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Abstract 

 

The mechanisms of fouling in the ultrafiltration of polyethylene glycol (PEG) are 

analyzed using the complete blocking and the intermediate blocking Hermia´s models 

adapted to crossflow filtration.
1
 The parameters of these models were theoretically 

estimated. The predicted results were compared with experimental data. Ultrafiltration 

experiments were performed with Carbosep M2 monotubular ceramic (Orelis, S.A. 

(France)). The fouling ultrafiltration experiments were carried out at a constant 

temperature and feed concentration and different feed flow rates and transmembrane 

pressures. The precision in the predictions is very high. The results showed that the 

phenomenon controlling fouling was intermediate blocking for high fouling conditions. 
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1. Introduction 

 

Ultrafiltration uses a finely porous membrane to separate water and microsolutes from 

macromolecules and colloids.
2
 The first large successful application of ultrafiltration 

was the recovery of electrocoat paint in automobile plants. Later, a number of 

significant applications developed in the food industry
3
, first in the production of 

cheese, then in the production of apple and other juices and, more recently, in the 

production of beer and wine. Industrial wastewater and process water treatment is a 

growing application, but high costs limit growth. However, it is used to treat small, 

concentrated waste streams from particular point sources before they are mixed with the 

general sewer stream. Ultrafiltration is also used if the value of the components to be 

separated is sufficient to offset the cost of the process. Examples exist in food 

processing, in which the ultrafiltered concentrate is used to produce a high-value 

product, or in the production of ultrapure water in the electronics industry. 

 

Although ultrafiltration is an economical and efficient operation, its development is 

hindered by membrane fouling due to membrane blocking, cake formation or 

concentration polarization. Membrane fouling causes an increase in the membrane 

resistance a decrease in the permeate flux with time. Therefore, understanding how and 

when the membrane is fouled is worthy of further research.
4
  It must be also pointed out 

that membrane fouling increases the energy consumption and the operating costs. 

Moreover it requires frequent cleaning of the membranes.
5
  



 

Several authors studied crossflow membrane ultrafiltration in terms of fouling 

resistances. Mondal and De
6
 studied two fouling mechanisms (complete pore blocking 

and cake layer) during crossflow membrane filtration and they obtained their resistance 

values. However, they comment that complete pore blocking followed by cake filtration 

was not enough to explain the flux decline data. Vladisavljevic et al.
7
 studied the 

variation of fouling resistance with filtration time and the effects of operating pressure 

and crossflow velocity in the ultrafiltration of depectinized apple juice.  

 

In this work, the effect of operating conditions, transmembrane pressure (TMP) and 

crossflow velocity, on membrane resistance in the crossflow ultrafiltration of 

polyethylene glycol (PEG) were studied and compared to the predictions obtained with 

the complete blocking and intermediate blocking Hermia´s models adapted to crossflow 

filtration.
1
 Moreover, the model parameters were theoretically estimated and their 

values were analysed and discussed. 

 

2. Theoretical estimation of the parameters of the complete and the intermediate 

blocking models for crossflow filtration 

 

The complete and the intermediate pore blocking models for crossflow filtration were 

described in detail in Vincent-Vela et al.
8
 According to the models equations, the 

theoretical estimation of the parameters of these models
1 

allows the prediction of 

permeate flux with time using only two experimental values: the initial and the steady-

state permeate flux. 

 



The parameters of the models named Kc and Ki for the complete and intermediate 

blocking models, K, respectively; are equal and estimated by means of Eq. (1)
9
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In Eq (1), the form factor of the solute molecule, , is equal to the largest dimension of 

the molecule divided by the smallest dimension of the molecule. The parameters m and 

Xm can be estimated by means of Eqs. (2) and (3), respectively. For that purpose, the 

solute concentration over the membrane surface, Cm, must be estimated first. 
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The variable Cm is related to the steady-state permeate flux, JPss, according to Eq. (4)
10 
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The mass transfer coefficient, kTM, for turbulent flow is estimated by means of Eq. (5)
10
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where Re and Sc are the Reynolds and the Schmidt number, respectively. They are 

calculated according to Eqs. (6) and (7). 
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3. Fouling experiments 

 

PEG with a molecular weight of 35000 Da (Merck-Schuchardt (Germany)) was used in 

the UF experiments at a concentration of 5 g/L. Carbosep M2 monotubular ceramic 

membranes (Orelis, S.A. (France)) with a membrane area of 35.5 cm
2
 and a molecular 

weight cut off (MWCO) of 15 kDa were tested. Crossflow ultrafiltration experiments 

were performed in the pilot plant described elsewhere.
11,12

 The procedure of fouling 

experiments can be found in Vincent-Vela et al.
8
 

 

4. Results and discussion 

 

The predictions for the complete blocking and the intermediate blocking models with 

theoretical estimation of the model parameters is illustrated in Fig. 1 and 2, respectively. 

The experimental data is represented by symbols and the fitted curves are represented 

by lines. Selection of the best model can only be performed when high flux decline is 

observed because a high precision in both models predictions is obtained in other cases 



(high crossflow velocities and low TMPs). For this reason, the analysis of the results is 

based on the data that correspond to the following experimental conditions: a TMP of 

0.4 MPa and a crossflow velocity of 1 m/s; a TMP of 0.3 MPa and a crossflow velocity 

of 1 m/s and a TMP of 0.4 MPa and a crossflow velocity of 2 m/s. 

 

In a previous work 
8
, it was observed that the intermediate blocking model fitted best to 

the experimental data than the complete blocking model. When the parameters of these 

models are theoretically estimated (Fig. 1 and 2) these results are confirmed for the 

most severe fouling conditions tested (1 m/s and 0.4 MPa).  

 

Insert Figure 1 about here. 

 

In the intermediate blocking model, molecules are allowed to settle on previously 

deposited particles. It is assumed that each location has an equal probability of being 

occupied. This means that the chance that a particle settles on a free site is equal to the 

ratio of free and occupied sites.
5
 It must be also noted that the intermediate blocking 

model adapted to crossflow ultrafiltration considers that the size of the solute molecules 

is similar to the membrane pore size. Therefore, membrane pore blocking occurs in the 

entrance of the membrane pores, which can be partially blocked or sealed. Although 

there is a great difference between the molecular weight of PEG, 35000 g/mol, and the 

MWCO of the membrane, 15000 g/mol, measured membrane PEG retention was 86%. 

It is believed that linear, water soluble polymer molecules, such as PEG molecules, are 

able to snake through the membrane pores.
2
 The intermediate blocking model adapted 

to crossflow filtration explains this situation better than complete blocking model 

adapted to crossflow filtration because it considers that partial pore blocking may occur. 



The PEG molecules that snake through the membrane pores can cause this type of 

fouling.  

 

In the complete blocking model adapted to crossflow filtration the size of the solute 

molecules is greater than that of the membrane pores, thus this model assumes that 

solute molecules are completely retained by the membrane and the pores are sealed. No 

partial blocking of the membrane pores is considered. It is assumed that each filtrated 

particle participates in blocking the membrane without any superposition.
13

 

Furthermore, it is assumed that the resistance is inversely proportional to the fraction of 

free pores.
5
 Moreover, the intermediate blocking model adapted to crossflow filtration 

describes more accurately a real ultrafiltration process than the complete blocking 

model adapted to crossflow filtration. In the first one, solute molecules can superimpose 

over others that have previously covered up the membrane surface. 

 

Insert Figure 2 about here. 

 

In previous work,
8
 the results showed that the models fitted with the same accuracy to 

experimental data for the following experimental conditions: a vtang of 1 m/s and a TMP 

of 0.3 MPa and in the case of a vtang of 2 m/s and a TMP of 0.4 MPa. However, when 

the parameters of the models are theoretically estimated (Fig. 1a, 1b, 2a and 2b) the 

complete blocking model adapted to crossflow ultrafiltration fits slightly better to the 

experimental results than the intermediate blocking model adapted to crossflow 

filtration. For these experimental conditions the accumulation of solute molecules over 

the membrane surface is lower than in the case of a crossflow velocity of 1 m/s and a 

TMP of 0.4 MPa, less solute molecules can superimpose over others and a lesser 



amount of molecules can snake through the membrane pores. Measured PEG retention 

was higher than in the case of a crossflow velocity of 1 m/s and a TMP of 0.4 MPa. 

 

Better predictions are obtained when the models are fitted to the experimental data
8
  

than when their parameters are theoretically estimated. Nevertheless, in the last case the 

precision in the predictions is also very high. 

 

In Fig. 1 and 2 it can be observed that the membrane fouling resistance, Rf, increases 

with TMP for a constant vtang. Similar results were reported  by Kwon et al.
14

 In the case 

of vtang, it seems to have a positive effect upon Rf. The increase in vtang produces a higher 

turbulence near the membrane surface. As a consequence, concentration polarization 

and the formation of a fouling layer is less favourable and an increase of vtang  has a 

marked beneficial effect on reducing fouling.
15

  

 

Insert Table 1 about here. 

 

A better understanding of the phenomenological processes occurring during filtration 

can be obtained by examining the best fit for the single parameter models.
5
 Table 1 

shows the theoretically estimated parameters for the complete blocking and the 

intermediate blocking Hermia´s models. When the parameters of the model are 

estimated by means of fitting them to the experimental results,
8
 they decrease when the 

vtang  increases, whereas they do not follow any pattern with TMP. On the other hand, 

when the parameters of the models are theoretically estimated (see Table1) their values 

increase with an increase in the TMP and with a decrease in the crossflow velocity. 

These results are consistent with the physical meaning and the definitions of the 



parameters of Hermia´s models adapted to crossflow filtration (Eq. (1)), the values of 

these parameters should be higher when membrane fouling is more severe, i.e. high 

TMPs and low crossflow velocities. These operating conditions in membrane crossflow 

filtration favour the accumulation of molecules near the membrane surface, i.e. fouling.  

 

According to table 1, when TMP increases, the theoretical values of the parameters of 

complete and intermediate blocking increase as well. This can be due to some molecules 

plugging the pores by bridging or transporting into pores, and thus the internal pore 

restrictions to fluid flow.
16  

Concerning to vtang, it was observed that the theoretical 

values of the parameters of complete and intermediate blocking decreased when vtang 

increased. This can be explained by the thinner diffusion layer formed at high vtangs. It is 

well known that the fouling layer will become thinner with increasing vtangs.  On the 

other hand, an increase in vtang will cause the long chain macromolecules of the fouling 

layer formed to become finer due to the selective deposition caused by the crossflow 

effect. 
16,17

  

 

An empirical correlation between the theoretical values of the parameters of complete 

and intermediate blocking, K, and the operating conditions (TMP and vtang)  was 

determined by multiple linear regression analysis using statgraphics centurion XV. The 

equation of the fitted model for K was: 

 

K = 5.19583 - 1.27125· vtang + 24.9533·TMP             (8) 

 

 

where K is given in m
-1

, vtang is given in m/s and TMP is given in MPa.  

 



The measure of fit, as per the R
2
, was 98.27. The Durbin-Watson statistic was 2.21 (p-

Value = 0.54). As this value was close to 2, this confirms that the residuals vary 

ramdomly and there is no indication of serial autocorrelation in the residuals at the 

95.0% confidence level. Moreover, the p-Value is greater than 0.05; therefore it 

confirms that there is not a significant correlation at the 5% significance level. The Lag 

1 residual autocorrelation was -0.12. Since this value is near to cero there is not 

significant structure unaccounted for by the model.  

 

 

Tables 2 and 3 show the ANOVA table obtained for K. In Table 2, the ANOVA 

analysis showed a p-value of 0.0000 for the model. Since this value is lower than 0.05 

there is a significant relationship of the form specified by the model between Rf and the 

4 parameters considered at the 95.0% confidence level.  

 

In table 3, the p-values that correspond to the different parameters studied (TMP and 

vtang) are lower to 0.05. Therefore, there is a statistically significant relationship between 

the variables considered at the 95% confidence level.  

 

A statistical multifactorial analysis (Table 4) of K, vtang and TMP was also performed 

using statgraphics centurion XV. This analysis is able to quantify all the possible 

complex conjugated effects of the parameters considered.
18 

It shows what operating 

conditions, squared effects and interactions among factors are more significant in the 

response variable, K. The lower the p-value is, the more significant the influence of a 

factor on the response variable is. According to the p-values shown in Table 4, it can be 

observed that both TMP and vtang have a remarkable influence on K, since they have a 

p-value practically equal to zero. Moreover, vtang has more influence in K than TMP, 

according to the p-values. However, the squared effects are not significant enough (p-

values higher than 0.05). This confirms that the proposed model for K (Eq. 8) as a 

function of vtang and TMP is correct and it should not include the squared effects. 

 

5. Conclusions 

 



Modelling membrane processes is interesting since it helps to choose an adequate TMP 

and a vtang . This is positive from an operational point of view because by manipulating 

the operating conditions, it is possible to obtain a better control on membrane fouling 

processes. 

 

For the two models considered in this work, the precision in the model predictions is 

very high for low fouling conditions. 

 

For the experimental conditions that correspond to the highest fouling of the membrane, 

the intermediate blocking model fits best to the experimental data than the complete 

blocking model. For the rest of the experimental conditions evaluated, the complete 

blocking model fits slightly better to the experimental data than the intermediate 

blocking model. 

 

In general, the values of the theoretically estimated parameters of Hermia´s models 

adapted to crossflow filtration are higher when membrane fouling is more severe.  

 

A model for the parameters of blocking models as a function of operating membrane 

conditions (vtang and TMP) was proposed in the case of membrane ultrafiltration of 

PEG.  

 

   

6. List of symbols 

 

ap  —  radius of the solute molecule (m) 



Cm  —  solute concentration over the membrane surface (kg/m
3
) 

C0  —  solute concentration in the feed solution (kg/ m
3
) 

CP  —  solute concentration in the permeate (kg/ m
3
) 

D  —  solute diffusivity (m
2
/s) 

Dint  —  internal membrane diameter (m) 

JPss  —  steady-state permeate flux (m/s) 

K  —  theoretical parameter of the blocking models (m
-1

) 

KC  —  constant in Eq. (1) that corresponds to the complete blocking model 

for crossflow filtration (m
-1

) 

Ki  — constant in Eq. (1) that corresponds to the intermediate blocking 

model for crossflow filtration (m
-1

) 

kTM  —  mass transfer coefficient (m/s) 

Re  —  Reynolds number (dimensionless) 

Rf   —  membrane fouling resistance (m
-1

) 

Sc  —  Schmidt number (dimensionless) 

vtang  —  crossflow velocity related to the tangential flow (m/s) 

Xm  —  solute mass fraction over the membrane surface (dimensionless) 

 

Greek letters 

 

  —  dynamic viscosity (kg/m s) 

  —  kinematic viscosity (m
2
/s) 

  —  solvent density (kg/ m
3
) 

m  —  density of the feed solution over the membrane surface (kg/ m
3
) 

s  —  solute density (kg/ m
3
) 



  —  solute form factor (dimensionless) 
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Fig. 1b 
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Fig. 1c 

 

 

Fig. 1d 

 

Fig. 1. Fouling resistance experimental and fitted values using complete blocking model 

as a function of vtang for a solute concentration of 5 g/L.  (a) 0.1 MPa. (b) 0.2 MPa. (c) 

0.3 MPa. (d) 0.4 MPa. ♦ 1 m/s; ■ 2 m/s; ○ 3 m/s. 
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Fig. 2a 

 

Fig. 2b 
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Fig. 2c 

 

Fig. 2d 

 

Fig. 2. Fouling resistance experimental and fitted values using intermediate blocking 

model as a function of vtang for a solute concentration of 5 g/L.  (a) 0.1 MPa. (b) 0.2 

MPa. (c) 0.3 MPa. (d) 0.4 MPa. ♦ 1 m/s; ■ 2 m/s; ○ 3 m/s. 
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Table 1. Theoretically and empirically estimated parameters of complete blocking and 

intermediate blocking Hermia´s models adapted to crossflow ultrafiltration. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. ANOVA table for k: Analysis of variance. 

Source 
Sum of 

Squares 

Degrees of 

freedom 
Mean Square F-Ratio P-Value 

Model 106.329 2 53.1645 255.81 0.0000 

Residual 1.87043 9 0.207825   

Total (Corr.) 108.199 11    

 

Table 3. ANOVA table for K: Coefficient analysis. 

Parameter Estimate Standard Error T-Statistic P-Value 

Constant 5.19583 0.455879 11.3974 0.0000 

vtang -1.27125 0.161177 -7.88727 0.0000 

TMP 24.9533 1.17707 21.1995 0.0000 

 

TMP (MPa) Crossflow velocity (m/s) Kct and Kit (m
-1

) 

0.1 

1 6.61 

2 4.97 

3 4.06 

0.2 

1 8.60 

2 7.79 

3 6.30 

0.3 

1 11.15 

2 9.77 

3 9.40 

0.4 

1 14.79 

2 12.04 

3 11.22 



Table 4. ANOVA table for k: Analysis of simple and coupled effects of TMP and vtang. 

Source 
Sum of 

Squares 

Degrees of 

freedom 
Mean Square F-Ratio P-Value 

A:TMP 9.70282 1 9.70282 37.37 0.0017 

B:vtang 12.9286 1 12.9286 49.80 0.0009 

AA 0.0186889 1 0.0186889 0.07 0.7992 

AB 0.157502 1 0.157502 0.61 0.4713 

BB 0.372504 1 0.372504 1.43 0.2847 

Total error 1.29805 5 0.25961   

Total (corr.) 108.199 11    

 

 


