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Abstract

Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy
subjects. Glucose-insulin models are widely used in the development of new predictive control strategies in order to
maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in
the blood. However, due to the high variability of this biological process, the exact values of the model parameters are
unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds
under parametric uncertainty for the development of robustprediction tools is addressed.

A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state
transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In
contrast to current methods, the guaranteed simulations for the glucose-insulin model are carried out by considering
uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to
reduce the computational time significantly. As a result, weare able to compute a tight glucose envelope that bounds
all the possible patient’s glycemic responses with low computational effort.

Keywords: Compartmental models, Interval simulation, Glucose-insulin models, Type 1 diabetes, Blood glucose
prediction

1. Introduction

Insulin is a hormone secreted by the pancreas with the
role of reducing glucose concentration in the blood. Un-
der normal circumstances, insulin secretion maintains
the plasma glucose concentration within a narrow range.
A decrease in the plasma glucose concentration is fol-
lowed by a fall in the insulin secretion and an increase
of the counter-regulatory hormones like glucagon. On
the other hand, the insulin secretion increases when the
plasma glucose concentration rises, for instance after a
meal intake.

Patients affected by Type 1 Diabetes Mellitus suf-
fer an autoimmune disease characterised by an abso-
lute insulin deficit. When this is untreated, a high
level of plasma glucose concentration is obtained (hy-
perglycemia) leading to deleterious long-term compli-
cations. Indeed, exogenous insulin administration is
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necessary to maintain the plasma glucose concentration
within a narrow range (approximately 65-140 mg/dl).
This is currently done through insulin pens (Multiple
Daily Injections) or insulin pumps (Continuous Subcu-
taneous Insulin Infusion). However, if the insulin ad-
ministered is more than required, this may lead to a low
level of plasma glucose concentration (hypoglycemia),
causing unconsciousness and even death. In the last
decade, research has been focused on the development
of an Artificial Pancreas, i.e., a closed-loop glucose con-
trol system that automatically dispenses insulin subcu-
taneously. In either case, insulin therapy aims to mimic
the pattern of the endogenous insulin secretion found in
healthy subjects.

A common characteristic of biological processes
is variability, leading to large intra-patient and inter-
patient uncertainty. This variability arises, among other
causes, from the different physiological processes in-
volved such as subcutaneous insulin absorption, circa-
dian rhythms of insulin sensitivity, action of counter-
regulatory hormones, etc. In addition, meal ingestion
introduces important disturbances in glucose homeosta-
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sis depending, among other things, on the meal compo-
sition and even previous meals. Patient variability can
thus be a limiting factor to the performance of open-
loop (insulin pens and pumps) and closed-loop (artifi-
cial pancreas) insulin therapies. Tools are required for
the design of robust strategies integrating patient’s vari-
ability.

Glucose-insulin models are widely used in the de-
velopment of new predictive control strategies. When
intra-patient variability is considered, the exact val-
ues of the model parameters are unknown. However,
they can be bounded by intervals characterising the ob-
served variability. Efficient methods for the predic-
tion of glycemic responses under intra-patient variabil-
ity may foster the development of new control strate-
gies such as robust Model Predictive Control [1], robust
fault detection [2], robust parameter identification [3],
robust hypoglycemia prediction, robust insulin dosage
optimisation [4] and robust model-based insulin pump
therapies [5].

The aim of this work is to compute tight solution
bounds for glucose-insulin models to predict the glu-
cose concentration under intra-patient variability in sub-
jects with type 1 diabetes. Monte Carlo methods have
been traditionally used to deal with uncertainty. How-
ever, they have not been considered as an effective ap-
proach to compute a glucose envelope, as they do not
guarantee the inclusion of all the possible glucose val-
ues. Independently to the number of simulations per-
formed, there is no guarantee that the output space has
been completely covered. Moreover, Monte Carlo tech-
niques generally have a high computational cost, as a
high number of simulations is needed to cover the un-
certain input space sufficiently.

A preceding contribution byCalm et al. [6] has
applied modal interval analysis [7] to compute tight
envelopes of glucose concentration under parametric
uncertainty. Compared with Monte Carlo simula-
tions, modal interval analysis guarantees that the ac-
tual response is inside the computed envelope, and re-
quires much less computational time. However, only
some specific parameters of the glucose-insulin model
are considered uncertain. Furthermore, Euler time-
discretisation of equations is necessary, which may not
be efficient from a numerical point of view.

In this work a monotone systems approach for the
computation of glucose envelopes is presented. A
monotonicity analysis of the model states and param-
eters is performed. An analysis of critical points, state
transformations and application of differential inequal-
ities are proposed to deal with non-monotone param-
eters. The glucose-insulin model developed byHov-

orka et al. [8], one of the relevant models in liter-
ature, has been chosen to illustrate the technique, al-
though the method could be extended to other models.
Parametric uncertainty is considered inall the param-
eters and initial conditions of the model. Additionally,
no time-discretisation is required, which helps to reduce
the computational time.

The paper has been organised as follows. In Section
2, interval simulation for an initial value problem for
parametric ordinary differential equations (ODEs) is in-
troduced, and the two main approaches are listed. In
Section 3, the glucose-insulin model developed byHov-
orka et al. [8] is described. In Section 4, the mono-
tonicity of the glucose-insulin equations are analysed
with respect to the states and parameters of the model
in order to compute the solution envelope under para-
metric uncertainty. In Section 5, glucose concentration
envelopes are computed and compared with numerical
simulations. Finally, Section 6 outlines the conclusions
of this study.

2. Initial Value Problems for Parametric ODEs

Continuous-time compartmental systems under para-
metric uncertainty are considered. The parameters and
initial conditions of the model are unknown, but they
can be bounded by intervals. Systems are described by
an initial-value problem (IVP):

ẋ(t, p) = f (x, p), x(t0) = x0,

x ∈ Rn, t ∈ R, p ∈ Rnp

(1)

where x is the state vector,p is the parameter vec-
tor, np is the number of parameters, andx(t; t0, x0, p)
is the solution of (1). Representing intervals in bold,
interval vectorsp and x0 include all the possible val-
ues for the parametersp and for the initial conditions
x0 of the model, respectively. The set of possible solu-
tions considering parametric uncertainty is denoted by
x(t; t0, x0,p):

x(t; t0, x0,p) = {x(t; t0, x0, p) | x0 ∈ x0, p ∈ p}

The computation of solution envelopes plays a key
role in the simulation of systems under parametric un-
certainty. Such a computation can be performed by us-
ing one-step-ahead iteration based on previous approxi-
mations of the reachable set (region-based approaches),
or a set of point-wise trajectories generated by the se-
lection of particular values of the parametersp ∈ p and
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initial conditionsx0 ∈ x0 by using heuristics or optimi-
sation (trajectory-based approaches) [9]. Algorithms to
compute solution envelopes are classified according to
the type of approach.

2.1. Region-based approaches

Region-based approaches are performed in two
phases [10, 11], and applying one-step-ahead iteration
based on previous approximations of the reachable set.
The first step consists in finding an a priori enclosurex̃i

for an interval [ti , ti+1], supposingxi has been computed
at ti such that

x(ti ; t0, x0,p) ⊆ xi .

There is a unique solution of the state vectorx(t) for
eachxi ∈ xi , t ∈ [ti , ti+1], such that

x(t; ti , xi ,p) ⊆ x̃i ∀t ∈ [ti , ti+1].

The second step consists in an enclosure of the trun-
cation error of the method throughx̃i , and the computa-
tion of a tighter enclosurexi+1 at ti+1 such that

x(ti+1; t0, x0,p) ⊆ xi+1 ⊆ x̃i .

At each iteration, the true solution set is wrapped into
a region-based on outer approximations. This produces
an overestimation commonly known as the wrapping ef-
fect [9, 10]. Regions must be feasible to be constructed
and represented on a computer, or the region represen-
tation will produce a significant overestimation. The er-
rors involved can quickly accumulate, and hence, the
solution envelope of the interval system explodes. Sev-
eral methods have been proposed to avoid the wrapping
effect, or at least to reduce it, since it was first observed
in the early 1960s [12]. These methods include a change
of coordinates [12], the use of Taylor models [13], or a
QR-factorisation [14] to rotate the state space of the in-
terval system, as well as the use of ellipsoids [15] or
zonotopes [16].

2.2. Trajectory-based approaches

The rate of change for each compartment of an ODE
compartmental model can be expressed as a function of
the rest of compartments at that time:

ẋ1(t, p) = f1(t, x1(t), x2(t), ..., xn(t), p)

ẋ2(t, p) = f2(t, x1(t), x2(t), ..., xn(t), p)
...

ẋn(t, p) = fn(t, x1(t), x2(t), ..., xn(t), p)

simplified by dx
dt = f (x,p), wheref is the vector func-

tion with componentsfi , and all compartmentsxi of the
system take arbitrary non-negative values.

This approach consists in performing a monotonic-
ity analysis of the compartments and parameters of the
model. Monotone systems have very robust dynamical
characteristics, since they respond to perturbations in a
predictable way. The interconnection of monotone sys-
tems may be studied in an analytical way [11], by con-
sidering a flowx(t) = φ(x0, t). A system is monotone if
x0 � y0 ⇒ φ(x0, t) � φ(y0, t) for all t ≥ 0, where� is a
given relation order. Cooperative systems form a class
of monotone dynamical systems [17] in which

∂ fi
∂x j
≥ 0, for all i , j, t ≥ 0.

Graph theory also allows analysing monotone and
cooperative systems by using aspecies graph[18], in
which a node is assigned for each compartment of the
model. If the nodexi has no direct effect on nodex j ,

the partial derivative∂ f j

∂xi
(x) equals zero; thus no edge

is drawn from nodexi to nodex j . If the effect of the
nodexi on nodex j is positive, the derivative is strictly
positive, an activation arrow (→) is drawn. Finally, if
the effect is negative, an inhibition line (⊣) is drawn.
However, if the derivative sign changes depending on
the particular entries, both an activation arrow and an
inhibition line are drawn from nodexi to nodex j .

A spin assignmentis an allocation in which each node
has a sign, such that nodes connected by an activation
arrow (→) have the same sign, while nodes connected
by an inhibition line (⊣) have different signs. If at least
one consistent assignment exists, the dynamical system
is monotone. Furthermore, if all nodes are connected
by activation arrows (→), the system is cooperative. A
similar graph can be performed using the exact solution
of the problem, instead of the ODEs system. Figure
1 shows an example of a monotone system and a non-
monotone system.

A)
 

B)
 

?
 

Figure 1: Example of monotone and non-monotone systems. A) A
monotone system. B) A non-monotone system.
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In order to calculate solution envelopes, an upper
bounding model and a lower bounding model are com-
puted. In an upper bounding model, the cooperative
states with respect to the solution take their upper bound
value, while the monotone but non-cooperative states,
known as competitive states, take the value of their
lower bound. On the other hand, a lower bounding
model is obtained taking account of the lower bound of
the cooperative states, and the upper bound of the com-
petitive states. In both cases, the non-monotone states
are still computed as intervals. However, different meth-
ods, such as a change of variables or the computation of
critical points, can help to reduce the overestimation of
the output bounds, as shown in Section 3.

The model parameters are considered as invariant
compartments to carry out the monotonicity and coop-
erativeness analysis, where

ẋ1(t) = f1(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)
...

ẋn(t) = fn(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)

ṗi(t) = 0

3. The glucose-insulin model

The glucose-insulin model is composed of four sys-
tems: the carbohydrate digestion and absorption system,
the subcutaneous insulin absorption system, the insulin
action system, and the glucose metabolism system. Fig-
ure 2 shows the input-output relationship among these
system parts. All the systems used in this work are in-
troduced in [8], with reported experimental validation
results [19].

3.1. The carbohydrate digestion and absorption system

This system describes the carbohydrate digestion and
its catabolism to glucose. The gut absorption rateUG(t)
(mmol/min) is given by

UG(t) =
DG AG t e−t/tmax,G

t2max,G

(2)

whereDG (mmol) is the amount of carbohydrates di-
gested,AG (unitless) is the carbohydrate bioavailability,
andtmax,G (min) is the time-of-maximum appearance of
glucose in the accessible glucose compartment.

Subcutaneous 
insulin 

absorption 

Carbohydrate 
digestion and 

absorption 

Glucose 
metabolism 

Insulin action 

Insulin Meal 

Glucose concentration 

Figure 2:Diagram of the systems interaction.

3.2. The subcutaneous insulin absorption system

This system calculates how the administered in-
sulin appears in the blood. It is composed by a two-
compartment chain with identical transfer rates 1/tmax,I

(min) between the two subcutaneous insulin compart-
mentsS1 andS2:

Ṡ1(t) = u(t) −
S1(t)
tmax,I

Ṡ2(t) =
S1(t)
tmax,I

−
S2(t)
tmax,I

(3)

whereu(t) (mU/min) represents the administration of
insulin (basal and bolus), andtmax,I (min) is the time-to-
maximum insulin absorption. The appearance of insulin
in the plasmaUI (t) (mU/min) is given by

UI (t) =
S2(t)
tmax,I

. (4)

The plasma insulin concentrationI (t) (mU/L) is rep-
resented by

İ (t) =
UI (t)
VI
− keI (t) (5)

whereVI (L) is the insulin distribution volume, andke

(1/min) is the fractional elimination rate.
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3.3. The insulin action system

The plasma insulin concentration affects the glucose
transportation from the plasma to the tissues, the dis-
posal of peripheral glucose, and the production of hep-
atic glucose. These actions are represented by

ẋ1(t) = −ka1x1(t) + kb1I (t)

ẋ2(t) = −ka2x2(t) + kb2I (t)

ẋ3(t) = −ka3x3(t) + kb3I (t)

(6)

wherex1(t) (1/min) represents the effects of insulin on
the distribution and transport of glucose,x2(t) (1/min)
stands for the effect on the glucose disposal, while
x3(t) (unitless) symbolises the effect on the production
of endogenous glucose. The parameterskai (1/min),
i = 1,2,3, are the deactivation rate constants, whilekb1,
kb2 (1/min2 per mU/L) andkb3 (1/min per mU/L) are the
activation rate constants.

3.4. The glucose metabolism system

Finally, the glucose kinetics are represented by a two-
compartment system, as follows:

Q̇1(t) = −x1(t)Q1(t) + k12Q2(t) − Fc
01(t)

−FR(t) + UG(t) + EGP0(1− x3(t))

Q̇2(t) = x1(t)Q1(t) − (k12 + x2(t))Q2(t)

G(t) =
Q1(t)
VG

(7)

whereQ1(t) and Q2(t) (mmol) are the glucose masses
in the accessible compartment and the non-accessible
compartment, respectively, whileG(t) (mmol/L) is the
glucose concentration in the accessible compartment.
The parameterk12 (1/min) is the transfer rate from the
non-accessible compartment to the accessible compart-
ment, the parameterVG (L) denotes the distribution vol-
ume of the accessible compartment, and the parameter
EGP0 (mmol/min) stands for the endogenous glucose
production extrapolated to the zero insulin concentra-
tion. The functionFc

01(t) (mmol/min) and the parameter
F01 represent the total non-insulin-dependent glucose
disposal, while the functionFR(t) is the renal glucose
clearance above the glucose threshold of 9 mmol/L:

Fc
01(t) =



























F01G(t)
4.5

if G(t) < 4.5mmol/L

F01 if G(t) ≥ 4.5mmol/L

(8)

FR(t) =























0 if G(t) < 9mmol/L

0.003(G(t) − 9)VG if G(t) ≥ 9mmol/L

(9)

4. Solution envelopes under parametric uncertainty

In this section, the systems presented in the previous
section are analysed by trajectory-based approaches, fo-
cusing on the parameters monotonicity. Uncertainty is
considered for all the parameters, as well as for all the
initial conditions of the states.

4.1. The carbohydrate digestion and absorption system

The gut absorption rateUG(t) is given by (2), in
which the parametersDG andAG are cooperative with
respect toUG(t), as seen in Figure 3. This means that the
maximum value ofUG is reached only if the maximum
values ofDG andAG are computed.

DG 

AG 

UG 
tmaxG 

?
 

Figure 3:Parameters monotonicity of the carbohydrate digestion and
absorption system.

On the other hand,tmax,G is a non-monotone parame-
ter, but the critical points ofUG(t) with respect totmax,G

can be obtained for a fixedt:

∂UG(t)
∂tmax,G

= 0 ⇒ tmax,G =
t
2

The sign of the second derivative ofUG(t) with re-
spect totmax,G determines the stability of the critical
point t/2:

∂2UG(t)

∂t2max,G

|tmax,G=t/2= −
32 AG DG

e2 t3

As the second derivative is negative,UG(t) reaches its
maximum value attmax,G = t/2. However,t/2 is not al-
ways a possible value for the intervaltmax,G, depending
on the value oft at each time step. Ift/2 is not a possi-
ble value for the intervaltmax,G, the maximum value for
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UG(t) will be attained computing both interval bounds
of tmax,G and taking into account the one that maximizes
UG(t). On the other hand, the inferior bound ofUG(t)
is always obtained computing both interval bounds of
tmax,G and adopting the one that minimisesUG(t).

4.2. The subcutaneous insulin absorption system

Insulin can be administered in bolus or basal doses,
being cooperative with respect to the model in both
cases. Bolus are computed as the initial value of the
S1 compartment (3), whileu(t) denotes the basal doses
(3):

S1(0) = ubolus and u(t) = ubasal

The problem to solve is a linear ODE system given
by (3) and (4), whose solution [20] is given by

UI (t) = ubasal+
e−(t/tmax,I )t(−tmax,I ubasal+ ubolus)

t2max,I

+e−(t/tmax,I )(−ubasal+ UI (0))

with two critical points with respect to the parameter
tmax,I . In order to obtainUI (t) envelope, instead of work-
ing with tmax,I as an interval, both critical points (if these
values are inside thetmax,I interval) and interval bounds
are computed.

The plasma insulin concentrationI (t), given by (5), is
cooperative with respect toUI (t), while the parameters
VI andke are competitive, as seen in Figure 4.

ubasal 

ubolus 

UI 
tmaxI 

?
 

VI 
I
 

ke 

Figure 4: Parameters monotonicity of the subcutaneous insulin ab-
sorption system.

4.3. The insulin action system

The effects of insulin on the glucose transport from
the plasma to the tissues, the disposal of the peripheral
glucose, and the production of hepatic glucose are given
by (6). Analysing the equations of the system, it is clear
that I (t) andxi , i = 1,2,3 are all cooperative. Further-
more, the parameterskbi, i = 1,2,3, are also coopera-
tive, while the parameterskai, i = 1,2,3, are competi-
tive, as seen in Figure 5.

x1 
ka1 

x2 
ka2 

x3 
ka3 

I
 

kb1 

kb2 

kb3 

Figure 5:Parameters monotonicity of the insulin action system.

4.4. The glucose metabolism system

The equations of the glucose metabolism system (7)
are modified to avoid the parameters multi-incidence
in different equations. First of all, the non-insulin-
dependent glucose disposal (8) and the renal glucose
clearance (9) are transformed such thatFc

01(t) + FR(t) =
FC(t)G(t) + FR(t), as done in [6], where

FC(t) =











































F01

4.5
if G(t) < 4.5mmol/L

0.003VG if G(t) ≥ 9mmol/L

0 otherwise

FR(t) =







































0 if G(t) < 4.5mmol/L

F01 − 0.027VG if G(t) ≥ 9mmol/L

F01 otherwise
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As G(t) is given byG(t) = Q1(t)/VG, thenĠ(t) =
Q̇1(t)/VG. Thus, by expression (7):

Ġ(t) = −x1(t)G(t)

+
k12Q2(t) − FC(t)G(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

Q̇2(t) = x1(t)VGG(t) − (k12 + x2(t))Q2(t)

To avoid the parameterVG multi-incidence in both
equations, a new stateH(t) = Q2(t)/VG is defined.
Hence:

Ġ(t) = −x1(t)G(t) + k12H(t)

+
−FC(t)G(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ḣ(t) = x1(t)G(t) − (k12 + x2(t))H(t)

Finally, to avoid the multi-incidence of the statex1(t)
and the parameterk12, another new stateS(t) = H(t) +
G(t) is computed:

Ġ(t) = −x1(t)G(t) + k12(S(t) −G(t))

+
−FC(t)G(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ(t) = −x2(t)(S(t) −G(t))

+
−FC(t)G(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

(10)

The condition sign(∂Ġ(t)/∂S(t)) = sign(∂Ṡ(t)/∂G(t))
is necessary to prove the monotonicity between the
statesG(t) andS(t). As ∂Ġ(t)/∂S(t) = k12 ≥ 0, both
states are cooperative if∂Ṡ(t)/∂G(t) = x2(t)−FC(t)/VG

is non-negative.
As this condition is not always true, two mod-

els are computed: an upper bounding model and a
lower bounding model, in which elimination rates are
modified to satisfyx2(t) − FC(t)/VG ≥ 0. In the
lower bounding model, the statex2(t) is replaced by
max(x2(t), FC(t)/VG), increasing its value. Asx2(t) is a
competitive state, the model obtained is a lower bound-
ing model [21] of the model (10), and such that

Ġ1(t) = −x1(t)G1(t) + k12(S1(t) −G1(t))

+
−FC(t)G1(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ1(t) = −max(x2(t),
FC(t)

VG
)(S1(t) −G1(t))

+
−FC(t)G1(t) − FR(t) + UG(t) + EGP0(1− x3(t))

VG

(11)

For the upper bounding model,FC(t)/VG is re-
placed bymin(x2(t), FC(t)/VG), decreasing its value.
As FC(t)/VG is competitive, an upper bounding model
of (10) is obtained, such that

Ġ2(t) = −x1(t)G2(t) + k12(S2(t) −G2(t))

−min(x2(t),
FC(t)

VG
)G2(t)

+
−FR(t) + UG(t) + EGP0(1− x3(t))

VG

Ṡ2(t) = −x2(t)(S2(t) −G2(t))

−min(x2(t),
FC(t)

VG
)G2(t)

+
−FR(t) + UG(t) + EGP0(1− x3(t))

VG

(12)

where (11)≤ (10)≤ (12), andGi(t) andSi(t), i = 1,2,
are cooperative systems. The system (11) is used to
calculate the lower bound ofG(t), and the system (12)
for the upper bound. In both systems, the statesxi(t),
i = 1,2,3, are competitive, while the stateUG(t) is co-
operative. Furthermore, the parameterk12 is cooperative
andF01 is competitive. Finally, the parameterEGP0 is
monotone for all instantt, but it can be cooperative if
(1− x3(t)) > 0, or competitive otherwise. Also, the pa-
rameterVG is always monotone for all instantt, but can
be cooperative or not depending on whether it divides a
positive or a negative quantity, respectively. Thus both
intervals bounds for the parametersEGP0 andVG have
to be computed depending on the condition, as seen in
Figure 6.

5. Results

The glucose-insulin model developed byHovorka et
al. [8] has been analysed under parametric uncertainty.
The parameter values used in all the systems of the
model were taken from [8]. As an illustration of the
overestimation made, 5% uncertainty was considered in
all the parameters and initial conditions of the model.
The simulations were performed for a patient weight of
80kg, during the 5 hour period that follows a meal of
60 g and an insulin dose of 3 U, taking into account an
insulin basal infusion of 0.32 U/h.

All the simulations have been executed withMatlab
software (version R2007b) using an Intel(R) 3.2 GHz
Pentium(R) processor. We have computed the solution
envelope for two types of situations: long-term predic-
tions during a 5-hour postprandial period, and short-
term predictions in which the glucose concentration
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Figure 6:Parameters monotonicity of the glucose metabolism system.

is measured every 15 minutes. Long-term predictions
have been used for insulin dose optimisation in Multi-
ple Daily Injections [4] minimising a compound index
of hypoglycemia and hyperglycemia risk, and in robust
model-based insulin pump therapies using set-inversion
techniques [5]. Short-term predictions are used in the
context of Model Predictive Control [8] or robust hy-
poglycemia prediction, where information of new mea-
surements is fed into the predictor.

5.1. Long-term glucose prediction

In the long-term prediction examples a unique glu-
cose measurement is performed, at time zero. Differ-
ent scenarios have been computed by varying the initial
blood glucose in each simulation. The resulting solution
envelope has been compared with numerical simula-
tions to estimate the overestimation produced. The light
grey lines represent several possible numerical simu-
lations performed by varying the parameters and ini-
tial conditions values (Monte Carlo approaches), while
the black dashed lines represent the computed output
bounds.

In the first simulation, a safe initial condition of 150
mg/dL was computed, as seen in Figure 7. In the second
scenario, the initial condition was near hypoglycemia
with 80 mg/dL, as seen in Figure 8. Finally, an ini-
tial condition near hyperglycemia with 250 mg/dL was
computed, as seen in Figure 9.
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Figure 7:Solution envelope obtained for the first scenario.
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Figure 8:Solution envelope obtained for the second scenario.
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Figure 9:Solution envelope obtained for the third scenario.

5.2. Short-term glucose prediction

In the previous example, the glucose level is only
measured initially. However, continuous glucose mon-
itoring allows for the frequent measurement of the glu-
cose level in sensor-augmented pumps and the artificial
pancreas. In this case, short-term predictions are used at
each sample period to predict hypoglycemia or decide
the optimal insulin infusion. In this short-term simula-
tion, 30-minutes-ahead predictions are performed every
15 minutes, after each glucose level measurement (gen-
erated from a random nominal value for the parameters
inside the given intervals). As glucose measurements
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may include an error, 5% uncertainty is considered in
all the glucose values.
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Figure 10: Solution envelope for 30-minute-ahead predictions with
glucose measurements every 15 minutes.

6. Discussion and Conclusion

The simulations carried out in the previous section
are illustrative of the computational needs in a variety of
problems where long- or short-term glucose predictions
are used. The computation of tight glucose envelopes
for long-term predictions is important for the parame-
ter identification [3], to develop new insulin pump ther-
apies [5], and to perform insulin dosage optimisation
[4] These tools are fundamental in reducing the risks of
hyperglycemic and hypoglycemic episodes, which can
be deleterious for patients health. Furthermore, tight
glucose envelopes for short-term predictions may pro-
duce more robust and safer insulin infusion algorithms,
including robust fault detection [2]. Consideration of
intra-patient variability into the simulation allows to in-
crease the robustness of these methodologies, yielding
to safer systems.

In this work, a monotonicity and critical points anal-
ysis of all the model parameters has been proven as
a successful tool to compute solution envelopes of the
glucose-insulin model considering parametric uncer-
tainty. Nevertheless, as not all the compartments and
parameters of the model satisfy the monotonicity con-
ditions, we have considered an upper bounding model
and a lower bounding model, which satisfy the mono-
tonicity conditions, to compute a tight glucose envelope
for the original glucose-insulin model.

In the case of long-term predictions (Figures 7 to 9),
the computed envelope is almost perfect during the first
200 minutes, and then only a small overestimation is
made. The total error is smaller than 1.85%, and it is
measured by comparing the area of the numerical sim-
ulations (Monte Carlo approaches) with the area of the

computed solution envelope. The computational cost
does not depend on the number of uncertain parame-
ters, and it takes around 0.027 seconds to obtain the so-
lution envelope, using an explicit Runge-Kutta method
for the numerical simulation of the bounding systems. It
is noteworthy that the consideration of only 5% uncer-
tainty in all the parameters translates into a wide range
of possible patient responses from hypoglycemia to hy-
perglycemia. Note that this is not due to the simulation
overestimation, since the same effect is observed in the
Monte Carlo simulations. This fact illustrates the diffi-
culty of glycemic control in clinical practice.

In the case of short-term predictions, the solution en-
velope includes all the possible responses for the glu-
cose level as expected. As the glucose measurements
are performed every 15 minutes, the range of the glu-
cose envelope is much smaller than in the long-term
predictions. If the glucose measurements include less
uncertainty, or if they are performed with a higher fre-
quency, the range of the glucose envelope will be re-
duced even more. Observe that the computed glucose
range is bigger around the glucose peak value and it re-
duces as euglycemia is reached again. This is due to the
high influence of the uncertainty induced by the meal
intake, which vanishes when the equilibrium point is at-
tained. Compared to traditional approaches, a worst-
case analysis can be carried out to produce more robust
and safer decisions at each sample period.

A preceding contribution byCalm et al.[6] has tack-
led the same problem. However, some model param-
eters cannot be considered uncertain, which makes not
possible a direct comparison with our method. On the
other hand, although Monte Carlo approaches do not
guarantee the inclusion of all the possible glucose val-
ues, these simulations have been used to estimate an up-
per bound of the overestimation produced by our pro-
posed method.

Finally, one of the strengths of the method proposed
is that, although it has been applied to compute tight
solution bounds of the glucose-insulin model devel-
oped byHovorka et al. [8], it can also be applied to
other glucose-insulin models, or even for compartmen-
tal models that mimic other type of processes. In ad-
dition, the method computes guaranteed bounds with
few overestimation and low computational cost, which
make it suitable for real-time computation. The limi-
tation of this approach is that, as the dynamic model
structures differ, each model has to be analyzed inde-
pendently. Complexity of the analysis of critical points
(when required) will also increase with the complexity
of the model.

In conclusion, monotone systems approach is an ef-

9



ficient tool to compute tight solution envelopes for
glucose-insulin models under intra-patient variability.
These tools may foster the development of more robust
and safe algorithms for glycemic control in type 1 dia-
betes.
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