules are incorporated or loaded into the CASE

tools to make the process of transformation (automatic or semi-automatic transla-

tion). These rules are hidden from the developer and will be used when the devel-

oper wants to translate the model into a deployment (platform model) for its final

execution.

5.2. Agent Level Transformation

As stated above each agent identified in the system must be modeled according to

the proposed agent meta-model. Then, each agent modeled in the system can be

transformed into code according to the specific agent platform where the agent will

be executed. The agent model analyzed in this paper is the JADEh agent model.

5.2.1. JADE Platform

JADE10, which is one of the most popular platforms that support agent execution,

is widely used because it provides programming concepts that simplify the MAS

hhttp://jade.tilab.com/

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

24 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

implementation. JADE is FIPA compliant in the communication infrastructure be-

tween agents. This agent platform is supported by THOMAS and E-Institutions.

One of the main concepts used in the implementation of JADE agents is Be-

haviour i. A Behaviour represents a specific task that the agent executes. There are

different types of behaviours that the agent can execute. To support this, JADE of-

fers different Behaviour classes, which are specializations of a simple Behaviour such

as: temporal, sequential, and parallel, etc. Table 7 summarizes the main Behaviours

used by the JADE agent.

The communication paradigm that is adopted is asynchronous message passing.

Agents must share the same language, vocabulary, and protocols. This is done by

defining an ontology that permits semantics to be used in the content of the messages

that are exchanged among the agents. Another important concept in JADE is the

schema. A schema is a structured framework that represents the structure of the

concepts that make up an ontology. JADE schemas are concepts that provide a

kind of data structure that directly maps the structure of an ontology. Table 7

summarizes the main concepts used by JADE.

Table 7. The JADE components model

Concept Use Descriptions

Agent
Behaviour The task that an agent can carry out.
Ontology The agent’s Knowledge.

Ontology Schema Data structure of Messages.

ACL Communications Performative FIPA compliant Messages.

Type Behaviours Specialization Descriptions.

SimpleBehaviour

OneShot Executes an action only once.
Ticker Executes an action periodically.
Weaker Waits for a period of time to execute an action.

Cyclic Executes an action cyclically.

CompositeBehaviour
Sequential Executes several actions sequentially.

FSM The actions are executed in a Finite State Machine.
Parallel Executes several actions in parallel.

Table 8 shows the transformations rules needed to transfer a πVOM agent model

to a JADE agent model; as a convention the JADE Model (PSM model) is called

JADEM.

Some details of the main transformation rules are described below:

• Rule 17. The conversion is direct because our agent model matches the

JADE agent model. After the transformation, the methods have to be re-

viewed to check that the JADE agent works properly. One of the most

important methods to be derived is init() because this method con-

tains the code executed by the agent. Then, the init() method of the

Agent is moved into the setup() method of JADEM, i.e., init() →

iwhich has a different meaning than in the Agent Meta-model

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 25

Table 8. Transformation rules from Agent meta-model to JADE

Rule Concept Transformation to JADE

17 Agent πVOM.Agent ⇒ JADEM.Agent

18 Behaviour πVOM.Behaviour ⇒ JADEM.ParallelBehaviour

19 Capability πVOM.Capability ⇒ JADEM.OneShotBehaviour

20 Task πVOM.Task ⇒ JADEM.Behaviour

21 Events πVOM.Event ⇒ JADEM.ACLMessage

22 Beliefs πVOM.BeliefContainer ⇒ JADEM.Schema

23 Goal πVOM.Goal ⇒ JADEM.Ontology

24 Message πVOM.Message ⇒ JADEM.ACLMessage

setup(). Other methods are also derived: the method to destroy the agent

destroy() → takeDown() and the method to add behaviors addBeh() →
addBehaviour().

• Rule 18. A Behaviour in this agent model is a set of actions that can

be executed. To make it possible to launch several actions, a Behaviour

corresponds with a CompositeBehaviour in JADEM. Specifically, for each

Behaviour referenced in Agent, a ParallelBehaviour must be added in JA-

DEM. This ParallelBehaviour will be empty at first, but a new Behaviour

will be added for each task in the model when the Capability and Task of

Agent are transformed.

• Rule 19. A Capability is a component that may or may not launch an

activity depending on the arrival of the corresponding event, that is, the

Capability to launch a Task if its trigger event has arrived (event-driven).

To emulate this behaviour, each Capability corresponds with a JADE sim-

pleBehaviour, whose goal is to verify the arrival of an event. If the event is

the correct one, then the activity will be launched.

• Rule 20. A Task in our agent model can be a simple or a com-

plex action. The type of Task establishes a specific transformation to a

SimpleBehaviour or a CompositeBehaviour. For example, if there is a

cyclic task in Agent, a CyclicBehaviour() must to be added in JADE.

For each Task in Agent, a type of Behaviour must be added in JADEM. A

Task is the place where users write their code. Therefore, it is important

to define how to do this in JADEM. This can be done by translating the

doing() method of Agent to the action() method in JADE.

• Rule 21. The transformation of an Event is not direct, but it can be done

easily, since each event type corresponds to an ACL message type with a

concrete performative in JADE.

• Rule 22. A BeliefContainer stores the agent knowledge (which corresponds

to the schema concept in JADE) that is used in the ontology definition

(Schema).

• Rule 23. A Goal is mapped to the components used in JADE to represent

knowledge, which is the ontology.

• Rule 24. The message transformation is simple: the message in our model

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

26 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

corresponds to an ACL message in JADE-Leap with a specific performative.

The PSM model must be transformed into code (PSM-to-code), translating each

concept that is included in the meta-model into a code template. Figure 12 shows

the code template generated by the JADE agent model.

Summarizing, this section explains the transformation rules that allow the MAS

design to be transferred to a JADE-based deployment. However, our meta-model is

generic and flexible enough to allow the transformation process to be extended to

other agent platforms, simply by defining new rules for the specified target platform

(i.e. JACKj or MAGENTIX2k). In fact, this process has been successfully tested

in other agent platforms4,2, in which our meta-agent model was transferred to two

light-weight embedded agent platforms: Andromedal and JADE-Leap.

Similar to the rules at the organization level, these rules are incorporated into the

CASE tools to perform the process of transformation (automatic or semi-automatic

translation). These rules are hidden from the developer and will be used when the

developer wants to translate the MAS model into a MAS deployment (platform

model) for its final execution.

Fig. 12. Code template in JADE platform

jhttp://aosgrp.com/
khttp://www.gti-ia.dsic.upv.es/sma/tools/magentix2/
lhttp://www.gti-ia.upv.es/sma/tools/Andromeda/

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 27

5.3. Usage Scenario

To illustrate the automatization process produced by the usage of the rules, a case

scenario for making flight and hotel arrangements is presented. This is a well-known

example that has been modeled by means of electronic institutions in previous

works (Dignum22; Argente et al7). The Travel Agency example is an application

that facilitates the interconnection between clients (individuals, companies, travel

agencies) and providers (hotel chains, airlines) delimiting services that each one can

request or offer. The system controls which services must be provided by each entity.

Provider entities are responsible for the internal functionality of these services.

However, the system imposes some restrictions on service profiles, service request

orders, and service results.

In this system, agents can search for and make hotel and flight reservations and

pay in advance for bookings. This case study is modeled as an organization (Trave-

lAgency) inside which there are two organizational units (HotelUnit and FlightUnit)

that represent a group of agents. One of these units is dedicated to hotels and one

is dedicated to flights. Three kinds of roles can interact in the Travel Agency exam-

ple: the Customer, Provider, and Payee roles. The Customer role requests system

services. More specifically, it can request hotel or flight search services, booking

services for hotel rooms or flight seats, and payment services. The Provider role

is in charge of performing the service. The Payee role provides the advanced pay-

ment service. Figure 7 shows the TravelAgency structure, with its units, roles, and

relationships with each other.

Even though each Organizational Unit can provide different services, to simplify

this usage scenario, we assume that there is just one service. Therefore, the Trave-

lAgency Unit offers the service of travel search, FlightUnit offers Seats reservations

on airline flights, and the HotelUnit offers Rooms reservations in Hotels (see Fig-

ure 13). To provide the Search service, TravelAgency Unit requires the use of the

Seats and Rooms services offered by other Organizational Units. This generates a

workflow among different services through RelationType(RT) (see Figure 13). The

ComposedService of TravelAgency can be composed into single services (as Figure

13 shows), that the Service Rooms is divided into sub-services: CheckDestination,

CheckAvailability, and SelectOffers. The Search and Seats services are also divided

into sub-services; that for reasons of simplicity these sub-services in the usage sce-

nario are not shown.

The process begins by modeling the Travel Agency (structural and functional

models (see Figures 7 and 13)), and applying the rules in order to obtain the organi-

zations in the THOMAS and E-Institutions platforms. In the case of the THOMAS

platform, since the models are very similar and their transformations are almost

direct, they have not been analyzed here.

In contrast, to obtain the organization in the E-Institution platform and to

create the components of PerformativeStructure (see Figure 14), the application of

different rules is required, for instance: Rule 9, Rule 11, Rule 12, and Rule 13

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

28 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Fig. 13. Functional model (partial view) of TravelAgency

(Section 5).

Rule 9 allows all of the Scenes in E-Institutions that correspond to the OU of

πVOM (3 in total) to be obtained. It is then possible to obtain the Roles allowed

in each Scene by applying Rule 11. It is important to note that two Scenes for

entrance and exit must be added (root and output) in the PerformativeStructure.

After applying Rule 13 (RelationType) and analyzing the existing workflow in

ComposedService, we can specify each type of transition among the different Scenes

in E-Institutions, which, in this case, correspond to Transitions.

Fig. 14. E-Institution Concepts used in TravelAgency

As stated above, this mapping generates the basic template of the compo-

nents/concepts used in the PerformativeStructure of E-Institutions (Figure 14).

With the application of the remaining rules, a more detailed description of the Per-

formativeStructure is obtained. The transformation process can still be developed

further. Figure 13 shows that the Rooms Service is composed of three sub-services:

CheckDestination, CheckAvailability, and SelectOffers. If we know the workflow

among these three SingleServices, the States in the Scene can be obtained, af-

ter Rule 12 and Rule 13 are applied. Figure 15 shows the workflow among the

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 29

SingleServices.

Fig. 15. Workflow among the SingleServices (Functional model)

This mapping generates the basic template of the States used in the Scene (Fig-

ure 16). After applying Rule 13 (RelationType) and analyzing existing workflow

among SingleServices, we can specify each type of transition among the different

States, which in this case correspond to Illocutions.

Fig. 16. State machine in E-Institutions

This usage scenario demonstrates the feasibility of the proposed meta-model and

its transformations to develop organizational-oriented MAS.

6. Discussion and Conclusions

This paper has presented a MDD approach to develop agent-based open organiza-

tions. MDD can be considered as a new paradigm to develop software systems in

which the different stages in the software development process can be automatically

connected by defining mappings. Thus, in the context of MDD in AOSE, we have

identified the following advantages that our MDD approach offers:

• The employment of an abstract meta-model to design and model agent

systems based on Virtual Organizations.

• The generation of a transformation process from PIM to PSM, which could

provide a simple interface to implement the models created by πVOM (ab-

stract meta-model). Therefore, the approach reduces: (i) the gap between

design and implementation; (ii) the knowledge required for the implemen-

tation of MAS with respect to the deployment MAS platforms.

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

30 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

Similar approaches can be observed in works such as: TROPOS, INGENIAS,

Sage, and MetaDIMA. However, these works use proprietary meta-models and typ-

ically generate deployments that can only run on a specific platform.

In works such as TAO, FAML, Agent UML (AUML), and AML, the main goal

is to provide a Generic and Unified Conceptual Framework to understand distinct

abstractions in order to support the agent design of different MAS methodologies.

These approaches are mainly focused on the analysis phase, whereas the implemen-

tation phase is missing. Instead, our approach is a relatively generic meta-model,

that it allows to analyze some MAS methodology, and additionally seeks to obtain

the MAS deployments.

Therefore, works such as PIM4AGENT and CAFnE are aimed at creating a

unified meta-model that allows agent design with some MAS methodologies as well

as the generation of agent code, and these deployments can run on different plat-

forms. However, these approaches have a limited view of the agent organization (as

well as FAML and TAO), and none of them view or support organizations (Virtual

Organizations) as another framework different from the MAS frameworks.

Finally, this work presents how to develop Agent-Based Virtual Organizations

using MDD. This work introduces a Virtual Organization meta-model (called

πVOM), which allows organizations in MAS to be modeled using abstract com-

ponents that are independent of the implementation platform following a MDD

approach. This meta-model is divided into five views that focus on the most im-

portant aspects of Virtual Organizations. These views can easily be extended to a

specific domain if required.

The meta-model proposed can be used to create code templates for specific plat-

forms for organizations. This work has discussed the use of transformations on the

THOMAS and E-Institutions platforms. These transformations show that the meta-

model can be considered to be platform-independent. This work has been tested at

different levels of abstractions. In Agüero et al3 platform level transformations were

evaluated, while agent level transformations were checked in Agüero et al1,4.

The above target platforms that have been used and discussed in this work

(E-Institutions and THOMAS) allow the feasibility of our proposal to be verified,

defining the transformation rules for each platform. These transformation rules are

presented to show that our meta-model has enough generality to translate the MAS

design to two organization-oriented platforms. However, this transformation process

is not limited exclusively to these agent platforms; it is also open to other platforms,

simply by defining new specific transformation rules for each different platform. Our

proposal is relatively generic for defining new transformation rules to new platforms.

Our approach allows the MAS to be developed in a fast and easy way. The devel-

oper creates the platform-independent models, drawing the agent organizations us-

ing an UML-based approach. Then, the developer selects the specific platform where

agents (and organization models) are executed using the transformation process, and

thereby obtains the corresponding deployments automatically. This facilitates the

development process and the rules and the transformation process are hidden from

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 31

the user’s point of view (the developer). The MAS software tools internally load

the transformation rules of the target platforms and execute the transformations

of model-to-model and model-to-code automatically. This process generates code

templates automatically and then the developer can write any additional code in

these templates if deemed necessary.

As future work, we plan to propose new transformations in order to obtain the

agent instances and to generate the agent code in other frameworks. We also plan to

introduce specific components/views so that the Virtual Organization can provide

the framework and components necessary to model agreements among autonomous

entities using the MDD approach to design them.

References

1. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD-based agent-oriented soft-
ware engineering for ubiquitous deployment. In: The Sixth Annual International Con-
ference on Mobile and Ubiquitous Systems (MobiQuitous 2009), vol. ICST/IEEE
press, pp. 1–2. (2009).

2. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Developing Pervasive Systems
as Service-oriented Multi-Agent Systems. In: 7th International ICST Conference on
Mobile and Ubiquitous Systems: (MobiQuitous 2010), vol. CD press, pp. 1–12 (2010).

3. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD for Virtual Organization
design. In: International conference on Practical Applications of agents and multiagent
systems(PAAMS2010), vol. 71, pp. 9–17 (2010).

4. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Model-driven development for
ubiquitous MAS. In: International Symposium on Ambient Intelligence (ISAmI 2010),
Advances in Soft Computing, vol. 72, pp. 87–95 (2010).

5. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL: Eclipse Support for Model Trans-
formation. In: European Conference on Object-Oriented Programming (ECOOP2006)
(2006).

6. Argente, E., Julian, V., Botti, V.: Multi-Agent System Development based on Orga-
nizations. Electronic Notes in Theoretical Computer Science 150, 55–71 (2006)

7. Argente, E., Julian, V., Botti, V.: MAS Modelling based on Organizations. In: 9th
Int. Workshop on Agent Oriented Software Engineering (AOSE08), pp. 1–12 (2008)

8. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
IEEE software 20(5), 36–41 (2003)

9. Bauer, B.: UML Class Diagrams Revisited in the Context of Agent-Based Systems.
Proceedings Agent-Oriented Software Engineering pp. 101 – 118 (2002).

10. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA -compliant agent framework.
In: Proceedings of the Practical Applications of Intelligent Agents (1999).

11. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J., Pavón,
J., Gonzalez-Perez, C.: FAML: A Generic Metamodel for MAS Development. IEEE
Transactions on Software Engineering pp. 841–863 (2009)

12. Bézivin, J.: On the unification power of models. Software and Systems Modeling 4(2),
171–188 (2005)

13. Boella, G., Hulstijn, J., van der Torre, L.: Virtual Organizations as Normative Multi-
agent Systems. Hawaii International Conference on System Sciences (HICSS) 7, 192–
201 (2005).

14. Boissier, O., Hübner, J., Sichman, J.: Organization oriented programming: From closed

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

32 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

to open organizations. Engineering Societies in the Agents World VII pp. 86–105
(2007)

15. Brando, A., Silva, V., Lucena, C.: A model driven approach to develop
multi-agent systems. Tech. rep., Technical Report, Departmento de Informatica-
Pontificia Universidade Catolica do Rio de JaneiroPUCRio (2005). ftp://ftp.inf.puc-
rio.br/pub/docs/techreports/05 09 brandao.pdf

16. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

17. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney,
P., Stark, J., Evans, R., et al.: Agent oriented analysis using MESSAGE/UML. Agent-
Oriented Software Engineering II pp. 119–135 (2001)

18. Carrascosa, C., Giret, A., Julian, V., Rebollo, M., Argente, E., Botti, V.: Service
Oriented Multi-agent Systems: An open architecture. In: Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1–2 (2009)

19. Cervenka, R., Trencansky, I.: The Agent Modeling Language – AML, vol. ISBN: 978-3-
7643-8395-4. Whitestein Series in Software Agent Technologies and Autonomic Com-
puting (2007)

20. Cossentino, M., Potts, C.: PASSI: A process for specifying and implementing multi-
agent systems using UML. Tech. rep., Technical report, University of Palermo (2001)

21. Criado, N., Argente, E., Julián, V., Botti, V.: Designing Virtual Organizations. In:
7th International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS2009), vol. 55, pp. 440–449, (2009)

22. Dignum, V.: A model for organizational interaction: based on agents, founded in logic.
Phd dissertation, Utrecht University (2003)

23. Dignum, V., Vázquez-Salceda, J., Dignum, F.: Omni: Introducing social structure,
norms and ontologies into agent organizations. Lecture Notes Artificial Intelligent
3346, 181–198 (2005)

24. D’Souza, D.: Model-driven architecture and integration opportunities and challenges.
In: Version 1.1, Kineticum (2001)

25. Elvesæter, B., Hahn, A., Berre, A., Neple, T.: Towards an interoperability framework
for model-driven development of software systems. Interoperability of Enterprise Soft-
ware and Applications pp. 409–420 (2006)

26. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Arcos, J.L.: On the formal specifica-
tions of electronic institutions. Agent mediated electronic commerce. Lecture Notes
in Computer Science 1991, 126–147 (2001)

27. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational
view of multi-agent systems. Proceedings AOSE, Lecture Notes in Computer Science
2935, 214–230 (2003)

28. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating environments with organizations.
Environments for multi-agent systems: first international workshop, E4MAS pp. 48–56
(2005)

29. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal Supercomputer Applications 15(3), 200–
222 (2001)

30. Garcia, E., Argente, E., Giret, A.: A modeling tool for service-oriented Open Mul-
tiagent Systems. In: The 12th International Conference on Principles of Practice in
Multi-Agent Systems. PRIMA 2009, LNAI, vol. 5925, pp. 345–360. Springer-Verlag
(2009)

31. Garca-Magario, I., Gómez-Sanz, J., Fuentes, R.: INGENIAS Development Assisted

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

Towards the development of agent-based organizations through MDD 33

with Model Transformation By-Example: A Practical Case. In: 7th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009),
pp. 40 – 49 (2009)

32. Gateau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. In: Proceedings of Work-
shop Coordination and Organisation (CoORG 2005), pp. 484–485 (2005)

33. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Autonomous Agents and Multi-Agent Systems 18(2), 239–266
(2008)

34. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowl-
edge Engineering Review 19(04), 281–316 (2005)

35. Hübner, J., Simao Sichman, J., Boissier, O.: S-Moise+: A middleware for developing
organised multi-agent systems. Lecture Notes in Computer Science 3913, 64–77 (2006)

36. Huhns, M., Singh, M.: Service-oriented computing: key concepts and principles. IEEE
Internet Computing 9(1), 75–81 (2005).

37. Huhns, M., Singh, M., Burstein, M., Decker, K., Durfee, K., Finin, T., Gasser, T.,
Goradia, H., Jennings, P., Lakkaraju, K., Nakashima, H., Van Dyke Parunak, H.,
Rosenschein, J., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe, M.,
Wagner, T., Zavafa, L.: Research directions for service-oriented multiagent systems.
IEEE Internet Computing 9(6), 65–70 (2005).

38. Iglesias, C., Garijo, M., Gonzalez, J.: A survey of agent-oriented methodologies. Lec-
ture notes in computer science 1555, 317–330 (2000)

39. Jarraya, T., Guessoum, Z.: Towards a model driven process for multi-agent system.
In: CEEMAS (ed.) Multi-Agent Systems and Applications V, vol. 4696, pp. 256–265.
Springer (2007)

40. Jayatilleke, G., Padgham, L., Winikoff, M.: A model driven component-based devel-
opment framework for agents. International Journal of Computer Systems Science &
Engineering 20(4), 273–282 (2005)

41. Jennings, N., Wooldridge, M.: Applications of intelligent agents. In: Agent Technology:
Foundations, Applications, and Markets, pp. 3–28 (1998)

42. Jennings, N., Wooldridge, M.: Agent-oriented software engineering. Lecture notes in
computer science 1647, 4–10 (1999)

43. Julian, V., Rebollo, M., Argente, E., Botti, V., Carrascosa, C., Giret, A.: Using
THOMAS for Service Oriented Open MAS, pp. 56–70. Springer (2009)

44. Kirby, J.: Model-Driven Agile Development of Reactive Multi-Agent Systems. In:
Computer Software and Applications Conference, 2006. COMPSAC’06. 30th Annual
International, vol. 2 (2006)

45. Kleppe, A., Warmer, J.B., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Professional (2003)

46. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-agent architectures as organizational
structures. Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

47. Longbing, C., Zhang, C., Ruwei, D.: Organization-oriented analysis of open complex
agent systems. International Journal of Intelligent Control and Systems 10(2), 114–
122 (2005)

48. Luck, M., McBurney, P.: Computing as interaction: agent and agreement technologies.
In: Proc. of the 2008 IEEE International Conference on Distributed Human-Machine
Systems, pp. 1–6 (2008)

49. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as
Interaction. A Roadmap for Agent Based Computing (2005)

50. Maamar, Z., Mostefaoui, S., Yahyaoui, H.: Toward an agent-based and context-

February 28, 2012 3:6 WSPC/INSTRUCTION FILE
VO˙Agent-based˙MDD˙review

34 J. Agüero, C. Carrascosa, M. Rebollo, V. Julián

oriented approach for Web services composition. IEEE Transactions on Knowledge
and Data Engineering pp. 686–697 (2005)

51. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9(3), 273–305 (2000)

52. Object management group (OMG). meta object facility (MOF) 2.0 core specification.
http://www.omg.org/docs/ptc/04-10-15.pdf (October 2004)

53. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. Agent-
Oriented Software Engineering V pp. 78–92 (2005)

54. Ohtani, T., THINT, M.: An Intelligent System for Managing and Utilizing Information
Resources Over the Internet. International Journal on Artificial Intelligence Tools
11(1), 117–138 (2002)

55. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-
based systems. In: Agent-Oriented Software Engineering 1957, pp. 185–193. Springer
(2001)

56. Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent
coordination infrastructure. Electronic Notes in Theoretical Computer Science 128(5),
65–85 (2005)

57. Papazoglou, M., Georgakopoulos, D.: Service-oriented computing. Communications of
the ACM 46(10), 25–28 (2003)

58. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing:
State of the art and research challenges. IEEE Computer Society 40(11), 38–45 (2007)

59. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS.
In: Proceedings of the 3rd Central and Eastern European conference on Multi-agent
systems, pp. 394–403. Springer-Verlag (2003)

60. Selic, B.: The pragmatics of model-driven development. IEEE software 20(5), 19–25
(2003)

61. Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P.: Taming agents
and objects in software engineering. Software engineering for large-scale multi-agent
systems. LNCS 2603, 103–136 (2003)

62. Singh, M., Huhns, M.: Service-oriented computing: semantics, processes, agents. John
Wiley & Sons Inc (2005)

63. Skarmeas, N., Clark, K.: Component based agent construction. International Journal
on Artificial Intelligence Tools 11(1), 139–164 (2002)

64. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent
systems. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, pp. 121–128. ACM (2003)

65. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of Agent–Oriented
Software Methodologies–Examination of the Gap Between Modeling and Platform.
Agent-Oriented Software Engineering V pp. 126–141 (2005)

66. Wooldridgey, M., Ciancarini, P.: Agent-oriented software engineering: The state of the
art. In: Agent-Oriented Software Engineering, LNAI 1957, pp. 55–82. Springer (2001)

67. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The
GAIA methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

