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Abstract 

The application of three-dimensional (3D) biomaterials to facilitate the adhesion, proliferation and 

differentiation of cells has been widely studied for Tissue Engineering purposes. The fabrication 

methods used to improve the mechanical response of the scaffold produce complex and non regular 

structures. Apart from the mechanical aspect, the fluid behavior in the inner part of the scaffold 

should also be considered. Parameters such as permeability ( ) or wall shear stress ( ) are 

important aspects in the provision of nutrients, the removal of waste metabolic products or the 

mechanically-induced differentiation of cells attached in the trabecular network of the scaffolds. 

Experimental measurements of these parameters are not available in all labs. However, fluid 

parameters should be known prior to other types of experiments. The present work compares an 

experimental study with a computational fluid dynamics (CFD) methodology to determine the 

related fluid parameters (  and ) of complex non regular poly(L-lactic acid) scaffolds based 

only on the treatment of microphotographies images obtained with a microCT (µCT). The CFD 

analysis shows similar tendencies and results with low relative difference to those of the 

experimental study. The correlation between the computational and experimental results validates 

the robustness of the proposed methodology. 

 

Keywords: Tissue Engineering, Scaffolds, Permeability, Darcy’s Law, Computational fluid 

dynamics. 

 

1. Introduction. 

Tissue Engineering is a technique that combines cells, three-dimensional biomaterials (scaffolds) 

and chemical/mechanical stimuli to replace damaged or diseased tissues. It involves several 

intrinsic properties for the ideal scaffold such as a three-dimensional (3D) interconnected pore 

network, adequate surface properties to enhance cell adhesion, proliferation, migration and 

differentiation, a biocompatible and bioresorbable substrate with controllable degradation rate, 
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appropriate mechanical properties to match those of the surrounding tissue when implanted, an 

architecture which promotes formation of the native anisotropic tissue structure and a reproducible 

architecture of clinically relevant size and shape.1-8 

 

One of the most important functions of a scaffold is related with its inner structure. Scaffolds are 

expected to be highly porous, with at least 70 % porosity, to allow cells to migrate through the 

internal structure of the scaffold. High percentages of porosity should be coupled with good pore 

interconnectivity to achieve not only good cell homing but also satisfactory nutrient distribution and 

waste removal.9-11 

 

Interconnected porosity and pore size are important factors in the mechanical characterization for a 

scaffold applied in Tissue Engineering.12 The permeability ( ) of scaffolds, a property directly 

related to the degree of pore interconnectivity, is a key factor influencing the scaffold’s ability to 

enhance tissue regeneration. Permeability quantifies the ability of a porous medium to transmit fluid 

through its interconnected pores or channels when subjected to pressure. Permeability, therefore, 

controls the flow of nutrients to cells located inside the scaffolds.7,13 

 

Recent developments in design and fabrication technologies have allowed the creation of three-

dimensional scaffolds with controlled microstructure but not always with a regular shape. The 

desirable way to evaluate the scaffold 3D architecture after the fabrication process would be a 

nondestructive, noninvasive, and quantitative technique.14 Nondestructive high-resolution images 

can be obtained with microCT (µCT) techniques in the order of a few microns per pixel. This 

technique allows the reconstruction of small samples.3 With recent advances in computer-aided 

design (CAD) software’s, µCT techniques and imaging analysis, scaffold properties can be analyzed 

from a numerical point of view, using computational fluid dynamics (CFD). Usually the 

permeability values computed from CAD-based models are substantially higher than those from 
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µCT-based models. The relative difference between measured and computed values has been 

strongly reduced by means of µCT-based models.15 

 

In many Tissue Engineering applications, porous poly(L-lactic acid) (PLLA) scaffolds have been 

used to guide tissue regeneration.8 For this work, the scaffolds were prepared by the freeze 

extraction and particle leaching process using dioxane as PLLA solvent and spherical polymeric 

particles as a macroporogen.16 A variation of the PLLA scaffold morphology was performed varying 

the PLLA/dioxane proportion during the fabrication process. These techniques provide complex 

non regular scaffolds with controlled pore size and porosity. 

 

In this work we propose a robust methodology for designing an optimal structural scaffold for tissue 

engineering. The methodology is applied to 3D structures with extremely complex and 

heterogeneous architectures. First, a morphological study of the internal structure is obtained from 

the 3D reconstruction of the scaffolds. The image analysis determines the real structural parameters 

such as porosity and pore size ( ). An experimental permeability study and CFD analysis are then 

carried out for different fluid flow rates to characterize the intrinsic permeability of the scaffold. In 

Tissue Engineering applications, low flow rates are used to evaluate the behavior of the 

interconnected structure. With the scaffold geometry and the CFD analysis it is possible to calculate 

variables which cannot be evaluated by other means such as the wall shear stress ( ). 

 

2. Materials and Methods 

2.1. Fabrication of the poly(L-lactic acid) (PLLA) scaffolds 

Medical grade poly(L-lactic acid) (PURASORB PL 18) with a viscosity of 1.8 dl/g and an average 

molecular weight of 165446 Da supplied by Purac Biomaterials (The Netherlands) was used to 

fabricate the scaffolds. Different solutions of PLLA in 1-4 dioxane (98% pure, obtained from Sigma 

Aldrich) (at 10, 15 and 18 wt.% of PLLA) were homogeneously mixed with PEMA spheres (from 
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Elvacite, 2043 acrylic resin) in mass proportion 1:1 at room temperature and then immediately 

frozen with liquid nitrogen. The frozen structures were immersed in pre-cooled ethanol and kept at -

20°C during two days, with at least three changes of the ethanol to remove almost all the dioxane 

crystals. Afterwards, the extraction of PEMA macroporogen took place in ethanol at 40°C under 

continuous stirring. Various changes of solvent were needed to eliminate all the PEMA spheres; 

until no polymer deposit was left on a glass when a drop of the extraction liquid was evaporated. 

After extraction, the scaffolds were dried in air atmosphere for 24 h and then in vacuum to constant 

weight, first for 24 h at room temperature and then at 40°C. In this way, scaffolds with increasing 

size of micro and macro pores were prepared, since the amount of solvent affects not only the 

micropore size, but the macropore because it swells the PEMA spheres.. Hereafter, the samples will 

be referred to as PL-1:1-x%, x being the weight percentage of PLLA in the dioxane solution. 

 

2.2. Permeability test 

Permeability ( ) is a structural variable that describes the interconnectivity and the capacity of a 

porous material to absorb liquid without altering its internal structure. To determine a relation 

between interconnected porosity and pore size, a permeability test has been developed under the 

Darcy Law and is available for Reynolds number lower than 8.6 (1).9,10,13,15,17 

 

      (1) 

 

where  is the intrinsic permeability (m2),  the dynamic fluid viscosity (deionized water  =10-3 Pa 

s),  the specimen thickness,  the cross-sectional area,  the volumetric flow rate and  the total 

pressure drop across the scaffold sample (Pa). The total pressure drop measured with the scaffold 

specimen inside the chamber is  whereas  is the measurement for the empty 

chamber (2).15 Due to the test configuration, the measured pressure drop is attributed to the scaffold 

microstructure and the section change. 
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   (2) 

 

The permeameter used is shown schematically in figure 1. The fluid was taken from an open 

reservoir and induced into the circuit with a peristaltic pump. A fluid damper (KH-07596-20 Pulse 

Dampener – Coleparmer Masterflex) was used to achieve a continuous flow through the circuit and 

avoid the peristaltic pulse produced by the pump. The permeameter chamber has a cross sectional 

geometry that facilitates placing the scaffold samples. In this way, undesirable movements of the 

considered structures are prevented. The  and  were measured between two 

points of the permeameter chamber using a pressure meter (Testo 510 with a precision of ± 0.1% 

and operative range from 0 to 2000 hPa). 

 

For each polymer concentration (10, 15 and 18 wt.% of PLLA), five samples were tested. Cylinders 

of 6 mm diameter and 3.11 ± 0.17 mm thickness were used. All the samples were immersed in a 

saline phosphate-buffered (PBS) solution during 48 hours before testing. In accordance with the 

experimental protocol, the fluid flow through the scaffold was varied by controlling the flow rate 

(20, 40, 60 ml min-1). The  generated in each case was measured. The obtained  was 

averaged out to determine the permeability of the structure using Darcy’s Law. The mean, standard 

deviation and standard error were calculated. The results are presented as mean ± standard error. 

 

2.3. MicroCT (µCT) imaging analysis 

Microtomography was carried out to define the trabecular and pore distribution, as well as their 

uniformity in the 3D structure.6 The image files (DICOM- Digital Imaging and Communication in 

Medicine) provided by the µCT were the main input for building the geometric model of the 

scaffold. Images of the whole sample were obtained by a rotational scanning of 360 degrees. A GE 

Healthcare eXplore locus SP µCT was used, with an x-ray filter number 2, 45 kV voltage and 120 
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mA power. The resolution of the equipment was 8 µm. 348 DICOM files were obtained for each 

sample (one image for each rotation of 1.03 degrees). The quality of the final model and its 

similarity with the original sample are directly related to the degree of resolution and the number of 

segmented images. The selected volume for reconstruction must be representative of the entire 

sample. The volume segmentation was made by sweeping all the scanned slides (Mimics - The 

Materialise Group, Leuven, Belgium). The reconstructed volume was approximately 7.06 mm3 (3 

mm diameter and 1 mm thickness). Finally, a set of STL files were generated, this being the 

standard format used in computer-aided design. These files describe the surface of a three-

dimensional geometry through a mesh of triangles. Details of the pre-processing are illustrated in 

figure 1. 

 

A histogram of the diameter of the pores ( ) was measured for each structure on the final STL 

geometrical models. The pores of the scaffold were selected and segmented using a threshold of the 

grey scale to transform the porous geometry into groups of voxels. The voxels were classified as 

hole or material, and each voxel identified as a hole defined a sphere. In the post-processing, any 

sphere included within another was eliminated. Finally, with the same grey scale it was possible to 

define the structural porosity. 

 

2.4. Numerical discretization and fluid flow modelling 

Three different 3D CT-based scaffold geometrical models were built and meshed with the 

commercial software FEMAP (PLM Siemens, Plano, TX, USA), see figure 2. For each scaffold, 

several flow rates were tested prior to reconstructing the test room with the numerical software (see 

figure 2). Specifically, 10 flows for each scaffold were tested, representing a total of 30 CFD 

analyses. 

 

To predict the pressure and velocity fields inside the scaffolds, the commercially available finite 
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volume code Ansys CFX (Ansys Software, Canonsburgh Pennsylvania, USA) was used to set up 

and solve the fluid dynamic problem. As already mentioned, the scaffold was inserted in a CAD-

built test channel which, due to its geometry, perfectly reproduced the experimental channel (see 

figure 2). 

 

Due to its intrinsic geometrical complexity, the grid was carried out through tetrahedral elements. 

About 5 millions cells were defined for each scaffold. To establish the appropriate element size, a 

mesh independent study with a fixed flow rate was previously conducted. Velocity profiles were 

compared at different channel sections before and after the scaffold. It was clearly demonstrated 

that for a number of elements greater than 5 million, increasing refinements produced higher 

computational costs but differences in velocities of less than 1%. 

 

The culture medium was regarded as an incompressible and homogeneous Newtonian fluid with the 

properties of water (a viscosity of 10-3 Pa s and a density of 103 kg m-3 at a temperature of 21°C). 

Due to the slow flow regime (Reynolds number Re < 50), a spatial and temporal constant flow rate 

was assigned to the inlet corresponding to 0.1, 0.5, 1, 1.5, 2, 3, 4.5 ml min-1, thus being within the 

range of applicability of Darcy’s Law. Unlike the study of Truscello et al., 201215 which 

approximated the outlet condition imposing zero pressure at the model outlet, in this work the same 

flow rate as the inlet was also imposed at the model outlet, assuming stationary conditions during 

both experimental and numerical analysis as well as rigid walls. In this way we also guaranteed the 

same conditions as the experimental analysis. No-slip conditions were finally imposed at the walls 

of the scaffold as well as at the channel walls. Steady-state Navier–Stokes equations were used to 

describe the flow problem. The pressure drop across the scaffold was obtained for all models and 

used to calculate the permeability coefficient. 

 

2.5. Computational fluid dynamics (CFD) numerical approach 
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The governing equations were solved using finite volume discretization by means of the advanced 

coupled multi grid solver technology ANSYS CFX (v5, Ansys Software, Canonsburgh 

Pennsylvania, USA). The convergence criteria used in all simulations was 1×10−8. This factor was 

used to reduce the initial mass flow residual during the simulation progress. The simulations were 

carried out on the 16 noded, Dual Nehalem (64 bits), 16 processor cluster with a clock speed of 

2.33GHz and 32 GB memory for each node. 

[Figure. 1] 

[Figure. 2] 

3. Results 

A morphologic study can be made from the 3D reconstruction of the scaffold microtomographies. A 

change in the polymer concentration (wt.% of PLLA) determines the trabecular structure and 

establishes its correlation with the uniformity and pore distribution. Additionally, with the image 

analysis the average pore size and the porosity are calculated for each three-dimensional structure. 

In our working range, an increase in the wt.% PLLA increases the uniformity of the scaffolds, 

because for large concentration of solvent irregular swelling of porogen spheres occur and zones 

with large pores, defects and broken trabeculae are found (see figure 3). Increasing the wt.% PLLA 

leads to a reduction in the structure porosity and the mean pore size (see figure 4 and table 1). These 

structural characteristics support the results obtained from the present study for the working range 

of the PLLA %. 

[Figure. 3] 

[Figure. 4] 

[Table. 1] 

From the experimental study, it can be deduced that the total difference pressure ( ) increases 

when the wt.% PLLA rises (see table 2 and figure 5a) whereas the intrinsic permeability ( ) shows 

the opposite tendency. The structural permeability decreases when the wt.% PLLA increases (see 

table 3 and figure 5b). The results of the computational simulations confirm these trends (see tables 
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2 - 3 and figures 5). 

 

In figure 6, the flow through the scaffold is shown by means of 3D streamlines. These results refer 

specifically to the PL-1:1-15% scaffold and 20 ml min-1 flow. For this reason,  is generated 

between both chambers and as a result between the scaffold faces located orthogonally to the fluid 

flow. This  is represented in figures 7 and 9 for high and low flow rates, respectively, for the PL-

1:1-15% scaffold. In particular it can be seen, as expected, that increasing the flow results in an 

increase in  (see figure 7). 

[Figure. 5] 

[Figure. 6] 

[Figure. 7] 

[Table. 2] 

[Table. 3] 

For the scaffold difference pressure ( ), the results of the experimental and the CFD data 

showed the greatest variation for the PL-1:1-18% with a relative difference of 20.21%. This 

difference was generated by a flow of 20 ml min-1. For the PL-1:1-10% and PL-1:1-15% the 

difference was 1.45% and 1.54%, respectively (see figure 5a). In the experimental study, the PL-

1:1-10% showed the greatest dispersion in the permeability ( ) data reported with ± 5.9x10-11 m2 

(see table 3). However, the highest relative difference again appeared for the PL-1:1-18% with 

13.61%. Finally, for the PL-1:1-10% and PL-1:1-15% the difference was 9.58% and 2.24%, 

respectively (see figure 5b). 

 

The previous results showed only small discrepancies between the experimental and CFD data for 

high flow rates through the 3D structure (20, 40 and 60 ml min-1). Additionally, a second 

experimental and CFD study was performed to evaluate the behavior of the 3D structure at low 

flow rates (1.5, 3.0 and 4.5 ml min-1). This study was focused in particular on the PL-1:1-15% 
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scaffold. The  and  results for all the flow rates are shown in table 4 and figures 8 - 9. 

[Figure. 8] 

[Figure. 9] 

[Table. 4] 

The greatest relative differences between the experimental and CFD data   results 

occurred for 1.5 ml min-1 with 62.58% and for 4.5 ml min-1 with 36.37%. For 3.0, 20, 40 and 60 ml 

min-1, the differences were 13.35%, 11.56%, 2.08% and 1.05%, respectively. The relation found for 

the  showed a linear tendency with R2 = 0.99. In the reported  data, the greater relative 

differences appeared for 1.5 and 3.0 ml min-1 with 26.28% and 24.81%, respectively. For 4.5, 20, 

40, 60 ml min-1 the differences were 4.3%, 6.63%, 7.94% and 6.85%, respectively. 

 

The study of the interconnected structure under low and high flow rates was used to determine the 

wall shear stress ( ) of the PL-1:1-15 scaffold (see table 5 and figures 10 - 11 - 12). An increase 

in the flow rate increased the  on the trabecular structure. This tendency showed a linear 

regression with a quadratic correlation coefficient R2=0.99. For flow rates equal to 1.5 and 60 ml 

min-1, the  increased by 27.54%. 

[Figure. 10] 

[Figure. 11] 

[Figure. 12] 

[Table. 5] 

As the considered flow is laminar, due to the relatively low flow rates hypothetical seeded cells 

would follow the flow profile with minimal advective transport in directions perpendicular to the 

flow. Only cells close to the pore wall of the scaffold would come into contact with the surface. To 

study how the flow may impact seeded cells, the  spatial distribution was analyzed as a 

function of the flow rate for different scaffold designs. Figure 11 depicts the PL-1:1-15 scaffold. 

The  spatial distribution is shown on the scaffold surface as a function of the steady flow. 
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Figure 12 represents the same situation for high flow rates. 

 

Increasing the flow rate from 0.1 ml min-1 to 4.5 obtained  values in the range 1.3 - 6 Pa (see 

figure 11). The  spatial distribution along the scaffold was strongly dependent on the 

complexity of the porous structure, as expected. Overall, the level of  found throughout the 

surface was low and heterogeneously distributed, as shown in figure 11. As is usual, low  

values were due to the effect of the flow separation regions along the porous sections. For this 

reason, these regions are characterized by relatively low velocities. In contrast, higher  values 

are due to the impact of the flow to the scaffold. This can be seen especially on the outer surface 

(see figure 11). Inside the scaffold, the high  values are due to the local acceleration of the flow 

along a single pore just before the flow separation. The same trend can be observed for high flow 

rates (see table 5 and figure 12). In this case an increase in the  values was observed. 

 

4. Discussion  

The intrinsic permeability is a function of the pore size and porosity in a 3D structural scaffold. 

Thus, the smaller the pore size, the higher the trabecular area in contact with the fluid. This effect 

increases the frictional resistance to the flow and thus permeability decreases. Furthermore, as 

shown in our previous publication [Acosta Santamaría, 2012], when the amount of solvent increases 

the morphology of the scaffold becomes more heterogeneous in the sense that some zones with 

broken trabeculae are formed that give greater permeability to the structure.  

 

Comparing the results obtained in this work with those of other authors, one of the main differences 

is associated with the evaluation of the intrinsic permeability of 3D geometries with very complex 

and heterogeneous scaffold architectures. Truscello et al., 2012 proved that CFD models based on 

high resolution µCT images are accurate for the prediction of the permeability of regular scaffolds. 

Dias et al., 2012 computationally estimated the permeability of the scaffold using the 
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homogenization approach applied to the problem of a fluid flow through a homogeneous porous 

media.15,18 

 

As in other works, the scaffold structure was studied with different percentages of porosity and pore 

size.15,18 However, the present work also shows the 3D architecture behavior under high and low 

fluid flow rates for different design parameters. Additionally, the CFD analysis determined similar 

tendencies and results with low relative differences compared with those of the experimental study. 

For the scaffold pressure difference ( ), the results between the experimental and CFD 

results revealed the greatest difference for slow fluid flow rates (relative difference between 13.35% 

and 62.58%). For fast fluid flows, these relative differences were between 1.05% and 11.56%. 

Similarly, the greater differences for the permeability data reported were for slow fluid flow rates 

(relative difference between 4.3% and 26.28%). For fast fluid flows, these relative differences were 

6.63% and 7.94%. The relative differences found in this study could be associated with 

heterogeneous scaffold architecture. However, the correlation between the computational and 

experimental results validates the robustness of the design methodology here described. The 

correlation for  showed a linear tendency with R2 = 0.91. The permeability correlation 

showed the same tendency with R2 = 0.96, which is similar to the results found by Truscello et al., 

2012 being R2 = 0.91.15 

 

CFD modeling, as previously discussed, can determine the flow, pressure field and other flow 

variables such as wall shear stress ( ) and/or wall shear rates within a scaffold, down to the 

pore-sized level. The eventual deposition of seeded particles on the scaffold surface under steady 

flow conditions basically depends on many parameters such as advective transport19,20 and 

diffusivity, colloidal interactions21, concentrations of ligands and receptors, binding strengths and 

bondforming kinetics22 and especially on the scaffold microstructure, as demonstrated in other 

studies.23 Because of the highly irregular scaffold architectures, many of these parameters may vary 
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throughout the scaffold in the flow modeling when performing perfusion experiments. 

 

The wall shear rate has been described as crucial for cell suspension and deposition seeding 

techniques23, shear stress has also frequently been described as an important mechanical stimulus 

able to induce cell proliferation and differentiation in different cell types.24-27 A better knowledge of 

the  in the trabecular could help us to understand the heterogeneous cell behaviour in the 

internal part of the scaffolds. In this context, numerical simulations could be helpful to determine 

the cell differentiation process using a mechanobiological model such as that proposed by Lacroix 

and Prendergast, 2002.25 

 

Due to the high variability of scaffold heterogeneity, it is quite complicated to make a precise 

comparison between  values that are strongly non-homogeneous and those reported in similar 

studies in the literature. Other studies such as that of Gutierrez et al., 2008 have attempted to assess 

bioreactor hydrodynamics under steady-state conditions, modeling 3D scaffolds as non-porous 

solids with fluid flowing around and over the non-moving surfaces.28 Singh et al., 2005 studied the 

flow around a geometrically defined scaffold finding  values of the order of 2, 4 and 8 Pa, 

respectively, depending on the rotation of the bioreactor.29 These values are near to those found in 

this work for low flow rates. In contrast, Porter et al., 2005 found very small values (in the order of 

[mPa]) even using similar flow rates compared to those obtained here (0.1-2 Pa).30 The differences 

in the  can partially be explained by the different porous distribution inside the scaffold. 

Moreover, Porter et al., 2005 used smaller samples for their numerical analysis which could have a 

significant effect.30 

 

It should be noted that when considering other scaffold architectures and other flow rates, other 

hydrodynamic solutions may be obtained and, as a consequence, different  values, cell 

depositions and mechanical stimuli. Additional research into the probabilistic behavior of seeded 
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cells, a parameter whose influence has been neglected in this study, as well as into diffusive and 

advective transport should be undertaken in order to support the results found here. In this way, cell 

deposition and proliferation could be predicted in more detail.23,31 As a long term result, the ability 

to track individual cells and compute their local hydrodynamic environment would allow the 

creation of a computational/experimental framework that may lead to a better understanding of 

biological cell processes in porous scaffolds. This study can be considered as a first step in this 

direction. 

 

5. Conclusions 

The present study evaluates heterogeneous structures with different pore size, interconnectivity 

distributions and diverse estimated flow rates. The pressure difference and the intrinsic permeability 

tendencies obtained for PLLA scaffolds from a CFD modeling study were similar to the reported 

experimental data. For high fluid flow rates, the results revealed small relative differences between 

the numerical and experimental methodologies whereas for low fluid flow rates, these differences 

were more significant. 

 

An optimal reconstruction model for 3D complex geometry, appropriate pre-processing and image 

analyses, and the computational fluid dynamics methodology implemented in this study could be 

used as alternative tools to assess various mechanical variables for scaffold structures (porosity, 

pore size and trabecular distribution, structural difference pressure, intrinsic permeability and wall 

shear stress). 
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Tables 

 

Table 1.  Porosity (%) and macropore size diameter ( ) of the PL-1:1 series scaffolds obtained from 

the µCT reconstruction model and image analysis. 

 

PLLA wt.% 
 

Porosity (%) Macropore Size Average (μm) 

10  79.2 144.88 

15  72.94 126.94 

18  70.91 100.87 
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Table 2.  Scaffold pressure difference ( ) for the PL-1:1 series scaffolds obtained from the experimental study and the CFD simulations. 

 

PLLA wt.% 
∆P Scaffold (Pa) - Experimental Data 

 
∆P Scaffold (Pa) - CFD Data 

20 (ml/min) 40 (ml/min) 60 (ml/min) Average (ml/min)  20 (ml/min) 40 (ml/min) 60 (ml/min) Average (ml/min) 

10 79.24 ± 14.9 180.78 ± 19.4 293.26 ± 28.2 184.43 ± 20.4  72.2 167.87 321.23 187.10 

15 138.46 ± 12.5 311.61 ± 26.0 518.51 ± 37.7 322.86 ± 25.1  122.45 318.11 513.07 317.88 

18 203.34 ± 16.8 464.65 ± 82.7 851.29 ± 156.4 506.43 ± 84.1  134.99 374.0 703.20 404.06 
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Table 3.  Intrinsic permeability ( ) for the PL-1:1 series scaffolds obtained from the experimental study and the CFD simulations. 

 

PLLA wt.% 
 k (m2) - Experimental Data k (m2) - CFD Data 

 20 (ml/min) 40 (ml/min) 60 (ml/min) Average (ml/min) 20 (ml/min) 40 (ml/min) 60 (ml/min) Average (ml/min) 

10  5.30×1010± 9.8×1011 4.24×1010± 4.6×1011 4.05×1010± 3.6×1011 4.53×1010± 5.9×1011 4.85×1010 4.17×1010 3.27×1010 4.10×1010 

15  2.69×1010± 1.7×1011 2.40×1010± 1.7×1011 2.21×1010± 1.4×1011 2.43×1010± 1.5×1011 2.87×1010 2.21×1010 2.05×1010 2.38×1010 

18  1.96×1010± 1.2×1011 1.86×1010± 2.6×1011 1.53×1010± 1.8×1011 1.78×1010± 1.8×1011 2.65×1010 1.91×1010 1.52×1010 2.03×1010 
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Table 4.  Scaffold pressure difference ( ) and intrinsic permeability ( ) obtained from experimental and CFD data of the PL-1:1-15 scaffold. 

 

 
 Experimental Data CFD Data 

 ∆P (Pa)  k (m2) ∆P (Pa) k (m2) 

Q (ml/min)  1.5 3.0 4.5  1.5 3.0 4.5 1.5 3.0 4.5 1.5 3.0 4.5 

PLLA 
1:1-15%  13.36 21.96 38.40  4.19×1010 ± 2.0×1010 3.70×1010 ± 1.2×1010 3.39×1010 ± 1.2×1010 5.00 19.03 24.43 5.29×1010 2.78×1010 3.25×1010 

 

 

 



25 
 

 

 

Table 5.  Wall shear stress (CFD data), obtained for the PL-1:1-15 scaffold. 

 

PL-1:1-15% - CFD Data 

Q (ml/min) 
 

1.5 3.0 4.5 20 40 60 

WSS (Pa) 
 

4.1 5.4 6.0 12.1 18.3 23.1 
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Figure Legends 

 

Figure 1.  Schematic diagram of the materials and methods applied for the experimental study and 

the computational fluid dynamics (CFD) analysis. 

 

Figure 2.  Chamber and scaffold three-dimensional mesh models. 

 

Figure 3.  Scaffold microtomographies showing the distribution of macropores in the three-

dimensional structure. (a) PL-1:1-10%. (b) PL-1:1-15%. (c) PL-1:1-18%. 

 

Figure 4.  Morphologic results obtained from the µCT reconstruction model and image analysis for 

the PL-1:1 series scaffolds. (a) Porosity and macropore size average diameter. (b) Macropore size 

distribution. 

 

Figure 5.  Experimental and CFD data obtained for the PL-1:1 series scaffolds. (a) Scaffold 

pressure difference - . (b) Intrinsic permeability - . (c) Pressure difference correlation. (d) 

Permeability correlation. 

 

Figure 6.  Fluid flow through the scaffold structure (PL-1:1-15%) shown by means of three-

dimensional streamlines. 

 

Figure 7.  Scaffold pressure difference ( ) for PL-1:1-15% scaffold determined for high flow 

rate and obtained from the CFD simulations. 

 

Figure 8.  Experimental and CFD data obtained for the PL-1:1-15 scaffold. (a) Scaffold pressure 
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difference - . (b) Intrinsic permeability - . 

 

Figure 9.  Scaffold pressure difference ( ) for PL-1:1-15% scaffold determined for low flow 

rate and obtained from the CFD simulations. 

 

Figure 10.  Wall shear stress obtained for the PL-1:1-15 scaffold from CFD data. 

 

Figure 11.  Wall shear stress for PL-1:1-15% scaffold obtained from the CFD simulations for low 

flow rates. 

 

Figure 12.  Wall shear stress for PL-1:1-15% scaffold obtained from the CFD simulations for high 

flow rates. 

 

 


