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Minimization of deterministic finite automata is a classic problem in Computer Science
which is still studied nowadays. In this paper, we relate the different split-minimization
methods proposed to date, or to be proposed, and the algorithm due to Brzozowski
which has been usually set aside in any classification of DFA minimization algorithms.
In our work, we first propose a polynomial minimization method derived from a paper by
Champarnaud et al. We also show how the consideration of some efficiency improvements
on this algorithm lead to obtain an algorithm similar to Hopcroft’s classic algorithm. The
results obtained lead us to propose a characterization of the set of possible splitters.
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1. Introduction

Many computer applications, from text processing or image analysis to linguistics

among others, consider the computation of minimal automata in order to obtain

efficient solutions. The problem of automata minimization is a classic issue in Com-

puter Science, which, still nowadays, arouses interest.

The minimization of deterministic finite automata is based on the computation

of the coarsest equivalence relation which fulfills that any pair of equivalent states

p and q have the same final/non-final status, and, for any given symbol, the states

reached from p and q with that symbol are also equivalent. The computation of

such relation is, in fact, the computation of the Nerode’s equivalence relation for

the language accepted by the automaton to be minimized.

The methods used to compute the above mentioned relationship usually follow

one of two different approaches. On the one hand, some methods check every pair

of states to test if they are equivalent or not [1, 2]. On the other hand, some other

methods iteratively refine an initial partition of the set of states into final and not

final states [3, 4, 5]. Among these algorithms, the algorithm by Hopcroft is of special

interest, because it is the one with the best time complexity (O(kn logn), where

1
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n stands for the number of states of the input automaton and k denotes the size of

the alphabet).

The minimization algorithm proposed by Brzozowski [6] is usually set appart

from the rest [7, 8]. Despite its worst-case exponential time complexity, the method

has a good average behaviour in the practice. Furthermore, it is a very concise

and elegant algorithm based on two well-known constructions on automata, which

makes its implementation very straightforward. Essentially, the algorithm computes

the automaton D(R(D(R(A)))), where D(A) denotes the determinization of A by

the well-known subset construction and R(A) is the reverse automaton of A. Re-

cently, Brzozowski and Tamm proposed a general minimization by double reversal

framework [9], thus, the original algorithm by Brzozowski, as well as other recent

work [10], became instances within such framework.

The paper by Champarnaud et al. [7] can be seen as a first attempt to relate

Brzozowski’s algorithm, when applied to DFA, with other minimization methods.

In order to obtain the minimal DFA equivalent to an automaton A, the algorithm

proposed by Champarnaud et al. considers the states of the automaton D(R(A))

(which are in fact named by subsets of the states of A) in order to refine the initial

partition. Thus, the algorithm proposed modifies the double reversal minimization

method by substituting the second determinization of the algorithm by the compu-

tation of an equivalence relation that states any two states of A as equivalent when,

for each state P of D(R(A)), either both states or none of them are in P . This,

exponential in the worst case algorithm, is interesting because relates Brzozowski

algorithm with minimization algorithms by splitting such as those by Hopcroft or

Moore [11].

In this paper we relate the algorithm by Brozozowski with any split-minimization

method. We first propose an improvement of the algorithm due to Champarnaud

et al. based in the following fact. Given an automaton A, any succession of ef-

fective partitions of the states in A that leads to the Nerode’s equivalence has a

number of partitions bounded by n, the number of states of A. This implies that

not every state in D(R(A)) (potentially 2n states) is necessary to refine the ini-

tial partition. Our first algorithm (quadratic) is modified in order to improve its

complexity, that becomes O(n logn), similar to Hopcroft’s complexity. The study

concludes with a characterization of the whole set of valid splitters to be used by

any split-minimization method.

2. Notation and definitions

Let Σ be a finite alphabet and let Σ∗ be the free monoid generated by Σ with

concatenation as the internal operation and the empty string λ as neutral element.

For any given x ∈ Σ∗, we will denote xr the reverse of x. Let us denote the size of

a set Q with |Q|. Let us also denote by 2Q the power set of Q.

A finite automaton is a 5-tuple A = (Q,Σ, δ, I, F ), where Q is a finite set of

states, Σ is an alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of
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final states and δ : Q × Σ → 2Q is the transition function. Let us note that the

transition function can also be seen as δ ⊆ (Q × Σ × Q). The transition function

can be extended in a natural way to 2Q × Σ∗.

Given an automaton A, we say it is accessible if, for each q ∈ Q, there exists a

string x such that q ∈ δ(I, x). The right language of a state q, denoted by RA
q or Rq

when no confusion is possible, is defined as Rq = {x ∈ Σ∗ : δ(q, x) ∩ F 6= ∅} and

the language accepted by the automaton as L(A) =
⋃

q∈I Rq. For any automaton

A, any two states p and q are defined to be equivalent according the relation ≡A if

and only if they are such that RA
p = RA

q .

An automaton is called deterministic (DFA) if, for every state q and every

symbol a, |δ(q, a)| is at most one, and it has only one initial state usually denoted

by q0. A DFA is said to be complete whenever |δ(q, a)| is just one. In the following

we will consider only complete and accessible DFA.

Given any language L, we will denote the reverse language by Lr. Given a finite

automaton A = (Q,Σ, δ, I, F ) that accepts a language L, the reverse automaton is

defined as the automaton R(A) = (Q,Σ, δr, F, I), where q ∈ δr(p, a) if and only if

p ∈ δ(q, a). Note that L(R(A)) = L(A)r. For any automaton A = (Q,Σ, δ, I, F ) it is

known that the automatonA′ = (2Q,Σ, δ′, I, F ′), where F ′ = {P ∈ 2Q : P∩F 6= ∅}

and δ′(P, a) = ∪p∈P δ(p, a) is a DFA equivalent to A. Let us denote the accesible

version of A by D(A). Whenever we will refer to a state of D(A), we will usually

do to the subset P of states of A that names it. For the sake of clarity, we will

reduce the parenthesis to denote the composition of reverse and determinization

operations, thus, for instance, we will use DR(A) instead of D(R(A)).

A partition of a set Q is a set {P1, P2, . . . , Pk} of pairwise disjoint non-empty

subsets of Q such that Q = ∪1≤i≤kPi. We will refer to those subsets as blocks, and

we will denote with B(p, π) the block of π which contains p. A partition π1 is refined

by π2 (π1 is coarser than π2) if each class in π2 is contained in some class in π1. We

will denote this π2 ≤ π1.

Let π1 and π2 be two partitions of Q, we will denote with π1 ∧ π2 the coarsest

partition which refines both π1 and π2. The classes of this partition are the non

empty sets in P1 ∩P2, where P1 ∈ π1 and P2 ∈ π2. In order to reduce the notation,

for any P ⊆ Q, we will denote the complementary of P in Q by PQ, or P whenever

this omission do not lead to confusion.

Given a complete DFA A = (Q,Σ, δ, q0, F ), let P,R ⊂ Q and a ∈ Σ. Let us

refer to (P, a) as a splitter and also denote by (P, a)|R the split of the set R into

the sets R′ = δ−1(P, a)∩R and R′′ = R−R′. It is interesting to be noted here that

(P, a)|R = (P , a)|R. Whenever δ−1(P, a) ∩R = ∅ or δ−1(P, a) ∩R = R we will say

that (P, a) does not split R and we will denote it by (P, a)|R = R.

3. Brzozowski’s algorithm

The algorithm proposed by Brzozowski [6] computes the minimal DFA equiva-

lent to any non-deterministic automaton A = (Q,Σ, δ, I, F ). The process consists
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in computing the automaton DRDR(A). Following result is the key to prove the

correctness of this algorithm.

Proposition 1 (Brzozowski) Given a DFA A = (Q,Σ, δ, q0, F ) that accepts a

language L, then DR(A) is the minimal DFA that accepts the language Lr.

Let us point out briefly in other terms the reason why the second determinization

of Brzozowski’s algorithm effectively computes the minimum DFA. Please note

that, the right language of every state P in RDR(A) (P ⊆ Q) contains the strings

that are in every right language RA
q , where q ∈ P , and such that they are not in

the right languages of states in Q not in P . Note that this implies that, for any pair

of states P and P ′ of the automaton RDR(A), the right languages R
RDR(A)
P and

R
RDR(A)
P ′ are disjoint.

Taking this into account, the second determinization of Brzozowski’s algorithm

can be seen as a method to relate each state p ∈ Q with a set of states P =

{P1, P2, . . . , Pn} of RDR(A), in such a way that the union of the different R
RDR(A)
Pi

,

with 1 ≤ 1 ≤ n, equals RA
q . A consequence of this is that the state p is included in

every Pi ∈ P, and that p is not included in any other state P ′ of RDR(A), P ′ 6∈ P.

Note that every pair of equivalent states according ≡A (states with the same right

language) will be related with the same set of states of RDR(A).

In [12], and in the setting of Universal Algebra, Courcelle et al. formultate

Brzozowski’s algorithm, along with other operations. The algebraic framework used

in that work facilitates to extend the results from words to trees.

It is worth to be noted that, when the input automaton A is non-deterministic,

the computation of the classes of the relation ≡A leads to a (non-deterministic)

automaton which is a partial reduction of A. Nevertheless, when A is deterministic,

the right language of the states are quotients of L(A) with respect to the strings in

Σ∗, and the computation of ≡A leads to the minimum DFA for the language.

In the work by Champarnaud et al. [7] the authors use the set of states of this

automaton to propose their DFA minimization algorithm. The correctness of the

method is based in Proposition 2.

Proposition 2 (Champarnaud et al [7], Proposition 8)

Let A = (Q,Σ, δ, q0, F ) be a DFA that accepts a language L and let R the set

of states of DR(A). For each pair of states p, q ∈ Q, RA
p = RA

q if and only if, for

all P ∈ R, it is fulfilled that p ∈ P ⇔ q ∈ P .

Let us relate Proposition 2 with our comment on the second determinization

of Brzozowski’s minimization algorithm. Thus, note that for a given automaton A,

any two states of A such that p ≡A q are related with the same set of states of

RDR(A), that is, for every state P ∈ DR(A), the state p is in P if and only if q is

also in P .

Taking into account that the target is to detect the equivalent states (and there-

fore minimize the input automaton), there are several ways to compute this: Brzo-
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zowski’s algorithm is one of them; the split operation used by Champarnaud et al.

obtain the same result. Other authors use this same approach for other purposes.

For instance, Lombardy and Sakarovich [13], and Polak as well [14], build a matrix

M with rows indexed by the states in R and the columns indexed by the states in

Q, where, for each (P, q) ∈ R ×Q:

M(P, q) =

{

1 if q ∈ P

0 otherwise

Taking into account the matrix, those states in Q that index equivalent columns

are also equivalent. This is a direct result from the way the authors obtain the

universal automaton for a given language.

It seems quite clear that both approaches can be seen as a variation of Brzo-

zowski’s algorithm, both with the same drawback, that is, their exponential time

complexity in the worst case (the automaton DR(A) can be exponentially bigger

than A). We now prove that, taking into account any deterministic automata A,

the computation of the classes of ≡A, hence the Nerode’s equivalence relation πL(A)

does not need the whole computation of DR(A).

4. A polynomial algorithm

Let us first stress that, for any DFA A = (Q,Σ, δ, q0, F ) with n states, it suffices

n − 1 splitters in the worst case, to refine the initial partition of Q into final and

non-final states in order to distinguish all the states of A. Our algorithm takes this

into account and carries out the minimization of an input DFA using a partial

determinization of the reverse automaton, in which those states that do not refine

the current partition are rejected. This method of minimization by partial reverse

determinization (PRD) is depicted in Algorithm 4.1.

Note that the algorithm is similar to the one by Champarnaud et al. The main

difference consist of line 16, in which it is checked whether the current partition has

been refined or not. If so, the state of the DR(A) that leads to the refinement (state

δ−1(S, a)) is added to the waiting list L in order to be considered later. Note that

the modification allows to greatly improve the time behaviour of the algorithm. Let

us first show how the algorithm behaves in Example 3.

Example 3. Let us consider the DFA in Figure 1. Table 1 depicts the behaviour

of the algorithm. Each row in the table summarizes an iteration. The information

shown for each iteration consist on: the splitter took into account; the waiting set;

and the partition obtained (whenever it was modified with respect to the previous

one).

The algorithm considers initially the trivial partition of final and non-final

states π = {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}, and updates the set L with the pairs

({2, 3, 4, 6, 7}, a) for each a ∈ Σ. In this run we will follow a breath-first extrac-

tion criterion.



May 20, 2014 11:16 WSPC/INSTRUCTION FILE pgarcia˙et˙al

6

0
π {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}

L {({2, 3, 4, 6, 7}, a), ({2, 3, 4, 6, 7}, b)}

1

(S, a) ({2, 3, 4, 6, 7}, a)

δ−1(S, a) {1, 2, 3, 4, 5, 7, 9}

π {{2, 3, 4, 7}, {6}, {1, 5, 9}, {8, 10}}

L {({2, 3, 4, 6, 7}, b), ({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b)}

2

(S, a) ({2, 3, 4, 6, 7}, b)

δ−1(S, a) {1, 4, 5, 6}

π {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b),

({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b)

}

3

(S, a) ({1, 2, 3, 4, 5, 7, 9}, a)

δ−1(S, a) {1, 2, 4, 5, 7, 9}

π {{2, 7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 3, 4, 5, 7, 9}, b), ({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b),

({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)

}

4

(S, a) ({1, 2, 3, 4, 5, 7, 9}, b)

δ−1(S, a) {1, 2, 3, 4, 5, 6, 7}

L

{

({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b),

({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)

}

5

(S, a) ({1, 4, 5, 6}, a)

δ−1(S, a) {2, 3, 4, 7}

L {({1, 4, 5, 6}, b), ({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)}

6

(S, a) ({1, 4, 5, 6}, b)

δ−1(S, a) {2, 3}

π {{2}, {7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b),

({2, 3}, a), ({2, 3}, b)

}

7

(S, a) ({1, 2, 4, 5, 7, 9}, a)

δ−1(S, a) {1, 2, 4, 5, 7, 9}

L {({1, 2, 4, 5, 7, 9}, b), ({2, 3}, a), ({2, 3}, b)}

8

(S, a) ({1, 2, 4, 5, 7, 9}, b)

δ−1(S, a) {2, 3, 4, 7}

L {(({2, 3}, a), ({2, 3}, b)}

9

(S, a) ({2, 3}, a)

δ−1(S, a) {1}

π {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}}

L {({2, 3}, b), ({1}, a), ({1}, b)}

Table 1. Run of PRD algorithm when the input is the automaton in Figure 1. Note that the table
does not show the last iterations (that completely process the waiting set) because the partition
is not further modified. Note also that the partition is shown only when it is modified
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Algorithm 4.1 A minimization algorithm by partial reverse determinization

(PRD)

Require: A DFA A

Ensure: The minimal DFA equivalent to A

1: Method

2: π = {F, Q− F}

3: S = F

4: L = {}

5: for all a ∈ Σ do

6: L = Append(L , (S, a))

7: end for

8: while L 6= {} do

9: Extract (S, a) in L

10: Delete (S, a) from L

11: π′ = π

12: for all B ∈ π which is refined by (S, a) do

13: Let B′ and B′′ the result of the split (S, a)|B

14: Substitute in π the block B for B′ and B′′

15: end for

16: if π 6= π′ then

17: for b ∈ Σ do

18: L = Append(L , (δ−1(S, a), b))

19: end for

20: end if

21: end while

22: Return (A/π)

23: End Method.

The algorithm considers in each iteration a splitter to refine the cur-

rent partition. For instance, in iteration 2 the algorithm considers the splitter

({2, 3, 4, 6, 7}, b). Therefore, the set δ−1({2, 3, 4, 6, 7}, b) = {1, 4, 5, 6} guide the re-

finement of the partition to obtain the following one:

π = {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}},

and the update of the waiting set L lead to the set:

L = {({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b), ({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b)} .

The last modification of the partition is carried out by the consideration of the

splitter ({2, 3}, a). Note that δ−1({2, 3}, a) = {1}, that leads to obtain the partition:

π = {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}},

which is not further modified by the algorithm.
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Figure 1. Automaton example.

In order to prove the correctness of the algorithm, we will prove that a splitter

(a state of the automaton DR(A)) that does not refine the current partition can be

discarded. As we mentioned before this is the difference with respect Champarnaud

et al. algorithm.

Proposition 4. For any given DFA A = (Q,Σ, δ, q0, F ) Algorithm 4.1 outputs the

minimum DFA equivalent to A.

Proof. Let us first recall Proposition 2 that proves that, it is possible to minimize

the automaton using the set of states of the automaton DR(A) in a splitting process.

We also stress that it is not necessary to use all the states in that automaton,

because, in order to minimize any DFA with n states, only n − 1 splitters are

needed in the worst case.

Consider that, at a given iteration, the algorithm has taken into account the

set of splitters S = {P1, P2, . . . , Pn} (states of the automaton DR(A)), being π

the current partition. Let us also consider that the algorithm considers (Pi, a) as a

splitter and it is such that δ−1(Pi, a) = P where:

• P does not refine the partition π.

• There is a string x ∈ Σ∗ such that δ−1(P, x) allows to distinguish two states

q1 and q2.

note that this means that

q1 ∈ δ−1(P, x) if and only if q2 6∈ δ−1(P, x),

or, in other terms

δ(q1, x
r) ∈ P if and only if δ(q2, x

r) 6∈ P.
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Note that P distinguishes the states δ(q1, x
r) and δ(q2, x

r), but as stated above,

P does not refine the partition π. Therefore, there must be a set P ′ ∈ S that

distinguished the states δ(q1, x
r) and δ(q2, x

r) in a previous iteration. Therefore,

δ(q1, x
r) ∈ P ′ if and only if δ(q2, x

r) 6∈ P ′,

which implies that

q1 ∈ δ−1(P ′, x) if and only if q2 6∈ δ(P ′, x),

and therefore, the discard of P does not affect to the minimization process.

We note that, as opposed to the method proposed by Champarnaud in cite, PRD

algorithm does not need to compute completely the automaton DR(A). Neverthe-

less, as it is proposed, PRD algorithm is a variant of Champarnaud’s algorithm,

where its time complexity is quadratic with respect the number of states of the

automaton.

Proposition 5. Algorithm 4.1 run with O(k n2) time complexity, where k = |Σ|

and n = |Q|.

Proof. First note that the number of iterations of the loop in line 8 is determined

by the number of elements in L which is linear with both the number of states (it

suffices n− 1 splitters in the worst case to distinguish the states of the automaton)

and the number of symbols in the alphabet. Taking into account that the split oper-

ation in line 12 can be carried out in linear time with respect n, the final bound is

obtained.

Let us consider here the case when the input automaton is non-deterministic.

We note that in this case, the partial computation of the states of DR(A), in line

with the PRD algorithm, does not allow the computation of the equivalence of

the right languages of the states (i.e. the computation of the relation ≡A). Note

that it would imply that the equivalence of (non-deterministic) automata could be

stablished with polynomial time bound, which is known to be false.

5. Hopcroft’s algorithm

The most time efficient algorithm known to minimize DFA is due to Hopcroft [4].

A careful implementation of this algorithm lead to a worst case time of O(kn logn).

Many papers are devoted to describe this method [15, 16, 17, 18, 11], in spite of that,

no clear relationship among Hopcroft and Brzozowski has been described so far.

Hopcroft’s method is outlined in Algorithm5.1. Briefly, the algorithm maintains

a waiting set L of splitters to consider in the refinement of the current partition

π. Usually, the pair (π,L ) is referred to as a configuration of the algorithm. Note

that the algorithm does not fix any order to extract an element from L .
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Algorithm 5.1 Hopcroft’s DFA minimization algorithm.

Require: A DFA A

Ensure: The minimal DFA equivalent to A

1: Method

2: π = {F, Q− F}

3: S = the smallest of the sets F and Q− F

4: L = {}

5: for all a ∈ Σ do

6: L = Append(L , (S, a))

7: end for

8: while L 6= {} do

9: Extract (S, a) in L

10: Delete (S, a) from L

11: for B ∈ π such that B is refined by (S, a) do

12: Let B′ and B′′ the result of the split (S, a)|B

13: Substitute in π the block B for B′ and B′′

14: C = the smallest of the sets B′ and B′′

15: for all a ∈ Σ do

16: if (B, a) ∈ L then

17: Update L by substituting (B, a) for (B′, a) and (B′′, a)

18: else

19: L = Append(L , (C, a))

20: end if

21: end for

22: end for

23: end while

24: Return (A/π)

25: End Method.

The clever choice of the smallest set obtained in each refinement is the key to

achieve the, best up to now, time complexity of a DFA minimization method. In

[11], Berstel et al. give a proof of the correctness and termination of the algorithm.

The proof takes into account Lemma 6 and prove a condition that is fulfilled in

every configuration of any run of Hopcroft’s algorithm. Proposition 7 enunciates

the condition.

Lemma 6 (Hopcroft) Let P be a set of Q, and let π = P1, P2 be a partition of

P . For any R ⊂ Q and a ∈ Σ, it is fulfilled that:

(P, a)|R ∧ (P1, a)|R = (P, a)|R ∧ (P2, a)|R = (P1, a)|R ∧ (P2, a)|R.

Proposition 7 (Berstel et al.[11]) Let (π,L ) be a configuration in some execu-

tion of Hopcroft’s algorithm on an automaton A. For any P ∈ π, any subset R of
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a class of π and a ∈ A, one has

(P, a)|R ≥
∧

(S,a)∈L

(S, a)|R.

These results imply that the partition output by Hopcroft’s algorithm cannot be

refined, and therefore it denotes the classes of the relation ≡A. For further details

we refer the interested reader to [11].

6. A modification of PRD algorithm

Algorithm 4.1 takes into account some states in R to refine the initial (trivial)

partition of the states. It is worth to be noted here that, for any P ∈ R consid-

ered in this process, in the general case, not all the states in P are relevant to

refine the current partition, thus, it is possible to modify the algorithm in order

to consider just those relevant states. For instance, let us consider the partition

π = {{1, 2, 5}, {3, 4, 6}, {7, 8}}, and the splitter {1, 2, 7, 8}. Note that the partition

is refined and that the new one is π = {{1, 2}, {5}, {3, 4, 6}, {7, 8}}. The modifica-

tion we refer above implies to consider the set of relevant states (the set {1, 2} in

this case) instead of the whole set.

Another modification that can be considered consist on, once a block is known to

be refined, to select from the split result, the smallest set obtained. In the previous

example, it leads to consider the set {5} instead of the set {1, 2}.

Note that, in the new algorithm, it is impossible for any splitter to appear twice

in the queue, because, in that case it would mean that some (non-refined) blocks are

joined to obtain such splitter. Both modification to PRD algorithm are summarized

in Algorithm 6.1.

Following example illustrates the behaviour of this revised version of PRD al-

gorithm.

Example 8. Let us consider again the DFA in Figure 1. Table 2 depicts the be-

haviour of the algorithm.

The algorithm considers initially the trivial partition of final and non-final

states π = {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}, and updates the set L with the pairs

({2, 3, 4, 6, 7}, a) for each a ∈ Σ. In this run we follow a random criterion to extract

the splitter.

Note, for instance, that iteration 1 considers the splitter ({2, 3, 4, 6, 7}, a). There-

fore, the set δ−1({2, 3, 4, 6, 7}, a) = {1, 2, 3, 4, 5, 7, 9} guide the refinement of the

partition to obtain the following one:

π = {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}}.

In this situation, previous version of PRD algorithm included the pairs

({1, 2, 3, 4, 5, 7, 9}, a) and ({1, 2, 3, 4, 5, 7, 9}, b) into the waiting set L . In this ver-

sion, the algorithm considers that the blocks {2, 3, 4, 6, 7} and {1, 5, 8, 9, 10} are split-

ted. The smallest sets obtained by the split operations are {8, 10} and {6}, which are
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Algorithm 6.1 PRD2 algorithm.

Require: A DFA A

Ensure: The minimal DFA equivalent to A

1: Method

2: π = {F, Q− F}

3: S = the smallest of the sets F and Q− F

4: L = {}

5: for all a ∈ Σ do

6: L = Append(L , (S, a))

7: end for

8: while L 6= {} do

9: Extract (S, a) in L

10: Delete (S, a) from L

11: S = ∅

12: for all B ∈ π which is refined by (S, a) do

13: (B′, B′′) = (S, a)|B

14: if B′ 6= ∅ and B′′ 6= ∅ then

15: Update L by substituting any (B, a) for (B′, a) and (B′′, a)

16: C = the smallest of the sets B′ and B′′

17: S = S ∪ C

18: end if

19: end for

20: if S 6= ∅ then

21: for b ∈ Σ do

22: L = Append(L , (S, b))

23: end for

24: end if

25: end while

26: Return (A/π)

27: End Method.

joined to obtain the pairs ({6, 8, 10}, a) and ({6, 8, 10}, b) that update the waiting set

L .

The last modification of the partition is carried out by the consideration of the

splitter ({2, 3}, a). Table 2 does not show the remaining iterations because the par-

tition is not further modified.

It is worth to be noted that the modified version of PRD algorithm is closely

related with Hopcroft’s algorithm. The main difference lies in how the split of a block

is considered to further refine the partition. In this sense, Hopcroft’s algorithm, for

each block splitted, considers the smallest set obtained. The algorithm we propose,

considers the union of these sets instead of using them independently. Following
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0
π {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}

L {({2, 3, 4, 6, 7}, a), ({2, 3, 4, 6, 7}, b)}

1

(S, a) ({2, 3, 4, 6, 7}, a)

δ−1(S, a) {1, 2, 3, 4, 5, 7, 9}

π {{2, 3, 4, 7}, {6}, {1, 5, 9}, {8, 10}}

L {({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a), ({6, 8, 10}, b)}

2

(S, a) ({6, 8, 10}, b)

δ−1(S, a) {8, 9, 10}

π {{2, 3, 4, 7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a),

({9}, a), ({9}, b)

}

3

(S, a) ({9}, b)

δ−1(S, a) {7}

π {{2, 3, 4}, {7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a),

({9}, a), ({7}, a), ({7}, b)

}

4

(S, a) {2, 3, 4, 6, 7}, b)

δ−1(S, a) {1, 4, 5, 6}

π {{2, 3}, {4}, {7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({6, 8, 10}, a), ({9}, a), ({7}, a),

({7}, b), ({4}, a), ({4}, b)

}

5

(S, a) ({4}, b)

δ−1(S, a) ∅

L

{

({6, 8, 10}, a), ({9}, a), ({7}, a),

({7}, b), ({4}, a)

}

6

(S, a) ({6, 8, 10}, a)

δ−1(S, a) {3, 6, 8, 10}

π {{2}, {7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({9}, a), ({7}, a), ({7}, b),

({4}, a), ({3}, a), ({3}, b)

}

7

(S, a) ({7}, a)

δ−1(S, a) {5, 9}

π {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}}

L

{

({9}, a), ({7}, b), ({4}, a),

({3}, a), ({3}, b), ({1}, a), ({1}, b)

}

Table 2. Run of PRD 2 algorithm when the input is the automaton in Figure 1. As in the previous
example, we do not show the remaining iterations because they do not modify the partition.

lemma proves that the refinement of a partition does not change when the sets are
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united.

Lemma 9. Let A = (Q,Σ, δ, I, F ) be a DFA. Let P, P1, P2 ⊂ Q be such that

P1 ⊂ P and P2 ∩ P = ∅. For any R ⊂ Q and a ∈ Σ, it is fulfilled that:

(P, a)|R ∧ (P1, a)|R ∧ (P2, a)|R = (P, a)|R ∧ (P1 ∪ P2, a)|R.

Proof. Let us first note that, for every symbol a, the inclusion relationships between

P , P1 and P2 also hold when the related sets P ′ = δ−1(P, a), P ′
1 = δ−1(P1, a) and

P ′
2 = δ−1(P2, a) are considered.

Let us remark that, given P1, P2, . . . , Pk ⊂ Q, it is fulfilled that:

k
∧

i=1

Pi|R =

n
∧

j=1

Bj |R

where Bj are the blocks of the partition of Q obtained by:

k
∧

i=1

Pi|Q

thus,we will consider in the following argument the effect of P , P1 and P2 over Q.

Note that the split (P, a)|Q returns the partition {P ′ ∩Q, Q− P ′}. Taking into

account the relationship between the sets P ′, P ′
1 and P ′

2, it can be seen that the

consideration of the splitter (P1, a) leads to {(P ′ − P ′
1) ∩Q, P ′

1 ∩Q, Q− P ′}, and

finally, the partition {(P ′ − P ′
1) ∩ Q, P ′

1 ∩ Q, P ′
2 ∩ Q, Q − (P ′ ∪ P ′

2)} is obtained

when (P2, a) is considered.

In a similar way, it can be seen that, when the splitters (P, a) and (P1 ∪ P2, a),

the same partition of the set Q is obtained.

To prove the correctness of Algorithm 6.1, we will follow an approach similar to

the one by Berstel et al. in [11], where Proposition 10 plays the role of Proposition

7 in the proof of Hopcroft’s algorithm.

Proposition 10. Given any execution of Algorithm 6.1, let π0, π1 . . . denote the

sequence of partitions of the set of states obtained. Let also Li denote the waiting

set once obtained πi and let the set Ci = {Bj ∈ πj : 0 ≤ j ≤ i}. For any a ∈ Σ it

is fulfilled that:

πi ∧
∧

(S,a)∈Li

(S, a)|Q = πi ∧
∧

B∈Ci

(B, a)|Q.

Proof. We will prove the proposition by induction on the sequence of partitions

obtained by Algorithm 6.1.

Initially, π0 = {F,Q − F} and L0 = {(T, a) : a ∈ Σ} where T is the smallest

set of F and Q− F . Note that:

π0 ∧ (T, a)|Q = π0 ∧ (T, a)|Q ∧ (Q− T, a)|Q
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because π0 ∧ (T, a)|Q = π0 ∧ (Q − T, a)|Q.

Let us suppose that the proposition fulfills for i ≤ k. Let the configuration of the

algorithm be (πk,Lk) and let (S, a) ∈ Lk be the splitter to be considered.

Note that S = P1 ∪ P2 ∪ . . . ∪ Pr where Pi ∈ πm for 1 ≤ i ≤ r, and for some

m ≤ k. Note also that, for every i, there exists P ′
i ∈ Ck such that Pi ⊂ P ′

i and

Pj ∩ Pi = ∅ for j 6= i. Lemma 9 implies that:

πk ∧ (P ′
i , a)|Q ∧ (Pi ∪ Pj , a)|Q = πk ∧ (P ′

i , a)|Q ∧ (Pi, a)|Q ∧ (Pj , a)|Q,

and therefore:

πk ∧ (Pi ∪ . . . ∪ Pr, a)|Q = πk ∧ (P1, a)|Q ∧ . . . ∧ (Pr, a)|Q,

thus, we will study, without loss of generality, the case of just one P ∈ Ck. Let then

be πk+1 = πk ∧ (P, a)|Q. Two situations arise:

On the one hand, it is possible that, the splitter does not refine any block, that

is, (S, a)|B = B for each block B ∈ πk. Then, πk+q = πk and the algorithm ends

and fulfill the proposition.

On the other hand, (S, a) refine the partition, let us then define the set:

Bk = {B ∈ πk : (P, a)|B 6= B},

note that these are the new blocks to take into account in the minimization process.

More formally:

πk+1 = (πk − Bk) ∪ {(P, a)|Bi : Bi ∈ Bk}.

Let Bi = Bi1 ∪ Bi2 for each Bi ∈ Bk. Let us also assume that |Bi1| ≤ |Bi2|.

Thus:

πk+1 ∧
∧

(S,a)∈Lk+1

(S, a)|Q = πk ∧
∧

(S,a)∈Lk

(S, a)|Q ∧
∧

Bi∈Bk

(Bi, a)|Q,

by induction hypothesis we have this equals:

πk ∧
∧

B∈Ck

(B, a)|Q ∧
∧

Bi∈Bk

(Bi, a)|Q,

and, by Lemma 6 it equals also:

πk ∧
∧

B∈Ck

(B, a)|Q ∧
∧

Bi∈Bk

(Bi1, a)|Q ∧ (Bi2, a)|Q,

and therefore:

πk+1 ∧
∧

(S,a)∈Lk+1

(S, a)|Q = πk ∧
∧

B∈Ck+1

(B, a)|Q.

Corollary 11. Given any execution of Algorithm 6.1, let (π0,L0), (π1,L1) . . . de-

note the sequence of configurations obtained. For each partition obtained πi and

each B ∈ πi, it is fulfilled that:
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πi ∧ (B, a)|Q ≥ πi ∧
∧

(S,a)∈Li

(S, a)|Q.

Following Proposition provide the correctness and termination proofs for Algo-

rithm 6.1.

Proposition 12. For any given input DFA A, Algorithm 6.1 computes the equiv-

alence relation ≡A.

Proof. Note that, once obtained πL the waiting set L is empty and thus, for each

B in the partition obtained π:

π ∧ (B, a)|Q ≥ π.

Please, note that both Algorithm 6.1 and Hopcroft’s have the same time com-

plexity.

In this paper we have related the Brzozowski double reversal minimization al-

gorithm with the different split minimization methods. To do so we first proposed

PRD algorithm that, for any given DFA A, takes into account some (linearly-

bounded number of) states of the DR(A) automaton to obtain the Nerode’s equiv-

alence. We remark that, general split-minimization algorithms (for instance the

algorithms by Hopcroft, Moore, as well as PRD2 here proposed), consider splitters

that may not be states of the DR(A) automaton.

Let us note that any valid splitter in a minimization method denote the union

of some equivalence classes of the relation ≡A. Let us take into account the au-

tomaton ADR as the output of the determinization of R(A) automaton where the

non-accesible states are also considered. Note that the set of states of ADR include

all the states in DR(A), and therefore, the set contains information to effectively

split the set of states of A into the classes of the relation ≡A. In fact, the set of

states of ADR include every set that splits the set of states of A while respecting the

classes of equivalence of the relation ≡A. Therefore, any split-minimization method

could be seen as a method that selects some states of ADR.

Let us also recall that it is possible to denote any union of classes in terms of

the intersection and complement of some other classes. Therefore, the whole set

of possible splitters used by any split-minimization algorithm (already proposed

or not) can be obtained by the intersection and complement closure of the set of

accesible states of the DR(A) automaton. This is summarized in Proposition 13

that extends the previous result by Champarnaud et al.

Proposition 13. Let A = (Q,Σ, δ, q0, F ) be a DFA that accepts a language L and

let R the set of states of DR(A). Let R′ be the closure of R under intersection and

complement with respect Q. For each pair of states p, q ∈ Q, RA
p = RA

q if and only

if, for all P ∈ R
′, it is fulfilled that p ∈ P ⇔ q ∈ P .
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Proof. Easy to prove taking into account Proposition 2 and the properties of in-

tersection and complement.

Note that the set R′ contains every possible splitter that can be used to minimize

the input automaton. Therefore, the different algorithmic approaches of the split

minimization algorithms can be related to a traverse of the set in order to selects a

subset of splitters from it.

7. Conclusions

Both Brzozowski and Hopcroft algorithms have important features that make them

interesting. The most important feature of Hopcroft’s algorithm is its time com-

plexity (in fact it is the most efficient algorithm known). Brzozowski’s algorithm

is very concise, elegant, easy to implement and, within the recently proposed dou-

ble reversal framework [9], still arouses interest. Despite the time complexity of

Champarnaud et al. [7] algorithm, it can be seen as an interesting attempt to relate

Brzozowski’s algorithm, when applied to DFA, with other minimization methods.

In the same way algorithm by Champarnaud et al. does, the first algorithm we

propose substitute the second determinization by the split of the partitions using

the states in DR(A). In contrast to Champarnaud’s approach, we do not consider

the whole set of states, but a portion (linearly-bounded) of the set, which allows us

to carry out the minimization with polynomial time complexity. The consideration

of some ideas from Hopcroft’s algorithm, a processing of the set of states of DR(A)

leads to PRD2, that maintains the same structure of PRD but running with a time

complexity equal than Hopcroft’s.

Finally, we formalize the set of every possible splitter that can be used to mini-

mize an input automaton A as the intersection and complement closure of the set

of states of the automaton DR(A). Thus, any split minimization algorithm can be

related to a traverse of this set in order to select a subset of splitters from it.
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