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Multivariate Nakagami- m Distribution with Constant Correlation
Model
Juan Reig

Abstract In this paper, a multivariate Nakagami-m distribution
is derived using Royen’s gamma distributions of one-factorial
accompanying matrices for a constant correlation model. The
cumulative distribution function (CDF), the probability d en-
sity function (PDF) and the covariances are obtained in infi-
nite series form. From these results, we derive outage probabili-
ties of selection combiners (SC) in both interference-limitedand
noise-limited scenarios with a constant correlation modelover
Nakagami-m fading assuming arbitrary average powers at each
input of the combiner.

Keywords Correlated fading, diversity, selection combiners,
Nakagami-m fading channels.

1. Introduction

The effect of correlated fading has been extensively an-
alyzed on the performance metrics of wireless commu-
nication systems. The bivariate Nakagami-m probability
density function (PDF) [1] was expanded in infinite series
form by Tan and Beaulieu in [2]. In [3], Simon and Alouini
presented an integral expression of cumulative distribution
function (CDF) with Marcum functions of the bivariate
Nakagami-m distribution.

The classical Khrishnamoorthy and Parthasarathy [4]
multivariate gamma distribution has been used in [5] for
evaluating performances of selection combiners (SC) over
Nakagami-m correlated channels. Nevertheless, the joint
probability density function of [4] involves infinite series
of Laguerre polynomials. Several correlation models have
been proposed and used in the literature for evaluating per-
formances of diversity systems. The constant correlation
model corresponds to a scenario with closely placed di-
versity antennas and circular symmetric antenna arrays. It
was used by Aalo [6] for analyzing the performance met-
rics of maximal-ratio diversity combiners.

In recent works [7] and [8], the joint PDF and CDF
of the multivariate Nakagami-m and Rayleigh distribu-
tions, respectively, with exponential correlation model
have been derived.

In this paper, we derive the Nakagami-m joint probabil-
ity density function using Royen’s one-factorial multivari-
ate gamma distributions for a constant correlation model.
This joint PDF obtained is infinite series mixture of prod-
ucts of Nakagami-m probability density functions. These
results are applied to the derivation of outage probabilities
of selection combiners over correlated Nakagami-m fad-
ing.
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This paper is organized as follows: in section 2, the
derivation of multivariate gamma PDF, CDF and covari-
ances with constant correlation model is addressed. Sec-
tion 3 includes the analysis of the outage probabilities
of multiple-branch SC over correlated Nakagami-m fad-
ing with constant correlation model in noise-limited as
well interference-limited scenarios. Finally, conclusions
are discussed in section 4.

2. Multivariate Nakagami-m Distribution

2.1 Derivation of Multivariate CDF and PDF

Let R = [rij ] (i, j = 1, . . . , n) be the ”accompanying”
Gaussian correlation matrix of then-variate gamma distri-
bution.R matrix is said to be ”one factorial” if there are
any numbersa1, . . . , an with

rij = aiaj(i 6= j), |ak| ≤ 1, i, j, k = 1, . . . , n, (1)

or

rij = −aiaj(i 6= j), R positive semidefinite. (2)

The multivariate gamma CDF forR is given by [9,
(3.12)]

F (s1, . . . , sn) =
1

Γ(m)

∫
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exp (−y)ym−1
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∏
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∓a2
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∞
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(3)

(

∓a2
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1 ∓ a2
j
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/k! dy

with marginal gamma PDF given by

p(xj) = Fm(xj) =
1

Γ(m)
xm−1

j exp (−xj) (4)

where the upper signs of (3) hold for (1) and the lower
ones for (2),Gm(sj) denotes the cumulative distribution
of the standard gamma distribution whose PDF is given
by (4)

Gm(sj) =
1

Γ(m)
γ(m, sj) (5)

andγ(·, ·) is the incomplete gamma function [10, (6.5.2)].



In particular foraij =
√

r(i 6= j), rij = r(i 6= j) and
regrouping terms of (3), one can obtain
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1
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∞
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Integrating (6), it yields

F (x1, . . . , xn) =
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∞
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If P = [ρij ] is the correlation matrix of an-variate
gamma distribution andR = [rij ] is that of the ”ac-
companying” Gaussian distribution, then [11, Lemma1]
ρij =

[

r2
ij

]

(i, j = 1, . . . , n). Therefore, the multivari-
ate gamma PDF can be obtained as

p(x1, . . . , xn) =
∂F (x1, . . . , xn)

∂x1 . . . ∂xn

=
(1 −√
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∞
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1
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√

ρ
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whereFm(·) is the univariate gamma PDF given by (4).
Using the transformation

r1 =

√

Ω1x1

m
, . . . , rn =

√

Ωnxn

m
(9)

in (8), the Nakagami-m joint PDF with constant correla-
tion model is derived as

p(r1, . . . , rn) =
(1 −√

ρ)m

Γ(m)
∞
∑

k1=0

. . .
∞
∑

kn=0

Nm+k1 (A1r1) · . . . · Nm+kn
(Anrn) (10)

Γ(m + k1 + . . . + kn)

k1! · . . . · kn!
ρ
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2

(

1

1 + (n − 1)
√

ρ

)m+k1+...+kn

where
Aj =

m

Ωj

(

1 −√
ρ
) , j = 1, . . . , n (11)

The marginal distributions of (10) are the univariate
Nakagami-m distributions whose PDF are given by [1, (3)]

p(rj) =
2

Γ(m)

(

m

Ωj

)m

r2m−1
j exp

(

−
mr2

j

Ωj

)

(12)

whereΩj is the average power of the distribution,m is the
fading parameter andNa(br) is a function defined as

Na(br) =
2

Γ(a)
bar2a−1 exp

(

−br2
)

(13)

Note that the joint PDF is thenth-order infinite summa-
tion overkj of the product ofn Nakagami-m PDFs with
average powersΩeq = Ωj ·(m + kj) /

(

m
(

1 −√
ρ
))

and
fading parametersmeq = m+kj . The convergence of (8)
and (10) is subjected to0 ≤ ρ < 1. Substitutingn = 2
into (10), the bivariate Nakagami-m PDF can be obtained
as

p(r1, r2) =
4

(1 − ρ)mΓ(m)
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∞
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)

Eqn. 14 agrees with [1, (136)]. Both series provide dif-
ferent representations of the same distribution. They can
be derived from different forms of the inverse Laplace-
transform of the bivariate Nakagami-m characteristic
function [1, (129)].

2.2 Covariances

The covariances of multivariate Nakagami-m distribution
with constant correlation model can be calculated as

E
[

r1
l1 · . . . · rn

ln
]

=

∫

∞

0

. . .

∫

∞

0

r1
l1 · . . . · rn

ln

× p (r1, . . . , rn) dr1 . . . drn (15)

Substituting (10) and (13) into (15) and using [12,
(3.381/4)], we can obtain

E
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√
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)



whereFA(. . .) denotes the denotes the Appell hypergeo-
metric function defined as [12, (9.19)]

FA (α; β1, . . . , βn; γ1, . . . , γn; z1, . . . , zn) =
∞
∑

k1=0

. . .
∞
∑

kn=0

(α)k1+...+kn
(β1)k1

· . . . · (βn)kn

(γ1)k1
· . . . · (γn)kn

k1! · . . . · kn!
(17)

·z1
k1 · . . . · zn

kn

From (16), the covariances for the bivariate Nakagami-
m distribution can be calculated as

E
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√
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whereF2(. . .) is given by [12, (9.180/2)] as

FA (α; β1, β2; γ1, γ2; z1, z2) =
∞
∑

k1=0

∞
∑
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(α)k1+k2
(β1)k1

(β2)k2

(γ1)k1
(γ2)k2

k1!k2!
z1

k1z2
k2 (19)

Using [12, (9.182/3)] and [12, (9.131)], (18) can be re-
duced to

E
[

r1
l1 · r2

l2
]

=

(

Ω1

m

)

l1
2
(

Ω2

m

)
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2

Γ
(
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2

)

Γ
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2

)
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2

,− l2
2
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√
ρ

1 +
√

ρ
,

√
ρ

1 +
√

ρ

)

in agreement with [1, (137)].

3. Outage Probability of Selection Com-
biners

3.1 Noise-limited Scenario

In a noise-limited situation, the outage probability is to
be calculated only for thermal-noise, where the cochannel
interference is negligible. From (10) and using the trans-
formation ǫj = rj

2, (j = 1, . . . , n), the multivariate
PDF of the short-term power of signals at each input of

the combiner is given by

p (ǫ1, . . . , ǫn) =

(

1 −√
ρ
)m

Γ(m)
∞
∑

k1=0

. . .

∞
∑

kn=0

Γ (m + k1 + . . . + kn)

Γ (m + k1) · . . . · Γ (m + kn)

(

1

1 + (n − 1)
√

ρ

)m+k1+...+kn

(21)

1

k1! · . . . · kn!
ρ

(k1+...+kn)
2 Am+k1

1 · . . . · Am+kn

n

ǫ1
m+k1−1 · . . . · ǫn

m+kn−1

exp (−A1ǫ1) · . . . · exp (−Anǫn)

Let us definesj = ǫjES/N0, (j = 1, . . . , n) as the
instantaneous signal-to-noise ratio (SNR) per symbol at
each input of the combiner, whereES/N0 is the sym-
bol energy-to-Gaussian noise spectral density ratio. The
outage probability at the output of the SC, defined as the
probability of SNR is less than a protection ratioq, can be
calculated as

Pout(q) = Prob(s1 < q, . . . , sn < q)

=

∫

∞

0

. . .

∫

∞

0

p (s1, . . . , sn) ds1 . . . dsn (22)

whereq is related to the required threshold probability of
error as follows

q =















1
a

ln
(

1
2pth

)

{

a = 1
2 for NCFSK

a = 1 for DCPSK

1
2

(

Q−1 (pth)
)2

{

a = 1
2 for CFSK

a = 1 for CPSK

(23)

where NCFSK and DCPSK apply to non-coherent fre-
quency shift keying and differentially coherent phase shift
keying, respectively, CFSK and CPSK represent coherent
frequency shift keying and coherent phase shift keying, re-
spectively,Q−1 is the inverse of the Gaussian probability
integral defined as

Q(x) =

∫

∞

x

1√
2π

exp
(

−t2/2
)

dt (24)

andpth is the required threshold probability of error. Note
that (24) is applied to optimum detection with optimum
matched filter received [13].



The integral (22) can be solved as

Pout =

(

1 −√
ρ
)

Γ(m)
∞
∑

k1=0

. . .

∞
∑

kn=0

Γ (m + k1 + . . . + kn)

Γ (m + k1) · . . . · Γ (m + kn)

(

1

1 + (n − 1)
√

ρ

)m+k1+...+kn

(25)

1

k1! · . . . · kn!
ρ

(k1+...+kn)
2

γ

(

m + k1,
mq

s1

(

1 −√
ρ
)

)

· . . . ·

γ

(

m + kn,
mq

sn

(

1 −√
ρ
)

)

wheresj , (j = 1, . . . , n) are the average SNR at each in-
put of the combiner. Substitutingρ = 0 into (25) only the
k1 = . . . = kn = 0 term of summation is non-zero, thus,
the outage probability for independent signals is reduced
to

Pout(q) =
1

Γn(m)

× γ

(

m,
mq

s1

)

· . . . · γ
(

m,
mq

sn

)

(26)

Fig. 1 shows outage probabilities versus average SNR at
each branch of the SC combiner assumings1 = . . . = sn

for NCFSK andpth = 10−4. The fading parameters of
signals at each input of the combiner arem = 1.2. Curves
are plotted for non-diversity environment with solid lines.
Outage probabilities forn = 2, 3 and4 branches are
drawn with dashed lines forρ = 0, 0.3 and0.7. The dif-
ferences in outage probabilities between low and high cor-
relation coefficients increase asn grows.

3.2 Interference-limited Scenario

In interference-limited systems, thermal noise power is
negligible compared to the cochannel interference power
contribution. Assuming total independence between inter-
ferences received on any pair of inputs of the combiner,
the joint PDF of the signal-to-interference ratios (SIR) at
each input of the combiner can be written as

p (γ1, . . . , γn) =

×
∫

∞

0

. . .

∫

∞

0

i1 · . . . · in p (i1) · . . . · p (in) (27)

×p (i1γ1, . . . , inγn) di1 . . . din

wherep (i1) , . . . , p (in) are the PDFs of the total inter-
ference power received at each branch of the combiner,
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Fig. 1. Outage probability versus average signal-to-noiseratio in a
selection combiner for NCFSK over correlated Nakagam-m channel
with m = 1.2 andpth = 10−4.

i1, . . . , in, respectively, given by

p (ij) =
1

Γ
(

mij

)

(

mij

Ωij

)mij

× i
mij

j exp

(

−mij

Ωij

ij

)

, j = 1, . . . , n (28)

andΩij
andmij

are the average short-term power and fad-
ing parameter, respectively, of the interference receivedon
j-th input of the combiner. Substituting (21) and (28) into
(27), the joint PDF of the SIR is obtained as

p (γ1, . . . , γn) =
(1−

√
ρ)

m

Γ(m)Γ(mi1
)·...·Γ(min )

∑∞

k1=0 . . .
∑∞

kn=0

Γ(m+mi1
+k1)·...·Γ(m+min+kn)

Γ(m+k1)·...·Γ(m+kn)

Γ(m+k1+...+kn)
k1!·...·kn!

(

1
1+(n−1)

√
ρ

)m+k1+...+kn

1
k1!·...·kn!

ρ
(k1+...+kn)

2 ·
(

mi1

Ωi1

)mi1 · . . . ·
(

min

Ωin

)min

(29)

Am+k1
1 · . . . · Am+kn

n γ1
m+k1−1 · . . . · γn

m+kn−1

(

mi1

Ωi1
+ A1γ1

)−m−mi1
−k1

· . . . ·
(

min

Ωin
+ Anγn

)−m−min−kn

, γ1, . . . , γn ≤ 0



The probability of outage can be derived as

Pout(q) =

∫

∞

0

. . .

∫

∞

0

p (γ1, . . . , γn) dγ1 . . . dγn (30)

From (29) and (30), the outage probability is given by

Pout(q) (γ1, . . . , γn) =
(1−√

ρ)m

Γ(m)Γ(mi1
)·...·Γ(min

)

∑∞
k1=0 . . .

∑∞
kn=0

Γ(m+mi1
+k1)·...·Γ(m+min

+kn)
Γ(m+k1)·...·Γ(m+kn)

Γ(m+k1+...+kn)
k1!·...·kn!

(

1
1+(n−1)

√
ρ

)m+k1+...+kn

1
k1!·...·kn!

ρ
(k1+...+kn)

2 · qnm+k1+...+kn

(

Ωi1
mi1

)m+k1

· . . . ·
(

Ωin

min

)m+kn

(31)

A
m+k1
1 · . . . · Am+kn

n
1

(m+k1)·...·(m+kn)

2F1

(

m + k1, m + mi1 + k1; m + k1 + 1;−
A1Ωi1
mi1

q
)

· . . . ·

2F1

(

m + kn, m + min + kn; m + kn + 1;−
AnΩin

min
q
)

where2F1 (·, ·; ·; ·) is the Gauss hypergeometric function
[10, (15.1.1)]. For independent signals at each input of the
combiner (ρ = 0), (32) agrees with [14, (13),(25)]. Let the
average signal-to-interference ratio be defined as

SIRav =
Ω

Ωe

=

(

Ω1+...+Ωn

n

)

(

Ωi1+...+Ωin

n

) (32)

In Fig. 2, the outage probability of SC versusSIRav/q,
whereq is the protection ratio, is plotted forn = 1, 2,
3 and 4 branches assumingΩ1 = . . . = Ωn, m = 1.2
andmi1 = . . . = min

= 1.5. The outage probability in
a non-diversity scenario is drawn with solid line. Curves
with dashed lines correspond to SC for correlation coeffi-
cients between desired signalsρ = 0, 0.3 and 0.7. Again,
the outage probability behavior improves as the diversity
order (number of branches) increases.

4. Conclusions

A new form of the probability density function, the cumu-
lative density function and the covariances of the multi-
variate Nakagami-m distribution with constant correlation
model has been obtained in infinite series expansion. Pre-
vious functions have been contrasted with results of lit-
erature for the bivariate distribution. The distribution de-
rived is applied to outage probabilities calculation for both
noise-limited and interference-limited scenarios.
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