

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.scico.2013.06.008

http://hdl.handle.net/10251/51039

Elsevier

Panach Navarrete, JI.; Aquino Salvioni, N.; Pastor López, O. (2014). A Proposal for
Modelling Usability in a Holistic MDD Method. Science of Computer Programming. 86:74-
88. doi:10.1016/j.scico.2013.06.008.

A Proposal for Modelling Usability in a Holistic MDD
Method

Jose Ignacio Panach1, Nathalie Aquino2,3, Óscar Pastor3

1Escola Tècnica Superior d'Enginyeria, Departament d’Informàtica, Universitat de València
 Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain

joigpana@uv.es
2Departamento de Electrónica e Informática

Universidad Católica “Nuestra Señora de la Asunción”
Tte. Lidio Cantalupi y Guillermo Molinas, Asunción, Paraguay

3Centro de Investigación en Métodos de Producción de Software - PROS
Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia, Spain
{naquino, opastor}@pros.upv.es

Abstract. Holistic methods for Model-Driven Development (MDD) aim to
model all the system features in a conceptual model. This conceptual model is
the input for a model compiler that can generate software systems by means of
automatic transformations. However, in general, MDD methods focus on mod-
elling the structure and functionality of systems, relegating the interaction and
usability features to manual implementations at the last steps of the software
development process. Some usability features are strongly related to the func-
tionality of the system and their inclusion is not so easy. In order to facilitate
the inclusion of functional usability features from the first steps of the devel-
opment process and bring closer MDD methods to the holistic perspective, we
propose a Usability Model. The Usability Model gathers conceptual primitives
that represent functional usability features in a sufficiently abstract way so that
the model can be used with different holistic MDD methods. This paper defines
all the primitives that can be used to represent functional usability features.
Moreover, we have defined a process to include the Usability Model in any
MDD method without affecting its existing conceptual model. The proposal is
based on model-to-model and model-to-code transformations. As proof of con-
cept, we have applied our proposal to an existing MDD method called OO-
Method and we have measured its efficiency.

Keywords: Model-driven development, usability, conceptual model.

1 Introduction

The Model-Driven Development (MDD) [10] approach proposes that analysts must
focus all their efforts on building a conceptual model that represents all the system
features, i.e., a holistic conceptual model. A conceptual model is used to represent the
activity that elicits and describes the general knowledge that a particular information

2

system needs to know. In other words, a conceptual model is a way of viewing do-
mains specifically [24]. In this context, “holistic conceptual model” means that the
conceptual model is composed of complementary models that represent all the rele-
vant system perspectives: structure, functionality and interaction. While existing
MDD methods generally include models to represent system structure and functional-
ity, the interaction modelling has usually received less attention. Our work focuses on
modelling interaction adequately, giving to it the same level of importance as the
structural and functional perspectives receive in order to provide a full system de-
scription in the conceptual model.

Each MDD method has its own conceptual model, which represents the system
features through different models (for example, functional model, structural model,
etc.). Each complementary model of a holistic MDD method must provide its own
conceptual primitives. These conceptual primitives are modelling elements having the
capability to represent a feature of the system in an abstract way. Examples of con-
ceptual modelling elements for the structural model are classes of a class diagram,
attributes, and services. Examples of conceptual modelling elements for the functional
model include service pre/post conditions, valid states and transitions. In this paper,
our intention is to focus on conceptual modelling elements for the interaction perspec-
tive, and in particular, on usability features. The holistic conceptual model, composed
by conceptual primitives, can then be seen as the input for a model compiler that can
generate the full software application automatically (or semi-automatically, depending
on the model compiler capacity).

According to ISO 9126-1 [16], usability is a key issue to obtain a good acceptance
from software users [8]. Some authors have divided usability recommendations into
two groups [17]: recommendations that only affect the interface presentation (e.g.,
meaningfulness of a label), and recommendations that affect the system functionality
(e.g., a cancel function). The second group of recommendations also receive the name
of functional usability features. Dealing with these functional usability features is not
very easy [17] since they affect not only the system interface, but also its structure
and behaviour (architecture). For example, the feature Cancel aims to cancel the exe-
cution of a service. The implementation of this usability feature is not limited to the
addition of a button in the interface; on the contrary, this feature also affects data
persistence and functionality.

There are several authors in the software engineering community that have identi-
fied functional usability features and have proposed methods to include them in soft-
ware development [13]. All these works propose including functional usability fea-
tures from the early steps of the software development process, since they can involve
many changes in the system architecture if they are considered at latter steps, when
interfaces are designed. However, including usability features from the early steps has
also some disadvantages:
 Cost/benefit ratio: The analyst must deal with usability throughout the entire

development process, from the requirements capture until the implementation.
This increases the analyst’s effort and the cost/benefit ratio is not always favour-
able for features that are difficult to implement [17].

 Changeable requirements: Usability requirements (like other system require-
ments) are continuously evolving [18] and the adaptation to new requirements
can involve a lot of rework in the system architecture.

3

 Dependency on the implementation language: The architecture design de-
pends on the language used in the implementation and on the target platform.

Our research work is based on the idea that MDD methods avoid all these disad-
vantages [31][30]. There are currently several MDD methods that are able to model
fully functional systems, such as WebRatio [1], AndroMDA [2], NDT [11] and OO-
Method [27], among others. However, MDD methods are not able to model most of
the functional usability features in their conceptual models. They solve all the men-
tioned disadvantages only for functional requirements, relegating usability features to
a manual implementation in the code. This contradicts the MDD paradigm, which
states that all the efforts of the analyst must be focused on models, relegating the code
generation to transformation engines. Moreover, manual changes in the code can have
an undesirable collateral impact: the model and the code can contradict each other. If
the analyst must modify the code to include usability features (or any other feature),
we cannot ensure that the modified code is a result of the model. This clearly contra-
dicts the MDD paradigm, which states that the code must be an accurate reflection of
the solution expressed within a conceptual model.

This paper aims to extend existing MDD methods with conceptual primitives that
represent functional usability features, which are well known in the human-computer
interaction community [17]. All these primitives are gathered in what we call the
Usability Model. This proposal is a step forward to obtain holistic MDD methods,
which can model not only structure or functionality, but also usability features. Our
approach is valid for any MDD method but, as proof of concept, we have applied the
approach to a specific MDD method called OO-Method [27]. In this proof, we have
compared the effort to include usability features through a conceptual model with the
effort to include these features manually. Results show that analyst’s efficiency im-
proves satisfactorily when the MDD method supports the modelling of usability fea-
tures.

A preliminary version of this work can be found in [25]. There are two main con-
tributions of this paper with regard to the previous one: (1) This paper discusses how
to work with a composition of several functional usability features; (2) This paper
shows an exploratory evaluation of the proposal that measures the effort employed by
the analyst when working with the Usability Model. Moreover, we compare this effort
with the effort employed when working with a manual implementation of functional
usability features.

The remainder of this paper is structured as follows. Section 2 describes the func-
tional usability features used in our proposal. Section 3 explains our proposed Usabil-
ity Model and its meta-model. Section 4 describes how to include the Usability Model
in a holistic MDD method, using OO-Method as an example. Section 5 evaluates the
analyst’s effort to apply the proposal. Section 6 presents the state of the art comparing
existing proposals with our work. Finally, section 7 presents the conclusion and future
work.

2 Background: Properties of Functional Usability Features

This work focuses on usability features that are strongly related to the functionality of
a software system. Cancel, undo, and feedback facilities are examples of these usabil-

4

ity features. If this kind of usability features are not considered from the early steps of
the software development process, there is a high risk of reworking to incorporate
them later [4][13], and this is the reason for our choice. For example, the implementa-
tion of an undo facility involves a complex business logic, apart from the button that
is used to display the functionality to the user.

Each usability feature can be defined as a set of properties that the system must
support in order to implement it. In a previous work [26], we have extracted the prop-
erties that are needed to configure a set of usability features defined by Juristo [17]
and called FUFs (Functional Usability Features). From all the sets of usability fea-
tures that can be found in the literature, we chose FUFs because it is a set specific for
management information systems, which are the target systems of our work. More-
over, FUFs have templates to capture usability requirements that are very useful for
identifying the properties of the features. In the FUFs definition, each FUF has a main
objective that can be specialized into more detailed goals called mechanisms. From
each usability mechanism, we derived different Use Ways, and each Use Way was
configured with a set of properties. These derivations and configurations were
achieved carrying out the following steps [26]:

1. Identify Use Ways: Each usability mechanism can achieve its goal through dif-
ferent means. We call each such mean Use Way. For example, the FUF User In-
put Error Prevention aims to prevent users from making a mistake in the process
of providing data to the system. This FUF is decomposed into one usability
mechanism called Structured Text Entry, which helps the user to provide data
with a specific structure. From the usability mechanism definition, we identified
that this goal can be achieved in at least three Use Ways: (1) Specify the input
widget visualization type for enumerated values (UW_STE1), which specifies
the type of the input widget that better helps the user to insert information with a
specific format; (2) Mask definition (UW_STE2), which prevents the user from
entering data in an invalid format; (3) Default values (UW_STE3), which pro-
vides the user with guidance on which format to use to enter data.

2. Identify Properties for each Use Way: We call Properties to the different con-
figuration options of Use Ways needed to satisfy usability requirements. For ex-
ample, we identified that for Specify the input widget visualization type for enu-
merated values (UW_STE1) there are two Properties: (1) Input field selection
and (2) Type of input widget. By means of Input field selection the analyst can
specify which input fields she/he aims to customize; by means of Type of input
widget the analyst can define which type of widget will be displayed to the user.
With regard to Mask definition (UW_STE2), we identified that it is composed of
two Properties: (1) Input field selection and (2) Regular expression. By means of
Input field selection the analyst can specify the input fields that need a mask; by
means of Regular expression the analyst specifies the regular expression that de-
fines the mask. With regard to Default values (UW_STE3), we identified that it
is composed of two Properties: (1) Input field selection and (2) Definition of the
default value. By means of Input field selection the analyst can specify the input
fields that need a default value; by means of Definition of the default value the
analyst defines a default value for the widget.

5

Figure 1 shows a diagram that illustrates how FUFs are decomposed into usability
mechanisms, usability mechanisms are decomposed into Use Ways, and Use Ways
are decomposed into Properties. The definition of the elements displayed with grey
background is not a contribution of the authors of this work (they were defined by
Juristo [17]). The definition of the elements displayed with white background is a
contribution of the authors, but it is not a contribution of this current work. More de-
tails about how the elements displayed with white background were defined can be
found in [26].

Fig. 1. An example of hierarchy among all the elements that compose the proposal

FUF Usability
Mechanism

Use of Way Property

User input
error pre-
vention

Structured
text entry

Specify the input widget
visualization type for enu-
merated values (UW_STE1)

Input field selection

Type of input widget

Mask definition (UW_STE2) Input field selection

Regular expression

Default values (UW_STE3) Input field selection

Default expression

Wizard Step by step Define a wizard (UW_WD) Service selection

Division into steps

Steps description

Steps execution flow

Table 1. Summary of Use Ways and their Properties

We applied this two-steps process to every usability mechanism that composes the
list of FUFs [26]. Table 1 shows a summary of FUFs, usability mechanisms, Use
Ways, and Properties used in this paper. Note that there is a total of 22 Use Ways
whose description is out of scope of the paper. A detailed explanation of the Use
Ways with all their Properties that resulted from the run of the process can be con-
sulted in [20].

FUF 1

FUF n

USABILITY MECHANISM 1.1

USABILITY MECHANISM 1.n

USABILITY MECHANISM n.1

USABILITY MECHANISM n.n

USE WAY 1.1.1

USE WAY 1.1.N

USE WAY n.1.1

USE WAY n.1.n

PROPERTY 1.1.1.1

PROPERTY 1.1.1.n

PROPERTY n.1.1.1

PROPERTY n.1.1.n

...

...

...

...

6

In [26], apart from the derivation of Use Ways and Properties, we defined a

method that includes Use Ways and Properties in a MDD method. However, that
proposal was specific for a MDD method, since it consisted in enriching an existing
conceptual model with more primitives to support the Properties. This paper is a step
forward of the previous proposal. In this work, we aim to define a generic approach
that does not affect an existing conceptual model. This new approach is based on a
Usability Model, such as the next section explains.

3 Representing Use Ways and their Properties in a Model:
Usability Model

First of all we show a summary of our approach to deal with functional usability fea-
tures in a MDD method. The approach is based on a Usability Model where we can
represent by means of conceptual primitives every property of the Use Ways. We aim
to define a Usability Model compliant for every MDD method. For this aim, we need
a process to include the Usability Model in any existing MDD. This is performed
thanks to model-to-model transformations (ATL rules [3]) and model-to-code trans-
formations (Xpand rules [38]). Next sections describe the primitives that compose the
Usability Model and how to include the Usability Model in any MDD method without
affecting its existing conceptual model.

3.1 Conceptual Primitives of the Usability Model

The main goal of our work is to demonstrate that Properties of Use Ways can be in-
cluded in the models that are used in MDD approaches, what is often just ignored. We
need thus to incorporate a set of conceptual primitives that represent Use Ways and
their Properties in a model we call Usability Model. Since currently there is not a
standard notation to represent usability features, we have used a notation very similar
to UML, which is broadly used in the software engineering community [36]. We use
graphical elements already defined in UML and we have extended these elements
with textual descriptions and new graphical elements.

The primitives that compose the Usability Model are grouped into two levels:
packages and elemental primitives. Packages are primitives that contain a set of
other primitives (packages or elemental primitives). Elemental primitives constitute
the building blocks from which packages are composed. There are two types of pack-
ages in our Usability Model: Use Ways and interfaces. These packages are defined
with the following procedure:
 First, for each Use Way, the analyst must define a package to group all the primi-

tives that define the Use Way. Each Use Way is represented by means of an element
similar to a UML package whose name is the name of the Use Way with the label
Use Way. A package Use Way can be composed of other packages Use Way.

 Second, inside each package Use Way, the analyst must define the interfaces in-
volved in the Use Way definition. Each interface groups the main interactive opera-
tions that the user can perform with the system. We propose defining interfaces by
means of an element similar to a UML package with the label Interface.

7

Once we have defined the packages, the next step in our proposal is to define ele-
mental primitives inside them. Elemental primitives are navigations, attributes and
services, formulas, and displays. These elemental primitives can be defined with the
following procedure:
 First, the analyst must define navigations in each Use Way with a Property to navi-

gate among several interfaces. These navigations determine the target interfaces that
can be reached from a source interface. We propose specifying these navigations by
means of an arrow with a source and a target.

 Second, the analyst must specify attributes and services used in the Properties of the
Use Way. An attribute is an element used to ask the user for data or to query stored
data. A service is an element that represents an action that can be executed by the
user. Attributes and services are related to a class; therefore we propose modelling
them according to the UML notation used to represent classes.

 Third, the analyst must define formulas for the Properties of Use Ways that use
conditions or dynamic information. The textual language to specify the formulas
depends on analysts’ preferences but we recommend OCL (Object Constraint Lan-
guage), which is widely used in UML notations.

 Finally, the analyst must specify how the interface will be displayed to the user. We
have called this primitive display, and it is defined textually using the UsiXML no-
tation [19] (USer Interface eXtensible Markup Language), an XML-based markup
language for defining user interfaces.

Fig. 2. Graphical notations to represent Use Ways in the Usability Model

Figure 2 shows the graphical elements that can be instantiated to represent any Use
Way. This figure focuses on representing a generic example of the elements to repre-
sent a Use Way named “UW_X”. Inside UW_X we have two interfaces “Y” and “Z”.
Interface “Y” has two classes with their own attributes and services (“Class 1” and
“Class 2”) and interface “Z” includes “Class 3”. Navigation between both interfaces
is represented with an arrow, and the navigation is only possible when a condition is
satisfied. With the introduced primitives we have enough expressiveness to represent
any property of the 22 Use Ways extracted from Juristo’s FUFs. Note that depending
on the Use Ways we aim to include in the system, we will use all these primitives or

8

some of them. The list of the primitives needed to work with each Use Way can be
consulted in [20]

3.2 How to integrate the Usability Model in an Existing MDD Method

Each MDD method has its own conceptual model, since each method has a specific
expressiveness to represent the system features. For example, the conceptual model of
WebRatio [1] has a model called Hypertext Model to represent the interaction. This
model is used to define pages, published content, operations, navigation links, and
activity boundaries. However, other tools such as NDT [11] represent the interaction
with a more basic conceptual model that does not support modelling activities or plat-
form specific features. We propose extending the existing conceptual model of any
MDD method with a Usability Model to obtain holistic MDD methods. As we com-
mented above, by holistic we mean that all the relevant system perspectives (struc-
ture, functionality, and interaction) are properly incorporated into the modelling strat-
egy.

Figure 3 represents a graphical summary of our proposal to include the Usability
Model in an existing MDD method. In the figure, the existing conceptual model of the
MDD method used as example is composed of two models: one model that represents
the system structure (Class Model) and another model that represents the interaction
(Task Model). In this example, we are considering two models, but the actual number
of models that compose the conceptual model depends exclusively on the MDD
method. Moreover, the existing MDD method can support code generation from its
conceptual model by means of a model compiler. The level of automation of this
process also depends on the existing MDD method, some of them are automatic (the
model compiler generates full functional systems), others are semi-automatic (some
manual implementations are needed).

Fig. 3. An overview of the process that integrates the Usability Model in a holistic

MDD method

Next, we present our integration process, which consists of three steps. Prior to ap-

ply these steps, the system must have been modelled with the conceptual model of the
existing MDD method.
1. Derivation of conceptual primitives from the existing conceptual model: The

primitives of the Usability Model are related to functionality, persistency, naviga-
tion or interaction elements that could have been defined previously in other

9

models of the MDD method (depending on the expressiveness of the existing
MDD method). Elements that have been previously defined in the existing con-
ceptual model do not need to be defined again in the Usability Model. In this first
step, we automatically extract information defined in models of the MDD method
and we include it as primitives of the Usability Model. For example, the Usability
Model needs classes, attributes and services. In the conceptual model displayed
in Figure 3, we can obtain all this information from the Class Model. The deriva-
tion of conceptual primitives from the existing conceptual model is achieved by
means of model-to-model transformations. We propose performing these trans-
formations with ATL [3], which is a language that allows transformations using a
source meta-model and a target meta-model to be specified. In the case of Figure
3, the source meta-models are the meta-model of the Class Model and the meta-
model of the Task Model, while the target meta-model is the meta-model of the
Usability Model. The metamodel of the Usability Model used in the transforma-
tions can be viewed in [20].

2. Modelling with the Usability Model: Once the primitives of the Usability
Model that were already defined in the conceptual model of the MDD method
have been derived, the analyst must complete the specification of all the remain-
ing Properties of the Usability Model. In this step, the analyst edits the Usability
Model to add this new information. Note that the amount of primitives to model
in the Usability Model depends exclusively on the number of derivations from
the existing conceptual model of the MDD method. A method with a poor deriva-
tion (or even without any derivation) will involve more work in the Usability
Model than a method where most primitives of the Usability Model can be de-
rived automatically.

3. Code generation: Once the Usability Model has been fully defined, we can gen-
erate code from this model by means of automatic Xpand transformations [38]
(model-to-code). The code generated from the Usability Model can be combined
with the code generated by the model compiler of the MDD method, which gen-
erates code from the existing conceptual model. In the end, the final code should
reflect all the elements specified in the existing conceptual model and in the Us-
ability Model. The combination of the code generated from the Usability Model
and the code generated with the existing model compiler should be as automatic
as possible. If the Xpand transformations can be included inside the model com-
piler of the MDD method, the transformation will be completely automatic. If the
Xpand templates cannot be included in the existing model compiler, both chunks
of code must be manually assembled (with some tool to facilitate the integration)
in order to build a single system. Note that, the most code is generated with the
existing model compiler, the least code we must combine with the code generated
from the Usability Model.

It is important to mention that the model-to-model transformations related to step 1
and the model-to-code transformations related to step 3 must be defined only once for
each MDD method. After their definition, they can be reused to develop any software
system. Therefore, steps 1 and 3 can be executed automatically by means of transfor-
mation templates. Note also that these transformations are specific for a MDD

10

method, since they depend on the existing conceptual model and the existing model
compiler.

4 A Proof of Concept with an Existing Industrial MDD Method

The approach is introduced with the help of an illustrative example based on a car
rental system. The example is focused on the functionality to create a new renting
(Create a renting). This service is composed of three sub-functionalities: selection of
the date to perform the renting, store information about the customer, and choose car
preferences. In the example, we aim to improve the system usability using the mecha-
nism Structured Text Entry (Table 1), which helps the user to provide data with a
specific structure, and its three related Use Ways: UW_STE1, UW_STE2 and
UW_STE3. Moreover, we have also considered the usability mechanism called Step-
by-step, which aims to help users to do tasks that require different steps (Table 1).
This mechanism has only one Use Way called Wizard Definition (UW_WD), which
aims to define a wizard. This Use Way has several Properties: (1) Service selection,
which defines the service that will be executed using a wizard; (2) Division into steps,
which defines the steps that compose the wizard; (3) Step description, which provides
a short description to guide the user in each step; (4) Execution flow, which defines all
the possible flows throughout the steps.

We have focused our example on the combination of 4 Use Ways (UW_STE1,
UW_STE2, UW_STE3, and UW_WD) because the primitives needed to represent all
their Properties are enough to represent any other Property of the remaining 18 Use
Ways. Therefore, the selected Use Ways with their Properties allow us to illustrate
our proposal in its entirety. Table 2 shows the Properties of the Use Ways used in the
example, the primitives of the Usability Model used to represent them, and the values
of these properties in our example to create a renting. It is important to note that Input
field selection, Type of input widget and Step description appear in several steps of the
wizard. This is the reason why these Properties have several values.

Next, we explain how these four Use Ways can be combined to improve the usabil-
ity of the service that creates a new renting.

1. UW_STE1 (Specify the input widget visualization type for enumerated values):
Some input elements can only accept a few possible values; the set of possible val-
ues is called enumerated. The interface can help the user to introduce a correct value
by means of a widget which restricts the possible entries. This Use Way specifies
how enumerated values will be displayed to the user. For example, when the cus-
tomers are being registered in the system, they must provide their civil status. This
information is enumerated, since only these four values are possible: single, mar-
ried, widowed and divorced. In this case, the Property Input field selection has the
value “Marital Status” and Type of input widget has the value “ListBox” (Figure
4a). The marital status is an enumerated with several possible values; therefore, the
most suitable widget is a ListBox. Other examples of enumerated values are related
to the description of the desired car, such as: whether or not the car has air condi-
tioning, and the type of fuel. In the first case, the Property Input field selection has
the value “Air conditioning” and the Property Type of input widget has the value
“CheckBox” (Figure 4b); while in the second case the Property Input field selection
has the value “Fuel” and the Property Type of input widget has the value “Ra-

11

dioButton” (Figure 4c). The existence or not of air conditioning can only accept two
values: true or false; therefore the most suitable widget is the CheckBox. The type
of fuel is an enumerated with two possible values (not Boolean); therefore, the most
suitable widget is the RadioButton. The choice of the most suitable widget depends
exclusively on the characteristics of the set of possible values.

Use Way Property Primitive of the

Usability Model
Value

UW_STE1 Input field selection Attribute Marital Status, Doors, Fuel,
h.p., Air conditioning

Type of input wid-
get

Display ListBox, RadioButton and
CheckBox, depending on
the possible values to insert

UW_STE2 Input field selection Attribute Collection date and return
date

Regular expression Display “dd/mm/yyyy”
UW_STE3 Input field selection Attribute Collection date

Default expression Display Today
UW_WD Service selection Service Create a renting

Division into steps Interface Selection of dates, store
customer’s data, choose car
preferences

Step description Display Each step has a descriptive
text

Steps execution
flow

Navigation, For-
mula

If the customer’s ID intro-
duced in the first step al-
ready exists in the system,
the next and last step is the
car selection. Otherwise,
the next step is the user
registration and the last
step is the car selection.

Table 2. Properties of UW_STE1, UW_STE2, UW_STE3 and UW_WD

a)

b)

c)

Fig. 4. Example of different widgets to display an enumerated attribute

2. UW_STE2 (Mask definition): There are some input elements where the user can
insert any data but according to a specific format. This Use Way specifies a mask in
order to ensure that the user inserts the data with the correct format. For example, in

12

the rent-a-car system, the collection date and the return date must be specified ac-
cording to this format “dd/mm/yyyy” (Figure 5). In this example, the Property Input
field selection has the value of “Collection date” and “Return date”, while the Prop-
erty Regular expression has the value “dd/mm/yyyy”.

Fig. 5. Example of a mask in widgets to insert dates

3. UW_STE3 (Default values): Default values, apart from reducing the users’ work,
also contribute to show how the user must provide the information. For example, the
“Collection date” in the renting system (Figure 5) can display the current date in the
correct format. The user can change the date taking as example the format of the de-
fault value. In this example, the Property Input field selection has the value “Collec-
tion date” and the Property Default expression has the value “today”.

Fig. 6. Example of a wizard to create a customer

4. UW_WD (Wizard definition): Complex tasks should be divided into easier subtasks
which guide the user. For example, in the rent-a-car system, the task to create a rent-
ing can be divided into three different subtasks: selection of dates, store customer’s
data, and choose car preferences (Figure 6). In this example, the Property Service
selection has the value “Create a renting”; the Property Division into steps is defined
with the three subtasks that compose the service; the Property Step description is
composed of the three texts displayed in the upper part of each window of Figure 6;

Create Renting 1/3Create Renting 1/3

08/09/2012Collection date:

10/09/2012Return date:

Please, select when the renting starts, when it ends and the
customer’s ID

3347200LCustomer ID:

Next ->Cancel

Create Renting 3/3Create Renting 3/3

Please, fill in your preferences for the car

FinishCancel

Doors
Three

Five

Air conditioning

Fuel
Diesel

Unlead petrol

150
120
110
105

h.p.:

13

the Property Execution flow defines a navigation from the first step directly to the
third step only if the customer already exists in the system. If the customer does not
exist, there is a navigation from the first step to the second one and another naviga-
tion from the second step to the third one.

Next, we tackle how to deal with UW_STE1, UW_STE2, UW_STE3, and
UW_WD in a MDD method. As development method, we use OO-Method [27], a
MDD method that has been successfully implemented in industry with a tool called
INTEGRANOVA [6], which can automatically generate full functional systems from
a conceptual model. Its use in industry and its capability to generate full functional
systems are the reasons why we have chosen OO-Method for the proof of concept of
our proposal. The OO-Method conceptual model is composed of four complementary
models:
1. Object Model: Specifies the structure of the system in terms of classes of objects

and their relations. It is modelled as an extended UML [36] class diagram.

2. Dynamic Model: Represents the valid sequence of events for an object.

3. Functional Model: Specifies how events change the state of objects.

4. Presentation Model: Represents the interaction between the system and the user
[23]. This model represents the interface and its component elements by means of
Interaction Units composed of Elementary Patterns such as masks, filters, or navi-
gations, among others.

Fig. 7. Object Model of the car rental system

Previous to modelling Use Ways, we need to model the car rental system with the
conceptual model of OO-Method. Figure 7 shows the OO-Method Object Model of
the car rental system. The renting is performed by an employee and it involves a cus-
tomer and a car. When the customer returns the car, the employee can create the in-
voice related to the renting. From all the services, our example is focused on the
method Create_a_renting of the class Renting.

14

The other three models that compose the conceptual model of OO-Method (Dy-
namic, Functional and Presentation) were also defined but are not presented here for
space reasons. Next, we explain how to model UW_STE1 (Specify the input widget
visualization type for enumerated values), UW_STE2 (Mask definition), UW_STE3
(Default values) and UW_WD (Wizard definition) for developing the car rental sys-
tem in OO-Method. Considering that we have already defined the four OO-Method
models, the first step of our integration proposal consists in extracting information
useful for the Usability Model from those OO-Method models. Taking into account
the list of Properties of the four Use Ways considered (see Table 2), we can extract
the information described below from the OO-Method’s conceptual model:
 UW_STE1: The Property Input field selection can be derived from the attributes

defined in the Object Model. We cannot obtain information for Type of input
widget since OO-Method does not allow specifying the type of widgets.

 UW_STE2: Input field selection and Regular expression can be derived from
the Presentation Model, where the analyst can define masks.

 UW_STE3: Input field selection and Default expression can be derived from the
attributes of the Object Model, where the analyst can define default values for
any attribute of a class.

 UW_WD: We cannot obtain information.

In order to derive these Properties from the existing OO-Method models, we have
used ATL transformations (that must be previously defined). The source meta-models
are the meta-models of the four models that define OO-Method (object model, dy-
namic model, functional model and presentation model); and the target meta-model is
the meta-model of the Usability Model (it can be queried in [20]. Next, we show the
ATL transformation rules that generate the part of the Usability Model which repre-
sents UW_STE2 and UW_STE3. In both cases we can derive all their Properties. In
other examples with other Use Ways (such as UW_STE1), we can derive only some
of their Properties (not all of them).

rule STE2_2_Usability
 from
 a: Presentation!Input
 to
 b: Usability!Attribute (Name <- a.Name, Type <-
a.type)
 c: Usability!UW_STE2 (Mask_expression <- a.format,
 UW_STE2_Attribute <- a.Mask_InputElement)

rule STE3_2_Usability{
 from
 a: Object!Attribute
 to
 b: Usability!Attribute (Name <- a.Name, Type <-
a.type)

15

 c: Usability!UW_STE3 (Default_value <-
a.Default_value,
 UW_STE3_Attribute <- a.Class_Attribute)
}

Figure 8 and Table 3 show, with grey background, the primitives of the Usability

Model which have been derived from the OO-Method models. With regard to
UW_STE1, the Property Input field selection is represented with the primitives at-
tribute (marital status, doors, fuel, h.p., air conditioning) inside the packages
UW_STE1 (Figure 8). For UW_STE2, the Property Input field selection is represented
with the primitives attribute (collection date, return date) inside the package
UW_STE2 (Figure 8). The Property Regular expression is represented with the
UsiXML code which implements the primitive display (Table 3, tag mask). With
regard to UW_STE3, the Property Input field selection is represented with the primi-
tive attribute (collection date) inside the package UW_STE3 (Figure 8) and the Prop-
erty Default expression is represented in UsiXML with the primitive display (Table 3,
tag default).

Fig. 8. Model to represent UW_STE1, UW_STE2, UW_STE3, UW_WD

<inputText id="Collection_date" name="Collection_date" mask="dd/mm/yy" de-
fault="today" maxLength="8" isEditable="true"/>
 <inputText id="Return_date" name="Return_date" mask="dd/mm/yy"
 maxLength="8" isEditable="true"/>
<outputText id="Description_wizard_1" name="Description_wizard_1" isVisi-
ble="true"

UW_WD

<<USE WAY>>

EXIST Customer WHERE ID==Customer_ID

Dates

<<INTERFACE>>

NOT EXIST Customer WHERE ID==Customer_ID

Customer_ID

CUSTOMER

Create_a_renting

Collection_date
Return_date

RENTING

<<USE WAY>>

UW_STE3 | UW_STE2

Car preferences

<<INTERFACE>>

Doors
Fuel
h.p.
Air conditioning

CAR

<<USE WAY>>
UW_STE1

Personal data

<<INTERFACE>>

Name
Surname
Address
Marital_Status

CUSTOMER

<<USE WAY>>

UW_STE1

Marital Status

16

 value="Please, select when the renting starts, when it ends, and the cus-
tomer's ID"/>
<listBox id="marital_status"
 name="marital_status" isVisible="true"
 isEnabled="true" textColor="#000000" multiple_selection="false"
 <option> Single</option>
 <option> Married</option>
 <option> Widowed</option>
 <option> Divorced</option>/>
 <radioButton id="three"
 name="three" isVisible="true"
 isEnabled="true" textColor="#000000"/>
 <radioButton id="five"
 name="five" isVisible="true"
 isEnabled="true" textColor="#000000"/>
<checkBox id="air_conditioning"
 name="air_conditioning" isVisible="true"
 isEnabled="true" textColor="#000000"/>

Table 3. A portion of the UsiXML code that represents the Properties display of our
example

Once we have derived the Properties supported by the conceptual model of OO-
Method, the second step of our integration proposal is to complete the Usability
Model with the unsupported Properties. Next, we detail how to complete each Use
Way in the Usability Model. Primitives added in this step are drawn with white back-
ground in Figure 8 and in Table 3. In our example, we have two Use Ways to com-
plete in this step: UW_STE1 and UW_WD, since the OO-Method models do not have
primitives to specify which widget is more suitable for enumerated attributes or which
services will be executed in a wizard due to its complexity. UW_STE1 has only one
Property that cannot be derived from OO-Method: Type of input widget. This Property
is modelled with the primitive display and it is represented with the UsiXML code in
Table 3 (tags: ListBox, RadioButton and CheckBox). With regard to UW_WD, it is a
composition of other Use Ways, which includes UW_STE1 (Specify the input widget
visualization type for enumerated values), UW_STE2 (Mask definition) and
UW_STE3 (Default values). Figure 8 shows how a package Use Way can be an ag-
gregation of other packages.

For UW_WD, the Property Service selection is represented with the primitive ser-
vice (Figure 8). The Property Division into steps is represented with the primitive
interface; we have defined as many interfaces as steps compose the wizard (Figure 8).
The Property Step description is represented with the primitive display in the
UsiXML code (Table 3, tag OutputText). Finally, the Property Execution flow is rep-
resented with two primitives: navigation and formula (Figure 8). Primitive navigation
is used to specify which step is the next and which one is the previous. In case we
have more than one possible navigation (such as in our example), we can specify a
formula to define which is the correct navigation depending on a condition. In the
example, the condition depends on whether or not the customer already exists in the
system. If the customer exists, the user navigates from the selection of dates to choose

17

car preferences, but if the customer does not exist, the user navigates from the selec-
tion of dates to store information about the customer.

Finally, in the third step of our integration proposal, the Usability Model must be
transformed into code that implements all the characteristics represented in it. This
transformation is performed with Xpand [38]. The code derived from the Usability
Model must be included in the code generated with the OO-Method model compiler.
Xpand templates (that must be previously defined) have been combined with the
transformation rules of the OO-Method model compiler; therefore, both generations
can be performed automatically as a simple generation. Below, we show a small
chunk of Xpand code used in the transformation from UW_WD into C# code. This
example of code generates a C# form for each step defined in the wizard, including
the descriptive text of the step.

«DEFINE CSClass FOR Class»
 «FOREACH Step AS st»
 «FILE Class.name+".cs"»

public class «st.name» {
private System.ComponentModel.IContainer components =
null;

private void InitializeComponent()
 {
 this.components = new Sys-
tem.ComponentModel.Container();
this.AutoScaleMode = Sys-
tem.Windows.Forms.AutoScaleMode.Font;
this.labeldescription.Text = «st.description»;
 }
 }
 «ENDFOREACH»
 «ENDFILE» «ENDDEFINE»

After applying our proposal, we have a full functional system that has been devel-

oped exclusively with conceptual models (OO-Method and the Usability Model). The
analyst has not written a single line of code to implement the system. At this moment
a question about the efficiency of the proposal can arise: is it more efficient modelling
usability features or implementing these features manually in the code generated by
OO-Method? The next section shows a discussion about both options.

5 An Exploratory Efficiency Analysis

This section focuses on comparing the efficiency of the analyst working with our
approach with the efficiency of the analyst implementing the Use Ways manually. We
have measured the efficiency as the time to develop a system. Note that in the soft-
ware development process, the cost of developing a system is strongly related to de-
veloping time. There are many authors who have studied the benefits of the MDD

18

paradigm with regard to a manual software development method, such as, Sendall
[31] and Selic [30]. According to those works, the efficiency is one advantage of
MDD, but this advantage is not ensured if the analyst has to manually implement part
of the code. Moreover, manual coding to implement usability features is hardly re-
used, which decreases the analyst’s efficiency. For example, UW_STE2 and
UW_STE3 depend on a specific system, since some masks and default values are
exclusive for an interface. Another advantage of dealing with usability features using
the MDD paradigm is that if a flaw is propagated from the models to the generated
system, once this flaw has been detected, the analyst can change some primitives in
the model and regenerate the code quickly. This advantage is in accordance with
some recommendations from the system architecture area, which claim that the con-
struction of rapid prototypes is essential to obtain good usability levels [4]. The goal
of this paper is not to study the advantages and disadvantages of the MDD paradigm
with regard to manual software development methods. Our aim is to evaluate whether
or not modelling usability features improves the efficiency in the software develop-
ment process.

For this aim, we compare the effort of the analysts when they work without the Us-
ability Model to their effort when they work with the Usability Model. The metrics
used to evaluate the effort not using the Usability Model are: time spent and written
lines. The metrics used to evaluate the effort using the Usability Model are: time spent
and number of primitives used (since in this case, the analyst does not write lines of
code). We focus our study on the Use Ways used in our illustrative example to create
a rental: UW_WD (Wizard definition), UW_STE1 (Specify the input widget visualiza-
tion type for enumerated values), UW_STE2 (Mask definition) and UW_STE3 (De-
fault values).

We have used two subjects in the evaluation: Subject1 and Subject2. Subject1 is an
expert in C# and he has developed more than 10 applications using this language. We
used this subject to evaluate the effort of including Use Ways manually in C# code
(without the Usability Model). This subject is not an author of the approach, and
therefore, he did not know the Usability Model. We described textually which Use
Ways were needed in the system and he implemented them. Subject2 was an author of
the paper and perfectly knew the Usability Model. We used this subject to evaluate
the effort of working with the Usability Model. Furthermore, Subject2 has defined
previously several transformations among models and he has good knowledge of ATL
and Xpand. Both subjects were researchers of PROS (“Centro de Investigación en
Métodos de Producción de Software”) and knew perfectly OO-Method, the MDD
method used in the exploratory study. They had developed more than 20 applications
using INTEGRANOVA.

We have modelled the create rental functionality of the car rental system using
OO-Method and we have generated its code with INTEGRANOVA.
INTEGRANOVA generates the code in C#; therefore, our evaluation is based on this
language. For other languages, the number of lines and the time spent could vary, but
not significantly. The code generated with INTEGRANOVA and the OO-Method
models are the starting point for the experiment. Next, we study how to include un-
supported Use Ways by means of two techniques: manual implementation and the
Usability Model.

19

First, we present the case in which the analyst manually implements unsupported
Use Ways in the code generated by INTEGRANOVA (without using the Usability
Model). Table 4 shows the time spent and the number of lines written to manually
implement unsupported Properties of the Use Ways. UW_STE2 and UW_STE3 have
not been included in this table since their code generation is fully supported by OO-
Method and we did not have to write any line of code to implement them. These met-
rics have been extracted from the work of Subject1. Time spent includes not only the
time to write the sentence, but also the time to test and to correct the faults.

Use Way Time Number of lines

UW_WD (Wizard definition) 120 minutes 120
UW_STE1 (Specify the input widget visualiza-
tion type for enumerated values)

30 minutes 20

Table 4. Time spent and number of lines to implement unsupported Use Ways

Second, we present the case in which the analyst (Subject2) uses the Usability
Model to include unsupported Use Ways. Our bases are the OO-Method models that
represent the create rental functionality of the car rental system. According to our
proposal, firstly Subject2 applies ATL transformations to obtain an initial version of
the Usability Model. This initial version already contains values for the Properties of
the Use Ways supported by OO-Method. In this case, the primitives that represent the
Property Input field selection of UW_STE1 and the primitives used to represent all
the Properties of UW_STE2 and UW_STE3 are automatically derived from the OO-
Method models by means of ATL transformations. Since these transformations are
automatic, the time spent to apply them can be considered insignificant. Once we
have the initial version of the Usability Model with the supported Use Ways, Subject2
had to manually add the unsupported Use Ways (UW_WD and the Property Type of
input widget of UW_STE1 in our example). For this activity, we do not have a
graphical tool that supports the creation and edition of Usability Models. We use
Eclipse [9] to work with instances of the usability meta-model, using a tree-view.
Table 5 shows the time used by Subject2 to model UW_WD and UW_STE1 with
Eclipse. Since we do not have to write code when using our approach, we have meas-
ured the number of primitives we had to manually add to our Usability Model instead
of the number of written lines of code.

Use Way Time Number of

primitives
UW_WD (Wizard definition) 10 minutes 14
UW_STE1 (Specify the input widget visualization
type for enumerated values)

5 minutes 5

Table 5. Time spent and number of primitives to model unsupported Use Ways

Once we have completed the Usability Model, the code is generated with Xpand
templates in an insignificant time and it is combined with the code generated by
INTEGRANOVA, which implements all the other features of the system.

Comparing the efforts to include Use Ways manually in the code (Table 4) and us-
ing the Usability Model (Table 5), we can state that the analyst’s effort decreases with

20

our proposal. However, there is a disadvantage with our approach: the definition of
ATL transformations and Xpand templates. Both elements must be defined only once
and then they can be applied automatically for the development of any system, but
their definition is complex. Next, we measure the effort made by Subject2 for defin-
ing these transformations for our illustrative example. Table 6 shows the time spent to
define ATL transformations and the amount of lines of code written. We consider that
the usability meta-model and the meta-model of the models that compose OO-Method
already exist. In our example, we have three ATL transformations, one to derive the
Property Input field selection of UW_STE1 and two transformations to derive all the
Properties of UW_STE2 and UW_STE3 respectively. The presented times also in-
clude the time needed to test the transformations and to correct errors.

Use Way Time Number of lines

UW_STE1(Specify the input widget visualiza-
tion type for enumerated values)

15 minutes 7

UW_STE2 (Mask definition) 15 minutes 7
UW_STE3 (default values) 15 minutes 7

Table 6. Time spent and number of lines to define ATL transformations

With regard to the definition of Xpand templates, it is more difficult, since they re-
quire many more lines of code than the ATL transformations. Table 7 shows the time
and the number of lines that Subject2 used to generate the code for the conceptual
primitives involved in our illustrative example. The efforts shown in Table 7 do not
include the whole transformations for all the possibilities of the primitives. Subject2
only defined the possibilities for our example. For instance, the primitive display can
have many different values and their complete transformation will be much more
complex than the values expressed in the table.

 Primitive of the Usability Model Time Number of

lines
UW_STE1 Attribute 15 min 56

Display 25 min 112
UW_STE2 Attribute 20 min 49

Display 20 min 87
UW_STE3 Attribute 15 min 52

Display 25 min 96
UW_WD Interface 35 min 325

Navigation 30 min 126
Display 130 min 425
Attribute 30min 100
Service 15 min 24

Table 7. Time spent and number of lines to define XPand templates

Note that Subject2 had a previous knowledge of OO-Method, INTEGRANOVA
and the Usability Model, which benefits his development times. If our approach were
used by analysts without experience in any MDD method or without knowledge of the

21

Usability Model, these times would be higher. Next, we discuss which are the skills
required by the analyst to work with an existing MDD method and the Usability
Model. First, the analyst must have previous experience working with the existing
MDD method. The Usability Model depends on the conceptual model of the existing
MDD method and the analyst should have a good knowledge of it. Second, using the
Usability Model does not ensure that every developed system will be usable. The
Usability Model offers a set of conceptual primitives to allow analysts to adapt the
system to usability requirements. However, the approach cannot ensure that the primi-
tives that compose the Usability Model are combined properly. Therefore, the analyst
must have a previous knowledge of usability recommendations to model usability
features such a way usability will be optimized.

In summary, the Usability Model improves the analyst’s effort, but it needs an ini-
tial investment of time to define rules (ATL and Xpand). If we are going to develop
many systems and we would like to include usability features in many of these sys-
tems, our proposal is better than a manual implementation, since ATL and Xpand
rules are defined only once. However, the proposal is not suitable for MDD methods
that usually do not need to include usability features in their developments.

6 State of the Art

If we look for existing proposals that deal with usability in MDD, we notice that,
currently, there are not many works in the literature. This could be related to the exis-
tence of a gap between the communities of software engineering and human-computer
interaction [29]. Our work is a step forward to fill in this gap.

Authors that propose considering usability in MDD methods are Taleb [34], Gull
[15], Cleland-Huang [7] and Luna [21]. Taleb describes how the principles of the
Object Management Group with regard to Model-Driven Architecture can be used to
develop web applications, and at the same time, to ensure their cross-platform port-
ability and usability. Gull defines a process model for web-based applications that is
divided into three phases: requirement engineering, design, and implementation. In all
these three phases, the emphasis is on the usability. Cleland-Huang has proposed a
goal-centric approach to manage the impact of change upon non-functional require-
ments (which include usability). First, usability is modelled as goals and, second,
traces due to changes in usability requirements are generated using a probabilistic
network model. Luna focuses on how to address usability requirements in a test-
driven and model-based web engineering approach. However, in these three propos-
als, the authors do not specify the traceability of usability among the different devel-
opment steps. Moreover, a specific notation to represent usability features in each
development step has not been provided. In our proposal, traceability among models
is hidden for the analyst thanks to model-to-model and model-to-code transforma-
tions. Moreover, we have provided an unambiguous notation to represent usability
features. A precise notation is essential for performing transformations throughout the
whole software development process.

There are also works that propose techniques from the human-computer interaction
field to be integrated in MDD, such as the work of Wang [37]. Wang proposes a user-
centred design where the users play an important role in modelling the interface. This
work focuses only on usability features related to the interface display, and disregards

22

the features related to functionality. In contrast, Sottet [32] is an author that deals with
usability considering functional usability features. Sottet uses MDD mappings for
embedding both usability description and control. For Sottet, a user interface is a
graph of models, and usability is described and controlled in the mappings between
these models. In Sottet’s proposal, the analyst must specify the transformation rules
for each system and this is not trivial. Garcia-Frey [14] has defined a quality meta-
model (which includes usability features) that unifies aspects from the Human-
computer interaction with MDD. The approach is useful to explain design decisions
through quality models. Wang, Sottet and Garcia-Frey have focused their approaches
on modelling usability features strongly related to interaction, while usability features
related to functionality have not been analyzed. The main contribution of our work is
just to cover this gap between usability and functionality. There are other characteris-
tics that are supported by Sottet’s approach but we do not solve with our proposal,
such as the adaptability of user interfaces.

Other proposals use existing models to represent usability features, such as Sousa
[33]. Sousa has defined an activity-based strategy to represent usability goals. How-
ever, in this proposal, we cannot model how usability features are related to the sys-
tem functionality. Röder [28] proposes a method to specify functional usability fea-
tures at requirements elicitation step using textual templates. In that proposal, usabil-
ity requirements are specified together with functional requirements using use case
specifications. The main difference of that work with regard to our proposal is that
use cases are described textually, and model-to-model transformations are difficult to
perform using this ambiguous notation. Other authors that represent usability in exist-
ing models are Tao [35] and Brajnik [5], who propose modelling usability by means
of state-transition diagrams. However, state-transition diagrams are only able to rep-
resent interactions, so they cannot represent all the usability features. Our approach
combines interaction and functionality since it does not depend on a specific model
(such as state-transition diagrams in the proposals of Tao and Brajnik). Our process
has been defined to work with several models thanks to model-to-model transforma-
tions. This enhances the expressiveness to represent usability features not only related
to interaction but also related to functionality, since usually, interaction and function-
ality are represented in different models.

There are also some works [12][22] related to measuring the system usability in
MDD conceptual models. Fernandez [12] proposes a model to evaluate system usabil-
ity from conceptual models. According to Fernandez, the evaluation performed at the
conceptual model level produces a platform-independent usability report, which pro-
vides feedback to the system analysis stage. Molina [22] proposes measuring usability
attributes focused on navigational models. The approach focuses on navigational
models and provides a tool which offers automatic support for all the activities. How-
ever, in both proposals, many usability attributes are subjective, and therefore they
cannot be measured automatically, without taking into account the user. For instance,
attributes related to the attractiveness sub-characteristic [16] cannot be measured by
means of conceptual models. Therefore, the results of the early usability evaluation do
not necessarily represent the usability of the overall software system. Our approach
aims to model usability features, but currently we have not defined metrics to measure
the level of usability represented within the Usability Model.

23

After studying related works, we conclude that existing proposals for dealing with
functional usability features in MDD present some problems when we want to include
them in a real software development process. First, few works have a specific notation
to represent functional usability features in a model, and the existing notations do not
cover all the existing features. Second, it is not clear how to include usability features
throughout the whole software development process since existing proposals do not
specify the traceability among models.

7 Conclusion

This paper presents a proposal to model functional usability features in a MDD
method, taking the advantages of the MDD paradigm with regard to manual imple-
mentations. The paper is based on a Usability Model composed of several primitives
that work like building blocks. Different combinations of primitives allow any FUF to
be represented. It is important to note that there are many other non-functional usabil-
ity features that are out of scope of this paper, such as, understandability or attractive-
ness. Moreover, systems from other areas different than management information
systems, such as multimedia applications or virtual reality systems are out of scope
too.

The main advantages of our proposal with regard to existing proposals to deal with
usability in MDD are: (1) The Usability Model can represent most functional usability
features for a management information system (we can ensure that it supports all the
FUFs defined by Juristo); (2) The notation used in the Usability Model has an unam-
biguous syntax and semantics, which allows transformations to be performed; (3) The
Usability Model can be used in any MDD method (we have used OO-Method as ex-
ample).

It is important to note that this paper does not evaluate the benefits of the MDD
paradigm. We start from the idea that there are previous works that claim MDD is
suitable for reducing the cost/benefit ration when producing software, for dealing with
changeable requirements, and for developing software with independency of the pro-
gramming language. These advantages are not exclusive of our proposal but they are
shared with all the proposals based on the MDD paradigm.

We have learned some lessons and identified some limitations applying the pro-
posal to OO-Method. First, we have used ATL and Xpand transformations because
we have OO-Method meta-models in ecore, however, any other transformation lan-
guage such as QVT or XSLT are also applicable to our proposal. Second, the com-
plexity and amount of ATL and Xpand transformations that have to be written de-
pends mainly on the MDD method chosen. OO-Method generates the whole system
(structure, functionality, and interaction), but MDD methods with less powerful
model compilers will need more effort to define transformations. However, it is im-
portant to mention that these transformations are defined only once and can be used
indefinitely in every software development. Third, the existence of a Usability Model
does not ensure that generated systems are usable. The analyst must follow usability
guidelines to combine the primitives properly. Fourth, the analyst does not need to
know the correspondence between primitives of the Usability Model and functional
usability features. The analyst must only know the meaning of the primitives that
compose the Usability Model and how to combine them. Fifth, the approach does not

24

prevent the occurrence of any usability problem. We only propose a solution for func-
tional usability features. Features unsupported by our approach (such as adaptability
or customizability) must be included in the system manually. Sixth, another identified
limitation is that the approach is platform and modality dependent, since the analyst
specifies what widgets to use.

As future work, we plan to define metrics to measure the usability of the system
based on the conceptual primitives of the Usability Model. In this way, the analyst
will be able to measure the usability of the system before generating the code that
implements it. Another future work is to design and implement a tool to draw the
Usability Model graphically. Currently, we can only work with an instance of the
usability meta-model with a tree-view in Eclipse. Moreover, we plan to define ATL
and Xpand templates to generate code for every Use Way. Nowadays, we only have
the code for UW_WD, UW_STE1, UW_STE2 and UW_STE3. This enhancement
will help to perform a deeper experiment with more subjects and more Use Ways.
Finally, we plan to study other usability features apart from Juristo’s FUFs.

Acknowledgments

This work has been developed with the support of MICINN (PROS-Req TIN2010-
19130-C02-02), UV (UV-INV-PRECOMP12-80627), GVA (ORCA PROMETEO/
2009/015), and co-financed with ERDF. We acknowledge the support of the ITEA2
Call 3 UsiXML (20080026) and funding by the MITYC (TSI-020400-2011-20).

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: WebRatio 5: An Eclipse-Based CASE
Tool for Engineering Web Applications. LNCS 4607 (2007) 501-505.

2. AndroMDA, http://www.andromda.org/.
3. ATL: http://www.eclipse.org/atl/
4. Bass, L., Clements, P., Kazman, R. Software Architecture in Practice (3d Edition), Addi-

son-Wesley Professional (2012).
5. Brajnik, G.: Is the UML appropriate for Interaction Design? Università di Udine (2010) 6.
6. CARE Technologies S.A. http://www.care-t.com
7. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-

centric traceability for managing non-functional requirements. Proc. of the 27th interna-
tional conference on Software engineering. ACM, St. Louis, MO, USA (2005) 362-371.

8. Davis, F.D.: User acceptance of information technology: system characteristics, user per-
ceptions and behavioral impacts. Int. Journal Man-Machine Studies 38 (1993) 475-487.

9. Eclipse : http://www.eclipse.org
10. Embley, D.W., Liddle, S., Pastor, Ó.: Conceptual-Model Programming: A Manifesto.

Handbook of Conceptual Modeling. Springer (2011) 3-16.
11. Escalona, M.J. and Aragon, G. "NDT. A Model-Driven Approach for Web Requirements."

Software Engineering, IEEE Transactions on 34(3): 377-390, (2008).
12. Fernandez, A., Abrahao, S., Insfran, E.: Empirical validation of a usability inspection

method for model-driven Web development. J. Syst. Softw. 86 (2013) 161-186.
13. Folmer, E., Bosch, J.: Architecting for usability: A Survey. Journal of Systems and Soft-

ware, Vol. 70 (1) (2004) 61-78.
14. Frey, A.G., Céret, E., Dupuy-Chessa, S., Calvary, G.: QUIMERA: a quality metamodel to

improve design rationale. Proc. of the 3rd ACM SIGCHI symposium on Engineering inter-
active computing systems. ACM, Pisa, Italy (2011) 265-270.

25

15. Gull, H., Azam, F., Iqbal, S.Z.: Design of Novel Usability Driven Software Process Model.
(IJCSIS) Int. Journal of Computer Science and Information Security 8 (2010) 46-53.

16. ISO/IEC 9126-1, Software engineering - Product quality - 1: Quality model (2001).
17. Juristo, N., Moreno, A.M., Sánchez, M.I.: Analysing the impact of usability on software

design. Journal of Systems and Software, Vol. 80 (2007) 1506-1516.
18. Lawrence, B., Wiegers, K., Ebert, C.: The top risk of requirements engineering. IEEE

Software, Vol. 18 (2001) 62-63.
19. Limbourg, Q., Vanderdonckt, J.: Usixml: A User Interface Description Language Support-

ing Multiple Levels Of Independence. Engineering Advanced Web Applications. Rinton
Press, Paramus, New Jersey (2004).

20. List of Use Ways and Properties: http://hci.dsic.upv.es/UsabilityModel/UseWaysList.html
21. Luna, E.R., Panach, J.I., Grigera, J., Rossi, G. and Pastor, O. Incorporating Usability Re-

quirements In A Test/Model-Driven Web Engineering Approach Journal of Web Engineer-
ing, (2010), 132-156.

22. Molina, F. and Toval, A. 2009. Integrating usability requirements that can be evaluated in
design time into Model Driven Engineering of Web Information Systems. Advances in En-
gineering Software. vol. 40, 1306-1317.

23. Molina, P.J., Meliá, S., Pastor, Ó. JUST-UI: A User Interface Specification Model.: Proc of
Computer Aided Design of User Interfaces, CADUI'2002, Valenciennes, Francia. (2002).

24. Olive, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. Proc. of the 16th Conference on Advanced Information Systems Engi-
neering, LNCS 3520 , Springer-Verlag, Porto, Portugal, (2005) 1-15.

25. Panach, J.I., Aquino, N. and Pastor, O. A Model for Dealing with Usability in a Holistic
MDD Method. User Interface Description Language (UIDL), Thales Research and Tech-
nology, Lisbon (Portugal), (2011), 68-77.

26. Panach, J.I., España, S., Moreno, A., Pastor, Ó. Dealing with Usability in Model Transfor-
mation Technologies. ER 2008. Springer LNCS 5231, Barcelona (2008) 498-511.

27. Pastor, O., Molina, J.: Model-Driven Architecture in Practice. Springer, Valencia (2007).
28. Röder, H.: A pattern approach to specifying usability features in use cases. Proceedings of

the 2nd International Workshop on Pattern-Driven Engineering of Interactive Computing
Systems. ACM, Pisa, Italy (2011) 12-15.

29. Seffah, A., Vanderdonckt, J.,Desmarais, Michel C. . Human-Centered Software Engineer-
ing: Software Engineering Architectures, Patterns, and Sodels for Human Computer Inter-
action. Human-Centered Software Engineering, Springer: 1-6, (2009).

30. Selic, B.: The Pragmatics of Model-Driven Development. IEEE software 20 (2003) 19-25
31. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven

Software Development. IEEE Software 20 (2003) 42-45.
32. Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M.: A Model-Driven Engineering Approach

for the Usability of Plastic User Interfaces. In Proc. of Engineering Interactive Systems
(2007) 22-24.

33. Sousa, K., Mendonça, H., Vanderdonckt, J.: Towards Method Engineering of Model-
Driven User Interface Development. TAMODIA, LNCS 4849. Springer, Toulouse (France)
(2007) 112-125.

34. Taleb, M., Seffah, A., Abran, A.: Investigating Model-Driven Architecture for Web-based
Interactive Systems. e-Minds: Int. Journal on Human-Computer Interaction 2 (2010).

35. Tao, Y.: An Adaptive Approach to Obtaining Usability Information for Early Usability
Evaluation. IMECS (2007) 1066-1070.

36. UML: http://www.uml.org/
37. Wang, X., Shi, Y.: UMDD: User Model Driven Software Development. IEEE/IFIP Int.

Conference on Embedded and Ubiquitous Computing, Shanghai (China) (2008).
38. XPAND: http://www.eclipse.org/modeling/m2t/?project=xpand

