Technical University of Valencia

Department of Computer Systems and Computation

EL TRABAJO FIN DE MASTER

THE MASTER’S THESIS

Disefio y Desarrollo de un software para el cronometraje de eventos

deportivos de alta participacion no motorizados.

Design and Implementation of the software for the timing purposes of the

high participation non-motorized sports events.

Pawel Kubicz

Supervisor:

Vicente Pelechano Ferragud, PhD

Valencia, 2014

ACKNOWLEDGMENTS

| would like to acknowledge all the people that contributes to my practical as well as
theoretical work and supports me during my hard and exhaustive work.

First I would like to express my gratitude to my supervisor Vicente Pelechano
Ferragud, PhD for his advice and supervision of my work.

Then | would like to thanks to a company Cronochip and its boss Abraham Serra for
great cooperation and engaging me into the project.

Finally, | gratefully acknowledge my family and my girlfriend that gives me great

support and motivated me to the work.

TABLE OF CONTENTS

ABSTRACT L. 9
RESUMEN ..o 10
1. INTRODUCTIONoiiiiiiiiit s 11
1.1. GENERAL INTRODUCTION......ccoiiiiiiiiiiiii e 11
1.2, MOTIVATION L.t 12
2. BACKGROUND......ccitiiiie bbb 13
2.1 GENERAL REQUIREMENTS ...ttt 13
2.2. DEPLOYED TECHNOLOGIES.cooiitiiieiietee e 14
2.2.1. NET FRAMEWORKooiiiiiiiiicii s 14
2.2.2. C# PROGRAMING LANGUAGE.........coiiiiiiiiiii 18
2.2.3 MYSQL RDBMS ... 20
2.2.4 JSON DATA INTERCHANGE FORMATcoiiiiiiiiiiciiee e 22

2.3. TIMING SOFTWARE.......coiiiiiii s 23
2.3.1 CUBICSOFT’S COMPONENTScooi oot 23
2.3.2. TIMING METHODOLOGYooiiiiiiiiiniieiisie et 25

2.4. THE RFID TECHNOLOGYcoiiiiiieiieiesie et 27
2.5. EXISTING SOLUTIONS ON THE MARKETooiiiiiiiiieieeeee e 29

3. SOFTWARE DESIGN AND MODELINGccoooiiiiiiiiiicc e 31
3.1 GRAPHICAL USER INTERFACE DESIGNcccooiiiiiiiiiiic e, 31
3.2 DATABASE MODEL DESIGN.......ccoiiiiiiiiiii s 33
3.3 CUBICSOFT SOFTWARE MODELccoiiiiiiiiii e, 36
3.3.1 RACE PREPARATION PHASEooiiiiieiiiie et 38
3.3.2 RACE TIMING PHASE ...ttt 40
3.3.3 REPORTING PHASE ...ttt 41

3.4 CUBICSOFT ADDITIONAL MODULES..........cooiiiiiiiieiec e 42
3.4.1 THE CONNECTOR MODULEccccoiiiiiiiiiiiicec e 42
3.4.2 REST OF MODULES........cooooiiii e 44

4. SOFTWARE IMPLEMENTATION STAGEcooiii 46
4.1 CUBICSOFT DATABASE POPULATIONccciiiiiiiiiiiiieices e 46
4.2 COMMUNICATION WITH TIMINGSENSE LECTORocoviiiiiiiieneee e 50
4.3 RESULT CALCULATION STAGE ..ottt 52
4.4 REPORTS GENERATION STAGE.... ...ttt 58
4.5 COMMUNICATION WITH TIMINGSENSE ONLINE PLATFORM........cccccovviennnn. 60
4.7. FUTURE DEVELOPMENTooiiiiiiiiii e 63

O TESTING ...t 65

5.1, SOFTWARE TESTING ...ttt 65

5.2. EXAMINATION OF TIMING CAPABILITIES ..., 66

6. SOFTWARE DEPLOYMENT ...t 68
6.1. SOFTWARE INSTALLATION AND MAINTENANCEcccoiiiiiiii, 68
6.2. USER DOCUMENTATION ...ttt 70

6.2.1. TUTORIAL ... 70
6.2.2. LIST OF COMMON EXCEPTIONScccoiiiiiiiiii e 80

7. CONCLUSIONSo s 81

8. REFERENCES ... 82
8.1 PRINTED SOURCES........cooiiiiii 82
8.2 INTERNET SOURGCES.oiiiiiiii e 82

APPENDIX 1 - COMMUNICATION BETWEEN CONNECTOR AND LECTOR......84

APPENDIX 2 - COMMUNICATION BETWEEN CUBICSOFT AND PLATFORM ... 89

LIST OF TABLES

TABLE 1. SOME OF THE MOST COMMON NAMESPACES INCLUDED IN PROJECTI5] 17

TABLE 2. MOST IMPORTANT STORAGE ENGINES IN MYSQL[27]....ccceieieieiiiiineeneeee 21
TABLE 3. RFID SYSTEM FREQUENCY DEPENDENCY .[8]ccviiviiriiiiiieieieese e 29
TABLE 4. THE TEST RESULT OF INSERTION 20000 RECORDS TO “EVENTRACENUMBER”

DATABASE TABLE. ...t n et nn e nnenns 47
TABLE 5. EXPLANATION OF ALL LABELS USED IN JSON CHIP READING PACKET 51
TABLE 6. MYSQL CLUSTER DATABASE MEMORY USAGE........c.cccoiiiiiiiie, 56

TABLE 7. LIST OF THE BASIC EXCEPTIONS HANDLED BY CUBICSOFT ... 80

LIST OF FIGURE

FIGURE 1. THE .NET FRAMEWORK 4.0 HIERARCHY[23]coeoiiiiiiiiiiei et 15
FIGURE 2. RELATIONSHIP OF THE CLR AND THE CLASS LIBRARY IN AN APPLICATIONS
AND TO THE OVERALL SYSTEMI23] ..ottt 16
FIGURE 3. GRAPHICAL REPRESENTATION OF THE BASIC JSON STRUCTURE, OBJECT.[29]
... 22
FIGURE 4. RFID UHF 2 GEN CHIP TAG. ..ot 27
FIGURE 5. RFID SYSTEM. ..ottt 28
FIGURE 6. FIRST DRAW OF CUBICSOFT APPLICATION — WIREFRAME OF WIZARD
WINDOW. ..o bbb b et e st b e r e nr e 31
FIGURE 7. CUBICSOFT GUI, RACE CONFIGURATION DATA EDITION AND SETTING
WINDOW. LRt r R Rt b e e n e ar s 33
FIGURE 8. CUBICSOFT ER DATABASE MODELccoiiiiii s 34
FIGURE 9. CUBICSOFT CLASS MODEL VIEW.......cooiiiiiieee e s 37
FIGURE 10. CUBICSOFT - RACE PREPARATION VIEW INCLUDING WIZARD WINDOW ... 39
FIGURE 11. CUBICSOFT - ENQUIRIES VIEW.ooiiiee e s 40
FIGURE 12. CUBICSOFT CONNECTOR MODULE — MAIN VIEWccccooiiiiiiice 42
FIGURE 13. CUBICSOFT CONNECTOR MODULE — PROPERTY WINDOWccccovvviiirnnnne. 43
FIGURE 14. HBR-D406-E USB READER........cccoiiiiiiie e 45
FIGURE 15. MICROSOFT VISUAL STUDIO QUERY BUILDER — VIEW ON THE ENQUIRIES
IMIODIEL ...t b e bbb bbbt bRt Rt R e e bRt b e R Rt e n b renes 53
FIGURE 16. ENQUIRY REPORT VIEW.ooiiiiiiiiiiie et 59
FIGURE 17. ONLINE PLATFORM WEB PAGE.coiiiie s 60
FIGURE 18. CUBICSOFT USES WEB SERVICE TO DOWNLOAD RACE CONFIGURATION
DATA FROM PLATFORM. ..ottt 62
FIGURE 19. A PART OF THE CUBICSOFT SCRIPT INSTALLER BUILDER.ccccociiiiine 69
FIGURE 20. CUBICSOFT INSTALLER WINDOW.oiiiiiiiieiisesee e e 71
FIGURE 21. CUBICSOFT SETTINGS WINDOW.cooiiiiiiiiiicieee s 72
FIGURE 22. CUBICSOFT PRINCIPAL RIBBON MENU.cccooiiiiiiiieiiiiee e 72
FIGURE 23. CUBICSOFT WIZARD WINDOW, A NEW RACE PREPARATION.ccccoovvvvvrnene. 74
FIGURE 24. CUBICSOFT MAIN WINDOW, A RACE DATA CONFIGURATION.ccccceineee 75
FIGURE 25. CUBICSOFT VALIDATION WINDOW, ENQUIRIES VIEW SHOWING ALL
ATHLETES WITHOUT RACE NUMBER ASSIGNATION.cooiiiiieiiieee s 76

FIGURE 26. CUBICSOFT ENQUIRIES VIEW, CHANGE THE RACE CATEGORY FOR A
SELECTED ATHLETE. ... e 77

FIGURE 27. CUBICSOFT CONNECTOR MODULE, CONNECTIONS WITH TIMINGSENSE

LECTORS. . et E e bbbt 7
FIGURE 28. CUBICSOFT RESULT CALCULATION MODULE.ccociiiiiiiiiiii 78
FIGURE 29. CUBICSOFT EVENT WAVE TIME VIEW.c.ccoiiiiiiii 79

FIGURE 30. CUBICSOFT GRID REPORT VIEW.ccooiiiiiiiiiiii s 79

ABBREVIATIONS

AIDC - Automatic Identification and Data Capture
API - Application Programming Interface

CLR - Common Language Runtime

CUBICSOFT - a software described in this thesis for timing control
DLL - Dynamic-Link Library

FCL - .NET Framework Class Library

GUI - Graphical User Interface

IDE - Integrated Development Environment

JSON - JavaScript Object Notation

MSIL - Microsoft Intermediate Language

NTP - Network Time Protocol

RFID - Radio-Frequency Identification

RDBMS - Relational Database Management System
SVN — Subversion

TIMINGSENSE — a name of new timing system
UHF - Ultra High Frequency

XML - Extensible Markup Language

ABSTRACT

The master’s thesis consist of the design and development of the software for the
timing purposes of the high participation non-motorized sports events (athletic races, cycling,
triathlon, etc.). Given software should be intuitive and easy to use by end users (timekeepers).
The software must fully manage all aspects and features of the race, the athlete registrations,
results calculation, reporting etc. A timing process is done by RFID technology. The company
Cronochip, where the given project is being developed, is developing its own timing system,
equipment and chips using RFID UHF second generation technology for time control. One of
the main objectives of the project is that the software can communicate with a timing
equipment to receive chips readings (participants are carrying chips), monitor the status of
equipment, recover old chips readings, etc. Likewise, the company is also working on
developing an online platform that will host online registration, results in real-time interaction
with social networks, etc. The timing software developed in this thesis should be integrated
with the online platform to import participants and configuration of a races and to publish the
results so that the whole process becomes easier for the timekeeper. Presented software,
which name is CubicSoft, is a motherboard for the newly formed sport timing system,
TimingSense, which manages all functionality and communication between timing equipment

and online platform.

RESUMEN

El trabajo fin de master se lleva a cabo el disefio y desarrollo de un software para el
cronometraje de eventos deportivos, tales como carreras de atletismo, ciclismo y triatlon. Este
software debe ser intuitivo y facil de manejar por los usuarios finales (cronometradores). El
software debe gestionar de forma completa todos los aspectos y caracteristicas de la prueba,
de las inscripciones de atletas, el calculo de resultados, la generacién de informes, la gestion
de incidencias, etc. El cronometraje se realizara haciendo uso de la tecnologia rfid. La
empresa Cronochip, donde se realiza el proyecto, esta desarrollando sus propios equipos y
chips utilizando la tecnologia rfid de segunda generacion para el control de tiempos. Uno de
los objetivos esenciales del proyecto es que el software pueda comunicarse con los equipos de
cronometraje para poder recibir las lecturas de chips (que llevardn los participantes),
monitorizar el estado de los equipos, recuperar lecturas antiguas, etc. Asi mismo, también la
empresa esta trabajando en el desarrollo de una plataforma online que albergaré inscripciones
online, resultados, resultados en tiempo real, interaccion con redes sociales, etc. El software
de cronometraje desarrollado en esta tesina debe integrarse con la plataforma online para
poder importar inscripciones y definiciones de pruebas, asi como para poder publicar los

resultados de forma que todo el proceso resulte sencillo para el cronometrador.

10

1. INTRODUCTION

1.1. GENERAL INTRODUCTION

Nowadays where a running is a hot topic and a lot of people is training some sports,
there are organized a competitions where is a need to control time of each of participants
especially in sports like athletic races, cycling, triathlon, etc. Mostly each sport event need
time controlling. In this case is a need of use a sophisticated tools for timing purposes.
A timing system is a very powerful and complex instrument.

My work is dedicated to the Cronochip company located in Pobla de Vallbona and is
concentrated generally on creating a part of timing system of the high participation non-
motorized sports events. The field of sport timing is fairly developed. Nowadays there are
some companies in the world which are specialized in this area. The main part of the timing
system is a time control software which creation process is presented in given master’s thesis.
There are some programs available on the market that can manage a time measuring. These
applications are complex and offer various services to manage a time measuring like manage
all aspects and features of the race, calculates result, generate reports, etc. However most of
them have a lot of options which are not used by a casual user (timekeepers) and are very
difficult to manipulate. Normally there is a need of special training to learn how to use a given
software. Apart from these programs are expensive, usually each timing system has its own
dedicated software to manage a time measuring.

As mentioned above a new timing system, which name is TimingSense, is being
created. TimingSense works with the technology radio-frequency identification, RFID, ultra
high frequency, UHF, the second generation. Therefore there was designed and implemented
unique software dedicated to cooperate with TimingSense system to manage a time measuring
during non-motorized sport competitions. The presented program deliver all indispensable
functions and services for future timekeepers, which are described in detail later in this thesis,
starting from race preparation, result calculation and ending on sending result to online

platform and report generation.

11

1.2. MOTIVATION

The thing that motivates me the most, was the importance of the RFID technology in
our everyday life and being a part of a newly emerging timing system. Nowadays RFID is
a technology which is applicable in many areas of everyday life like credit cards, tickets,
advanced systems, etc. and every year the demand on this technology is increasing.
Personally, 1 was always interested in the RFID technology. It is inspiring me and this project
give me a real opportunity to work with the RFID technology. | was faced with opportunity to
create a part of a timing system which can be used in future by many people and somehow
help develop the idea of company Cronochip where | was implementing my project and
where | can give my own contribution to the project. Consequently, | decided to devote my
master’s dissertation for purposes of the Cronochip located in Pobla de Vallbona. In
cooperation of Polytechnic University of Valencia and company Cronochip | have been
implementing the software for sport event timing purposes. What motivates me the most was
the fact that my hard work will be used by other people (timekeepers) in their everyday work

all over the world.

2. BACKGROUND

The chapter of theoretical background presents the general requirements imposed on
the project, main technologies used in project, principle of the RFID and description of a main
components used in project. At the end of the chapter there is a revision of already existing

solutions on the market, existing software to manage a time measuring.

2.1 GENERAL REQUIREMENTS

First aspect of my work was to gathered necessary information and make investigation
of the sport timing environment. On this basis the project was designed and then
implemented.

Application, which is named CubicSoft, had to meet six basic requirements given by
the company Cronochip:

e devotes to work with timekeepers

e has user-friendly interface

e provides a simple management of time measuring

e provides an effective result calculation

e generates report

e be well-documented

Before the work over project have been started there was a need to choose correct
technologies that will satisfy the requirements of TimingSense system and will not force final
users to unnecessary installation of additional software. The first step was to investigate the
sport timing environment. After short examination and consults the standard configuration of
the workstation was determined. CubicSoft will be designed to work with Microsoft Windows
operative system.

Finally after gathering basic information the correct technologies could be selected.
Because of operating systems it was decided to use .NET Framework 4 which is a integrated
component of Windows 7 or later, there is no need to install extern software.[20] The next
technology selected to be deployed was programming language C# 4.0. As it is the most
powerful and the most common .NET language.[21] My skills and great knowledge of this
programming language led me to this choice. Moreover there was some doubts in choosing

the correct data storage system. In case of database technology selection there was considered

two options Microsoft SQL and MySQL. After long deliberation and analysis of pros and
cons the second option was chosen, MySQL technology from the Oracle company.[3] The last
aspect is a communication between CubicSoft and, TimingSense equipment or TimingSense
online platform. To interchange information between TimingSense system over TCP/IP it is
used JSON format to transmit a data object. All above technologies are describes in detail

with exact explication of every aspect in the next subsection.

2.2. DEPLOYED TECHNOLOGIES

This section describes four main technologies that were involved in my project. They
are the core of my work and without them it will be impossible to create this application.
Frankly speaking, they consist mostly of Microsoft proprietary technologies starting from
programming environment .NET Framework 4, programming language C# 4.0 and
development environment Microsoft Visual Studio 2010 and ending on Oracle technology,

database system which name is MySQL.

2.2.1. NET FRAMEWORK
The core technology used to create the CubicSoft software was the .NET Framework
4.0. The Microsoft .NET Framework is a software framework dedicated to Microsoft
Windows operating systems, but not only. The .NET Framework consist of components
needed to develop, deploy, and execute Web applications, Windows applications, Web
services, Windows services, and Console applications. The .NET Framework has a three-level
hierarchy which is in constant improvement:[3]
e CLR
e _NET Framework class library
e development technologies like ADO.NET, ASP.NET, Windows Forms, Windows
Presentation Foundation, Windows Communication Foundation, Windows
Workflow Foundation, Windows Card Space and LINQ

The .NET Framework development technologies and class libraries are increasing with every
new release of the framework starting from the first .NET 2.0. Now the newest .NET
framework is 4.5 which adds some new functionalities like asynchronies model to the .NET

framework hierarchy. Above picture presents the .NET Framework 4.0 hierarchy.

14

0’ Jdomauieldd 13N’

Figure 1. The .NET Framework 4.0 hierarchy[23]

The Common Language Runtime, known as CLR, is the base of the .NET Framework
applications. The CLR is what actually loads, verifies, and executes development
technologies. The CLR is responsible for managing memory, code execution, thread
execution, compilation, code safety verification, etc. The fundamental principle of .NET
runtime is a code management. Code that has its execution managed by the CLR is known as
managed code otherwise when code that do not run under the control of the CLR is said to be
unmanaged as showed on the picture below. Mostly all technologies available with .NET use

manage code, specific is ASP.NET technology.

15

Custom object

libraries

Internet
Information
Services

Class Operating system/

library Hardware

Figure 2. Relationship of the CLR and the class library in an applications and to the overall

system[23]

The other important component of .NET Framework is .NET Framework Class
Library, FCL, which includes a large number of reusable classes organized in a hierarchy of
namespaces.[11] The FCL is an object oriented class which is hierarchically design and
contains a subset Base Class Library. It contains the main set of namespaces common for all
NET languages. Whereas the FCL is superset of the Base Class Library and contains the
entire class library for .NET framework. Some of the most frequently used namespaces which

are included in my project are placed in the Table 1 presented below.

16

Table 1. Some of the most common namespaces included in project[5]

Namespace

Description

System

The core set of main classes and all data types: Math, Integer,

Boolean, String, etc.

System::Collections

Defines commonly used collections like: List, Stack, Queue, etc.

System::Diagnostics

Includes event logging and provides interaction with system

processes.

System::10

Enables reading and writing from/to different streams (file,

memory, network), provides a link to the file system, etc.

System::Exception

Provides a support to handle all kind of exception during

execution of the application

System::Windows::Forms

Provides access to the native Microsoft Windows interface and
contains classes for creating Windows-based applications
(overridden in this project): Controls, Menus and Toolbars,

Dialog Boxes, etc.

The principal design features of the .NET Framework:

e _NET language is neutral. All existing .NET compilers, compile source code to

Microsoft Intermediate Language, MSIL. A source code can be developed using one

of the languages provided by Microsoft like C#, C++/CLI or by third parties like

Delphi. All .NET compatible languages can use the Base Class Library.

e .NET can be platform independently. It is possible to implement .NET Framework

application to non-Windows platforms[5]

e .NET free developers from the memory management. There is no worry about

memory leakiness because .NET is deleting allocated memory alone due to garbage

collector.

e .NET provides consistent framework thanks to it developers can create their own

applications.

In general this project is concentrating on Windows Application technology more

precise on the Windows Forms namespace which is the graphical Application Programming

Interface, API, included as a part of .NET Framework base library.

17

2.2.2. C#PROGRAMING LANGUAGE

The software was created by use of the programming language C# 4.0, multi-paradigm
programming language (object-oriented, component-based). It is a principle Microsoft
programming language developed within .NET initiative. C# is built on the syntax and
semantics of well known C++, allowing C programmers to take advantage of .NET and the
CLR.

Main C# goals used in its design were as follows:[6]

e C# is intended to be a simple, general-purpose, modern, object-oriented
programming language.

e The language, and implementations, should provide support for software
engineering principles and automatic garbage collection.

e The language is intended for use in developing software components suitable for
deployment in distributed environments.

e Source code portability is vital, as is programmer portability, especially for those
programmers already familiar with C and C++.

e Support for internationalization.

e C# try to be suitable for writing applications for both hosted and embedded
systems, ranging from the very large that use sophisticated operating systems,
down to the very small having dedicated functions.

e C# applications are intended to be economical with regard to memory and
processing power requirements, the language was not intended to compete directly

on performance and size with C language.

C# programming language has gone through several versions. The version used in this
project is 4.0. This version is compatible with .NET framework 4.0. The newest version is C#
5.0 which was launched in ends of 2012 and works only with the newest .NET framework
4.5. Independently of the C# version a main compiler is Microsoft Visual C# built in
development environment such as Microsoft Visual Studio.

C# is a programming language that the most directly reflects the underlying MSIL.
Some important features of C# that distinguish it from C and C++ are:[6]

e Like C++, and unlike Java, C# programmers must use the keyword virtual to allow

methods to be overridden by subclasses.

e Local variables cannot shadow variables of the enclosing block, unlike C++ and C.
18

e C# namespace provides the same level of code isolation as a Java package or
a C++ namespace.

e Managed memory cannot be explicitly freed; it is automatically garbage collected.
Garbage collection is freeing the programmers of responsibility for releasing
memory that is no longer needed.

e C#, unlike Java, supports operator overloading.

e C# is more type safe than C++.

e In addition to the try..catch construct to handle exceptions, C# has
a try..catch...finally construct to guarantee execution of the code in the finally
block.

e C# language does not allow implicitly for global variables or functions. All
methods and members must be declared within classes and only static members of
public classes can substitute a global variables and functions.

C# has a unified type system that implies that all types, including primitives such as
string, are subclasses of the System.Object class. In C# a data type is divided in two
categories: value type and reference type. Value type is a primitive data type like integer,
float, char, etc. On the other hand reference type has the notation of referential identity such
as object. What is more in C# occurs two important terms when dealing with data types
boxing and unboxing.[24] Boxing is the operation of converting a value type data into
corresponding a reference type value like integer to object, it is always implicit. Inverse
operation is unboxing where a value of a reference type is converted into a data of a value
type, it require an explicit type cast. Important aspect of C# is generic data type which allows
for example to define generic classes, methods or collections. Generics use type parameters,
which make it possible to design classes, methods or collections that do not specify the type
used until the element is instantiated. The main advantage of using generic type parameters to
create classes, methods or collections is no need to additional cost of runtime casts or boxing

operations.

19

2.2.3 MYSQL RDBMS

The MySQL is an open-source relational database management system, RDBMS,
which belongs to Oracle company. The MySQL source code is available under the terms of
the General Public License, MySQL is an open source project. MySQL is the world's most
popular open source database software and has over 100 million copies downloaded and
distributed.[25] MySQL is a part of LAMP (Linux, Apache, MySQL, PHP / Perl / Python),
which is the fast-growing open source enterprise software package.

The actual version of MySQL which is used in this project 5.7. The MySQL from
version 5.5 is full featured database system which is one of the best free database and can
compete with commercial ones like Microsoft SQL. MySQL is characterized by following
features:[26]

e consistent with ANSI SQL 99

¢ high availability and velocity

e cross-platform support

e stored procedures

e CUrsors

e triggers

e multiple storage engines

e Unicode support

e ¢tc.

MySQL was chosen to this project in place of Microsoft SQL, which is high
compatible with .NET Framework, because of two factors. First thing is that MySQL is an
open source, non commercial software what means that has high scalability (works on almost
every platform and architecture), has great support, is cheap in maintains and available for
everyone without any additional limitations. The second factor and more important is
a multiple storage engines support. MySQL support different kind of engines and each type is

designed for different use as shown in Table 2 below.

20

Table 2. Most important storage engines in MySQL[27]

Engine name Description

MyISAM does not support transactions nor even
foreign keys, but allows (as opposed to the
other types) full-text search

InnoDB is the most powerful engine which supports

transactions, foreign keys, etc

MEMORY the fastest engine which is storing data in
memory, RAM. It has several limitations like
does not store the data after shutdown, not

support all types of data

FEDERATED enables the creation of distributed databases

Csv stores data in the standard of CSV files

Implemented software CubicSoft use two types of MySQL, the most functional
MySQL InnoDB to store all database on hard disc (is used to manage all race data) and for the
result calculation MySQL Cluster, the high speed and the high availability database. MySQL
Cluster is a technology providing shared-nothing clustering for the MySQL database
management system normally held in the memory RAM and optional in the hard disk. It is
designed in a way to provide high availability and high throughput with low latency. MySQL
Cluster is implemented through the Network Database NDB engine for MySQL.[28] The
main assumptions of MySQL Cluster are: data replication (MySQL Cluster uses synchronous
replication of data with a double confirmation of the changes in the database.), shared-nothing
clustering architecture (does not have in its system a single points of failure) and hybrid
storage (a data can be stored in the memory RAM and in the hard disk). The implementation
of MySQL Cluster is enough simple and has three main parts: data node (store the data),
management node (store the configuration) and APl node (manage a requests from the client
to the database). MySQL Cluster was found as the most appropriate technology and was
chosen to accelerate a race result calculation. All of the factors described above are the reason

of choosing MySQL as a main technology to store data in given project.

21

2.2.4 JSON DATA INTERCHANGE FORMAT

JavaScript Object Notation, JSON, is a lightweight computer data interchange format,
text format, that facilitates structured data interchange between all programming languages.
JSON is syntax of braces, brackets, colons, and commas similar to XML that is useful in
many applications in data transfer. JSON was inspired by the object literals of JavaScript.
JSON format is independent of any particular language. Many programming languages
support this format of the data by additional packages or libraries.

In the project is used a JSON framework for .NET to interchange data between
TimingSense systems’ software. In typical cases, the data in JSON format is retrieved from
the server as a text using HttpWebRequest object, and then converted to an specific JSON
object. The text should be encoded with UTF-8, default JSON format.[29] JSON provides
support for basic structure like object and for ordered lists of values. All programming
languages will have some feature for representing such lists, which can be array, vector, or
list. By accepting JSON’s simple convention, complex data structures can be easily
interchanged between incompatible programming languages. The basic structure an object is
an unordered set of name/value pairs. An object begins with ‘{* and ends with ‘}. Each name

is followed by “:¢ and the name/value pairs are separated by °, *.

obhject

string —o— value

£y
Ay

Figure 3. Graphical representation of the basic JSON structure, object.[29]

As a limitation JSON does not support cyclic graphs, at least not directly. JSON is not
indicated for applications requiring binary data.[7]

During software implementation there was doubts between XML and JSON format
efficiency, but as a result of better data compression the second method JSON was chosen.
What is more access to data in JSON format is more natural than access to the same data in
XML format.

22

2.3. TIMING SOFTWARE

In this section are described specific technologies used to create the software for the
time control purposes, CubicSoft, and there is a brief introduction to the world of races, is
presented necessary terminology and methodology of a race timing. This part is crucial to
understand the complexity of the timing software and the timing system at all.

2.3.1 CUBICSOFT’S COMPONENTS

CubicSoft, the timing software, was implemented as was mentioned earlier with
technology .NET framework 4.0 and programming language C# 4.0. The main data storage
technology is MySQL and to interchange data between the timing system is used JSON
format. The whole layout of the CubicSoft was created due to DevExpress GUI widgets,

a unique commercial part used in the project.

DEVEXPRESS CONTROLLER

Firstly the DevExpress’ controllers will be described. In the project is incorporated
a framework of DevExpress WinFroms, version 13.6, which is working with .NET
Framework 4.0 and Microsoft Visual Studio 10.[32] DevExpress WinFroms is a set of GUI
widgets, controls, for Windows Forms which are useful to create an application and contains
a lot of additional functionality which was helpful during software implementation.
DevExpress WinFroms contains more than 100 controls which are divided in four principal
categories and then in subcategories:

o Office-Inspired consist of Data Grid, Spreadsheet, Scheduler, etc.

e Reports & Analytics consist of Banded Reporting, Charting, Gauges, etc

e Windows 8 Ul contains a package of components for Windows 8 (touch screen)

e Navigation & Layout consist of Ribbon Menu, Docking, Navigation Bar, Layout

Manager, Wizard Control, etc.

CubicSoft is based on components from Navigation & Layout category (used to create GUI)
and Office-Inspired category (used to give additional functionality). The most common used
component in a project is a Data Grid controller which contains a set of functional grids
where the race data is presented and then modified by the user. There is also worth

mentioning a component from Reports & Analytics category to generates reports.

23

On the market exists controllers similar to DevExpress. Before the project design
started there was a debate in Cronochip which components is more appropriate. There was
doubts between DevExpress and Telerik product.[33] Taking into account a price and a more
appropriate design of controllers, chosen was DevExpress. What was more important in our
case, was a design of the Data Grid controller which in case of DevExpress satisfy the project
needs. DevExpress also posses elegant, customizable WinForms themes and app skins,
straightforward localization and easy-to-use application templates.

MYSQL CONNECTOR/NET DRIVER

The next important component of this project is a ADO.NET Driver for MySQL
(Connector/NET). In the development environment Visual Studio 10 only three types of
database are available by default: Microsoft SQL, IBM and Oracle. To use additional database
is needed a special driver. MySQL distribute Connector/NET driver which help to connect
and manage a database from Microsoft Visual Studio.[34] There is a need to deliver together
with CubicSoft Dynamic-Link Library, DLL, MySql.Data. Only in this way the correct

management of MySQL database from .NET Framework will be available.

JSON FORMAT

The other principal part for the project is a JSON text format. CubicSoft make a use of
Newtonsof JSON.NET, a popular high-performance JSON framework for .NET. The newest
version available and used in project is 6. The main advantage of JSON are:[35]

o flexible JSON serializer for converting between .NET objects and JSON

e LINQ to JSON for manually reading and writing JSON

e Convert JSON to and from XML

e High performance, faster than .NET's built-in JSON serializers

JSON format is used to interchange data between TimingSense system software. First to
communicate between Connector (one of the CubisSoft’s modules) and TimingSense
equipment (the lector) to receive chips readings in JSON format by use of TCP/IP data
transmission method. Then to interchange data between CubicSoft and online platform.
CubicSoft can receive from online platform all inscribed athletes who will participate in given
race and download the race configuration data. In the opposite direction CubicSoft can send

a race configuration data with a final results calculation to online platform. In this part a lot of
24

data is processed. Then generated JSON text, which has more than 1 MB, is sent thorough
network service implemented on the online platform side.

The main three components of CubicSoft was described, but there were smaller parts,
which was used in the project implementation process. First there were consulted and found
on some developer C# web pages and the reused in the project like C# NTP Client to

synchronize Windows pc clock.[36][37]

2.3.2. TIMING METHODOLOGY

First of all to understand the timing software idea, “for what is it?”” and “what have to
do it?”, is indispensable to get to know with terminology and methodology of a race timing.
Timing is a method of determining the time required to perform work in our case time to
accomplished sport event, race. The whole study associated with the time measurement can be
divided into three steps, this idea is also implemented in CubicSoft:

e race preparation phase

e proper observation and measurement of time

e elaboration of results

As was mentioned earlier TimingSense is a complete system created to timing
purposes of the high participation non-motorized sports events. TimingSense system is
designed to timing cycling, triathlon, athlete races, etc.

RACE PREPARATION PHASE

To proper understanding of the first phase race preparation implemented in CubicSoft
is necessary to know how look a typical race from the technical point of view. Let’s look at
the most popular athlete race which is a marathon. At the principle a race is a most general
term which tell us about a race competition/s in a given day. Then a race consist of an event/s
which is every single competition in a given race for example a race marathon can have two
events: the principle race marathon and the race on a distance of 10 km. Then every event has
assigned athletes who will participate in a given event race. There is a possibility that in the
race participates teams, every team consists of a given number of athletes and has prepared
separate classification. Every team belong to a given team type. Moreover every event consist

of 5 basic elements:

25

e splits, every event consist of several splits which number depends on the race type.
Split is a place where a lector is placed to reads a chip tags of every athletes
passing through that place for example in marathon are typically three splits: on
the start, 21 km and meta.

e waves, every athlete is assigned to his wave. Normally where is a lot of
participants, a race start is divided into two, three or more parts and those parts
create waves.

e categories, every athlete is assigned to his category. Categories can be divided into
two parts: the most common “age based” and standard, non age based, category.

e attributes, every athlete can have assigned several attributes like country, medical
details, t-shirt size, etc.

The last step in the race preparation is an assignment of athletes to appropriate race number.
During race a race number is what makes a participant unique. What is more every race
number has assigned one or more chip tag/s. The chip tag is hardcoded in the chip which is

carried during a race by a participant usually in the race number.

RACE TIMING PHASE

Then in the second phase which is a timing, during a race some chip is read in our case
by a TimingSense lector when athlete pass through a split and this data is send to a CubicSoft
module responsible for communication with lector. In this moment is used RFID technology
which is described in the next section. Like that CubicSoft can calculate a classification
during a race. Usually in a race day occur many incidents like some athlete disqualification,
athlete change race number or start in different wave or event, etc. During the race
a timekeeper has to be attentive and reflect every changes in CubicSoft. The process of a race

timing in presented software is fully automatic.

RESULT ELABORATION PHASE

The last phase is an elaboration of the results. This part due to CubicSoft is very
simple. CubicSoft deliver a two types of result presentation. First, very fast with just one click
results generation and printing. Second, more advanced where user can adjust every aspects of

a race data representation.

26

2.4. THE RFID TECHNOLOGY

The radio-frequency identification is a basic technology of TimingSense system. RFID
is a wireless non-contact technique which uses a radio-frequency electromagnetic fields to
transfer data for the purposes of automatically identifying and tracking tags attached to an
objects. RFID’s tags contain electronically stored information. The information that chips
contain may be read, recorded, or rewritten. RFID is part of the family of Automatic
Identification and Data Capture, AIDC, technologies. RFID technology is often a complement

to a barcode method.[1]

Figure 4. RFID UHF 2 GEN chip tag.

The history of the RFID start at 1945 in Soviet Union. Léon Theremin invented a tool
which retransmitted incident radio waves with audio information. From that day to now RFID
technology is more and more accessible with every year because of lower cost of the
production.[1] Typically RFID system consist of two main parts: tags and readers. RFID tags
contain at least two elements: an integrated circuit for storing and processing information,
modulating and demodulating a radio-frequency signal, collecting DC power from the
incident reader signal, and an antenna for receiving and transmitting the signal. The tag
information is stored in a non-volatile memory. RFID tags can be either passive, active or
battery-assisted passive. Most chips used in the race are passive (single-use only) are cheaper
and smaller because it has no battery. A battery-assisted passive (multi-use chip) are used in
triathlons, duathlon, etc. These chips are located on an athlete’s ankles (not in a race number)
and are more resistant, more precise. What is more, passive chip tags to start operation they
must be illuminated with a power level roughly three magnitudes stronger than for signal
transmission.[2] The second element, RFID reader, contains two principle parts: transceiver
antenna which transmits and receives radio signal and a reader to filter/decode signal. To sum

up an RFID reader transmits an encoded radio signal to interrogate the tag, then the RFID tag

27

receives the message and responds with its identification and other information as showed at

Figure 5 below.

Reader or
Interrogator

Tagor =~
Transponder

% Computer

Figure 5. RFID system.

RFID systems can be classified by the type of the tag and reader:[2]

e Passive Reader Active Tag, PRAT, system has a passive reader which only
receives radio signals from active tags (battery operated, transmit only).

e Active Reader Passive Tag, ARPT, system has an active reader, which transmits
interrogator signals and also receives authentication replies from passive tags.

e Active Reader Active Tag, ARAT, system uses active tags awoken with an

interrogator signal from the active reader (battery-assisted passive tag).

TimingSense system contains active reader and can work with two types of tags:
battery-assisted passive and passive. TimingSense system work with ultra high frequency,
UHF, (according to European standard) the second generation. RFID system frequency and
signalling is another aspect which will be discussed. Tags operating on LF and HF bands need
to be very close to the reader antenna. At UHF and higher frequencies there is no need to be
very close to the reader antenna and the tag can backscatter a signal. In regards to the
frequencies, the highest frequency is the fastest transfer and the biggest range, as showed in
Table 3.

28

Table 3. RFID system frequency dependency.[8]

Band Range Data speed Regulations | Tag cost

120-150 kHz (LF) 10 cm Low Unregulated 1$

13.56 MHz (HF) 10cm-1m | Low to moderate | ISM band 0.5%
worldwide

433 MHz (UHF) 1-100 m Moderate Short Range 5%
Devices

865-868 MHz, Europe (UHF) | 1-12m Moderate to high | ISM band 0.15%

902-928 MHz, USA (UHF)

2450-5800 MHz (microwave) | 1-2m High ISM band 25%

3.1-10 GHz (microwave) to 200 m High Ultra wide band | 5%

RFID technology is used in many area of our everyday life. The RFID tag can be
affixed to an object and used to track and manage inventory, assets, etc. for example, it has an
applications in areas like: access management, tracking of goods, animals and persons,
contactless payment, timing races, etc. RFID for timing races began in 1990s. What is an
advantage of RFID in a race timing is that it can provide a race start and end time for
individuals in every single race whereas it is impossible to get accurate traditional stopwatch
readings for every participant. TimingSense system make use of RFID during the race, the
athletes wear tags that are read (in a given spot - split) by antenna placed alongside the track
inside the mats. UHF tags provide very accurate readings and needs specially designed
antennas. Due to RFID technology rush error, lap count errors and accidents during the race
are avoided since anyone can start and finish competition at any time without lose of his

result.

2.5. EXISTING SOLUTIONS ON THE MARKET

Now is a time for a revision of all already existing solutions. On the market there are
a few applications that can manage a real time measuring. All of the serious solutions which
exist on the market are developed pretty well and are commercial products which costs a lot.
There was found an open source project fsTimer but it is not capable to manage a races with
more than 1000 athletes and do not posses logic and well designed user interface. What is

more, a bigger part of the existing software on the market is dedicated for a many timing

29

systems not like the CubicSoft which is the only original existing desktop application working
with the TimingSense system.

Not every timing system has its own desktop application to manage a time measuring
for example MyLaps (ChampionChip Timing System) and ChronoTrack, companies which
will be the main competition for TimingSense do not have such an applications. On the
market, there are solutions adjust to a many timing systems like a RaceTec software.[38] It is
a powerful tool created in Australia to manage a time measuring, but it uses a bit old
technology. As a store engine it is using the Microsoft SQL and it is designed with ordinary
windows controllers. Other application which is worth mentioning is a Clascycle from France.
This application has a well designed GUI and very simple to manage interface. CubicSoft was
designed as a combination of both applications taking the best from RaceTec, its great
functionality, and Clascycle, its friendly looking and intuitive user interface. There are many
web based timing tools, almost every timing system has its own online platform to manage
a race timing. There is also a program like RaceResult 11, which is a web application, which
can be configured to work with other timing systems.

TimingSense system in contrast to other timing companies will have its own dedicated
desktop application CubicSoft but it also will permit to use other programs like RaceTec due
to the additional CubicSoft module Connector. The Connector permits to send a chip tags
readings to a database of any timing software. The limitation is a storage engine as Connector
supports only the Microsoft SQL and the Oracle MySQL database technologies. Generally
TimingSense system in contrast to its competition will have inaccessible for developers
a communication protocol documentation so without use of the TimingSense software it will
be impossible to communicate with the TimingSense lector.

Personally speaking, is barely possible to find any suitable desktop application on
Windows platform with friendly looking interface and functionality which has CubicSoft.
Generally, there are better and worse application to manage a time measuring but any of them
is a part of a fully integrated timing solution for timekeepers like the TimingSense system
with the CubicSoft software.

30

3. SOFTWARE DESIGN AND MODELING

Taking into account general requirements given by Cronochip company, software
design was divided into three individual stages of work. Each stage of work has a specific
level of difficulties and a duration time. Consequently, a first step was an user interface
design, GUI, of the main application CubicSoft. In the next step was a database modelling.
Then there was a modelling and a design of additional modules such as Connector which is

cooperating with the main software CubicSoft.

3.1 GRAPHICAL USER INTERFACE DESIGN

The design of the user interface is a crucial part of the software engineering. For
a developer, the implementation part is vital but for ordinary end-user the most important is
the functionality and the appearance of the program, it means GUI. An user interface is an
interaction between user and computer, more precise between application and operating
system.

First step in the design of CubicSoft was an analysis of existing timing software’s GUI
and consultations with the best Spanish timekeepers. CubicSoft GUI was an essential concept
of this work, a creation of the most efficient and the simplest in use user interface. One of the
first software documents created was a wireframe of the CubicSoft application. A wireframe
was designed due to Balsamig web tool.[39] In this way first assumptions and main
functionality was noted. During all process of software implementation there were introduced

many changes but a main view of created wireframe was preserved.

TimingSense -0 X
Pasos (1) \,2‘, (3) (4) (5)(6) §4Antemx DNSlgunenle Ayuda X

Eventos \’1‘, !2’ I
Eventos
Descripcion I]
=
Dorsales desde hasta
Distance L |
Tipo de tiempo L]
Nueva Carrera » Carrera)

Figure 6. First draw of CubicSoft application — wireframe of wizard window.

The application main control was divided into one ribbon style top menu and four
submenus. First is a race preparation phase where all race configuration data is stored. In this
place was designed a special kind of wizard which help a user to create new race
configuration with just only few steps (see Figure 6). The second part of the main menu is
a result calculation, timing, phase. In this part user can manipulate the time measurement
during the race and modify the race data if it is needed. The third section of the menu are
results/reports where user at final stage of the race can prepare special kinds of reports with
race classification. The last element in the menu is online platform section which is
responsible for communication with online server which store vital race data. Apart from
main menu there is a top bar menu which provide fast access to the most important
functionality plus settings and tutorial. There is also a special kind of top menu which give
a user an access to the additional modules of CubicSoft like “Connector”, “Lector” or “Fair".
In the bottom there is status bar containing information like actual status connection to
database.

CubicSoft is an application based on Windows Forms. As was stated before Windows
Forms are part of .NET Framework and provide access to the native Microsoft Windows
interface. To design better looking and more user friendly interface was used additional
commercial set of controllers DevExpress which overwrite standards Windows Forms. Except
from the main bars’ menus used to facilitate the control of application, there are other
controls, which help to handle the application and contribute to GUI interface, all are kind of
common Windows controllers like buttons, checkboxes, text boxes, labels as well as dialog
boxes to deal with exceptions, file dialog or browser dialog to select files or directory
respectively, panels and group panels, etc., and finally data grid controller, rich text editor
controller and reporting controller, in general the application consist of all it. What is
interesting about design and user interface of presented software is it that the interface can be
adjusted to the user preferences. For the final user convenience themes can be changed to one
of 11 available especially prepared layout designs, all grid data layout can be save and store to
the future use, all layout main settings are stored in the XML files.

An user can control the software by use of mouse movement or keystrokes with
computer keyboard. CubicSoft was designed to give access to some default functions by use
of shortcuts like typical operation “copy & paste”, “delete”, etc. For user convenience also
some of a grid data controllers has implemented “drag & drop” functionality. On the other
hand, CubicSoft GUI was prepared with a view of a multi-language application. The software

32

GUI facilitate the translation process and in every moment even by final user it can be
translated to other languages, the translation is stored in XML format file. Basically the
application supports two languages: Spanish as default and English. It is vital feature of this

software as in the future the TimingSense system will be sold abroad.

Gl WEH=EHO - i wlalicldd
[El= Race Timing Result Plataforma Online 2

= e B |] W e

New Open = Guia Importar New Participant Chips Validate

ata = -
Races 5 Management & Validation ! Ajustes a
Race | Event Split | Category| Wave Team| Attribute SEEIRA R i T
Eventol i - d @ @ e 1 2
Nombre Mombre del equipo Tipo de punto Tiempa min. Tier llar tiempo desde: Tiempo min. de vuelta N vuelta
s s salida 00:00:00 00:(fSEr s ps le ultimo estandar ... 00:00:00 0
1 1 estandar 00:00:00 00:¢ le ultimo estandar ... 00:00:00 0
» B z estandar [UTIHRENT | 00: Idioma: espafiol ¥ e ultimo estandar ...| 00:00:00 0
Meta22 Timer meta 00:00:00 00:¢ i Spain) le ultima estandar ... 00:00:00 1
Zona horaria: GMT +02 Europe/Madrid]
wald g
P 9|

Basicos | Backup | Avanzados

€ Nombre: 2
2 Nombre del equipo: 2
+ del
3 Tipo de punto: estandar
Tiempo min.: 00:00:00
Tiempo max.: 00:00:00
Distancia (desde salida): 5
Atras
d m — a

[y You are connected with DB: tsdb , as user: root

Figure 7. CubicSoft GUI, race configuration data edition and setting window.

3.2 DATABASE MODEL DESIGN

The key part of the CubicSoft program is a database and a fast management of it.
Firstly, every aspect of the future database was discussed and compared to the competition
program RaceTec, which has a huge database schema, which CubicSoft had to reduce and
made more efficient. There was two main ideas during the process of design of a new
database: reduce to minimum number of tables and connections between them, and reduce the
size of memory occupied by every table so a data type for each column was chosen properly
to do not waste space and memory.

The next step was a design of entity relationship database model for it was used
MySQL Workbench IDE created by Oracle to manage the connection and design of MySQL

database.

33

j times ¥
id SMALLINT
name ¥ ARCHAR(4S)

zone W ARCHAR(40)
>

| eventsplits v
idRace YARCHAR(3E)
idEvent TIMNYINT
idsplit TINYINT
name YARCHAR{45)
timerham e YARCHAR(45)
type TIMYINT
minTime TIME
maxTim e TIME
minLapTime TIME
|gpMumber SMALLINT
multipleReads BIT
calcTimes BIT
finishStatus TINYINT
distanceFrom Stat FLOAT
deadZone BIT
idBackup TIMYIMNT
backupafter BIT
backupTimeDifference TIME
backupTimewsat TIME

| eventathletes
idRace VARCHAR(36)
idEwvent TINYINT
idsplit TINYINT
idékhlete MEDIUMINT
idGUn e TINYINT
idRaceMumber MEDILMINT
idTeam SMALLIMT
idCategory TINY INT
idSecCategory TINY INT
isManualTime BIT
splitTime TIME
splitTimeMet TIME
splitTimeLeg TIME
overallPosibion MEDIUMINT
overallPosiionket MEDIUMINT
averallPosiionLeg MEDIUMINT
categoryPosition MEDIUMINT
categoryPositionMNet MEDIUMINT
categoryPositionLeg MED IUMINT
isP'rom Category? BIT
secCategoryPosiion MEDIUMINT

secCategoryPosiiontet MEDILMINT
secCategoryPosifonleg MEDIUMINT

isProm oSecCategoryP BIT
genderPosition MEDIUMIMT
genderPositioniet MEDIUMINT
genderPositionLeg MEDIUMINT
|zps SMALLINT

averageSpeed FLOAT
finishStatus TINYINT

j races

idRace YARCHAR(36)
idRaceT ype TINYINT
name TINYTEXT
arganizer TINVTEXT

description TEXT nameSplit ¥ ARCHAR4S)
cauntry YARCHAR(45) tirmeram e YARCH AR(45)
province Y ARCHAR{45) bype TINYINT
ity Y ARCHAR(4S) >
date DATETIME
firnishTimeR TINYINT it Rty —H
netTimeR, TINVINT |
unidades TINYINT :
timezone YARCHAR(40) |] ayentraces v
bype TINYINT idRace YARCHAR(3E)
attributes TINYTERT idEvent TINY INT ——m
walid BIT description TINYTEXT

T

crono TINYTEXT

_| eventracenumbers ¥
idRace YARCHAR(3E) "
idEvent TINYINT
idRacelumber MEDIUMINT - g
chipCode WARCHAR(36)

v " rac etypes v
idRaceT ype TINYINT
idType TINVINT

id3plit TINYINT
nameRace WARCHAR] 45)

dateTime DATETIME

" | ©ishtive BIT

distance FLOAT
cutoffTime TIME

m eventcate gories v
idRace VARCHAR(36)
idEwvent TIMYINT

idCategory TINYINT

name Y ARCHAR{SD)
name YARCHAR{45)

description W ARCHAR(45)
ishgeBased BIT .

isfgeBased BIT

From Age TINYINT

tofge TIMYINT

onbate DATE

fromYear SMALLINT

to'Year SMALLINT

gender TIMYINT

isProm obonCategory BIT
maxPromobionCategory TINYINT
idPromotionCategory TINYINT
idPramationCategory? TINYIMT
is5econdaryCategory BIT
inidiohidden DATE

finhidden DATE

pasibonEqual BIT
posiionTimeType TINYINT
team ResultType TINYIMNT
team Tim eType TINYINT

| racecategoe ytemplates ¥

idCategoryTemplabe TINYINT
idRow TINVINT

From Age TINYINT
todge TIRYINT
From Year SMALLIMT
toYear SMALLINT

gender TINYINT

m eventgunwaves v

N < 7 idGunave TIMYINT
waveD escription WARHAR(45)
aproxTime TIME
____________ —H waveTime TIME

idRace YARCHAR(36)
idEvent TIRYINT

dorsalFram MEDILMINT
dorsalTa MEDIUMINT

ishctive BIT " >
> isMulbLap BIT
¥ cutof Type TINYINT = | racerowtimes v
eventteamtypes ¥
| | rutoffLap SMALLINT e VARCHARCHE) idRaceRawTime INT
| H idRace
| |zpDistance FLOAT vt T idRace YARCHAR(3E)
"
| minLapTime TIME e timerbam e YARCHAR(E1)
idTeamType SMALLIMT
: intermediates TINYINT 't e;m YD:ARG-l.ﬁR(‘!S) chipCode VARCHAR(A1)
. eName
I idEventR.ace VARCHAR(36) i chipTime DATETIME
| . maxithlete TIMYINT
B — createl e DATETIME
| . " resultathleteCount TINYINT
| | B | =+ antena TINYINT
| gender TINVINT
: : | eventattributes ¥ §|| *tipo BIT
| : || ¥ idrace vaRHARLSE) e
B — —;— ————— - : idEwent T INT M] settings hd
| _] athletes A || 7 idaktribute SMALLIMT _] eventteams W idSettings TINYINT
: idRace WARCHAR(36) : name YARCHAR(4S) idRace VARCHAR(IE) theme ¥ ARCHAR(20)
| idEvent TIMNYINT I deseription ¥ARCHAR{ 1507 idEvent TIMYINT uridades TINYINT
B— _:_ idéthlete MEDIUMINT L Jl bype TINYINT idTeam SMALLINT nameFarmat TINYINT
: name YARCHAR(30) walle Y ARCHAR{255) »idTeamType SMALLINT yes VARCHAR(20)
| surname Y ARCHAR(30) — 3 name ¥ ARCHAR(E0) no YARCHAR(20)
: gender TINYIMT finishTime TIME 20na Y ARCHAR(40)
1 age TINVINT r————— i e =1 < finishPasition MEDIUMINT licencia WARCHAR(36
birthday DATE H finishTeamPeinks SMALLINT country YARCHAR 300
country YARCHARE 30) | eventathlete atiributes ¥ finishStabus TINYINT |astRace WARCHAR{IE)
provine a ¥ ARCHARY 30) idRace YARCHAR(36) > data TEXT
. city WARCHARLZD) idEvent TINYINT language TIMYINT
:
v
—+ code Y ARCHAR(S) 1 7 idéthlete MEDIUMINT I racereports loga MEDILMEL OB
address ¥ ARCHAR(60) idéttribute SMALLINT idRaceReportCategory SMALLINT >
dni ¥ ARCHAR(LD) value Y ARCHAR(45) idRaceReports INT !
VBRCHAR(4S m raceImportathTemplates ¥
phone VARCHAR(1S) | Fname (43) .
— il ARGHR(ES) descriptian VARCHAR(ED) idraceIm portathTermplabes TINYIMT
sol TEXT name Y ARCHAR{45)
b W ARCHARE 30 i
o 30}] athleteimages ¥ layoutAle MEDILVBLOB columnOrder ¥ ARCHAR(4S)
dateCreate DATE idRace YARCHAR(3E)) >
ks lozalizador TN T idEwent TIMYINT
idUser ¥ ARCHAR(36) idathlete MEDILMINT 7L _ raceEnqueryTemplates ¥
idInscripcion WARCHAR(3E) iderhletelmage TINYINT I racereportcategories ¥ idraceEnqueryTemplates TINYINT
licenacia YARCHAR(30) irmage BLOB idRaceReportCategory SMALLINT | | & e v ARCHAR(4S)
lacd BIT path TINYTEST description Y ARCHAR{4E) calumnOrder TINYTEXT

Figure 8. CubicSoft ER database model

34

THE DATABASE MAIN STRUCTURE

The presented database model consist of 22 tables. The main part, skeleton of the data
base creates 13 multiple primary keys tables which are in relation to each other. Main table
“races” contains all elementary data about created races, each race has his own unique
primary key idRace. Each race consist of events, as was discussed earlier, which are
contained in “eventraces” table. Every event in a race has his own unique primary key
idEvent. Then by idRace and idEvent are identifying other elements of a given race event, it
is: “eventcategories” (store all events’ categories), “eventsplits” (store all events’ splits -
control points), “eventteamtypes” (store all events’ teams type), “eventteams” (store all
events’ teams which belong to a team’s types), “eventattributes” (store all events’ attributes),
“eventathleteattributes” (store all events’ attributes with its values for every athletes),
“eventracenumbers” (store all events’ race numbers with chip tags), “athletes” (store all
events’ athletes), “eventathletes” (store all events’ athlete for each split with race times and
positions). These tables store all important data to prepare race and manage the time
measuring during competition. Last two tables “athletes” and “eventathletes” are multi
records tables which means that it contains a lot of records for every race, for example a race
of 10000 participant has 10000 records in “athletes” table whereas “eventathletes” has more

records (“athletes” * events’ splits) for 3 splits in one event it gives 30000 records.

THE CHIP TAGS READINGS TABLE

Apart from main tables there is another table which is the most heavily loaded during
the race “racerawtimes”. In this table is stored all data send by lector to CubicSoft, it contains
columns: race name, split name, chip tag, chip time, antenna type and reading type. Taking
into account that the “racerawtimes” table is heavily loaded, the proper chose of data type for
each column is vital for example in a race of 10000 athletes, 3 points of control during the
race and assuming that each athlete has 2 readings on one split and has double chip tag, in
total it gives: 10000 * 3 * 2 * 2 = 120000 records (one “racerawtimes” record occupies 121
bytes). This huge amount of data has to be inserted and read from database to further analysis,
so every milliseconds of latency and byte of memory is important. The more detailed analysis
of database memory/space usage is presented in the next chapter where is described special
mode of MySQL database, Cluster, used to result calculation which store a data in memory in

place of a hard disc.

35

REST OF THE DATABASE TABLES

Rest of the tables presented in database model store the template data like: time zones,
countries, province, cities, category templates, split templates, race types, race import athlete
templates, race enquiry templates, race reports and race reports category templates. The table
“settings” store all program configuration data like actual language, actual theme, etc. The

table “athletetimages” will be used in the future to store images for each athlete.

3.3 CUBICSOFT SOFTWARE MODEL

This section presents a model and a design process of CubicSoft application and it
describes a main features of the program. The presented software first was modelled in
Eclipse Ganymede using Ecore modelling tools and creating UML class diagram.[40] When
dealing which such a big and complex project, it is impossible to start the implementation
phase without creating main view, sketch up of the program. The first draw of the application
was very useful in a design and then in setting up a main program functionality. The diagram
model during whole process of a software creation has been modified and it has evolved. The
final stage of the class model view of the CubicSoft software is presented below (it was
created in Visual Studio 10).

36

Figure 9. CubicSoft class model view

The main class visible at the diagram in the middle is “FrmMain” which is the main
application window form that contains almost all important features of the program like race
preparation, race timing, and reporting. Then at the top there is a class “FrmGuia” which is
the wizard which user employ to prepare all data needed to race timing. On the left hand side
there are two classes ‘FrmExportPO” and “FrmImportPO” which are responsible for
communication with online platform to import and export, interexchange, data. Other crucial
classes is “Session” which contain all data needed in current race session, “MySQL” is a class
which defines all connection with MySQL database, “Entities” is a class generated by Entity
Framework which maps whole entity relationship database to a classes. There is also many
auto generated “TableAdapter” classes by LINQ technology used to fill grid data controller
with data from MySQL database.

37

Main application window Form contains ribbon menu and status bar which provides
fast and easy to manage access to given part of program. All of it is designed in a logical way
that the user from the first view of the software know how to manage it. Below are presented
and detailed described three basics elements of the application in order of the timing

definition: race preparation, race timing and analysis and reporting.

3.3.1 RACE PREPARATION PHASE

The first step which user has to do is prepare all data needed before race timing will be
started. For this purposes CubicSoft has designed two types of form: special kind of wizard
form which facilitate a timekeepers to prepare correctly a race and setup, a form where user is

not guided but can perform more advanced operation not permitted in wizard.

RACE CREATION - WIZARD

Wizard is divided into 10 steps, every step with error validation, at last step user can
be sure that created race does not contain any serious errors. First step is an introduction of
basic information about race like race name, race date, country, city, etc., new race can be
created by coping old race (using race templates) or manually giving number of events and
using split templates. There is used a mix of DevExpress components which facilitate the
software management and provide nice look design. Another steps starting from events, splits,
categories, waves, teams types and attributes configuration (all data is modified in potential
DevExpress data grid controller) and ending on chips and athletes importation, and result
calculation adjustment. All of the steps in wizard are design with high attention to
timekeepers comfort and usability so with every step introduced data is validated and user has
many functional buttons (save/load template, add, delete record, etc) and shortcuts to
manipulate data like “copy & paste” or some additional functionality like “drag & drop”
items into grids. What is important user in every moment can exit from wizard and come back
to it but only in the same session. After 10-th step the user finish wizard and come back to

main window which contains setup of created race.

38

O =EE@ - waledd

E= Race Tirning Result Flataforma online CubicSoft - Guial d|r

;‘ e B 2 ;‘ L/ o Datos de Carrera El E E E \mw

Rellena los campos para defnir datos de la carrera

fNew Open = Guia Importar New Participant Chips | Walidate
data

Races 5 Management 5 Walidation

Race | Event| Split| Category | Wave| Team| Attribute Datos basicos
Nombre de carrera®

Descripeién

organizador
Datos basicos
Fais |Espana d Provincia b Ciudad

.

Nombre de carrera PAWELPAWEL Fecha* & Unidades* km Zona* |GMT +02 Europe/... o
Deseripeién Tipo* |Carrera pie en ruta [¥]

Creacidn de carrera: (@ de plantilla) de otra carrera

Organizadar Humero de even tos* 18

" .
pais |Espana Modo de carrera® |[Yacio] [~]

Fecha® 18/04/2014

Tipo* | Carrera pie en rut < Anterior ‘ Sigliente > | | Cancelar

Creacitn de carrera

Avanzados =
od

Redondeo de tiempo oficial ninguno o Redondeo de tiempo neto ninguna

[Ey vou are connected with DB: tedb , as user: roat

Figure 10. CubicSoft - race preparation view including wizard window

RACE CREATION - SETUP

Setup consist of ordered steps from wizard displayed in tabbed group controller. User
can pass through one tab to another one fluently, the process of validation is also present but
only in form of pop-up notification in the left bottom corner if some error has been
encountered. Most of the data is displayed in a grid data controller and in edition mode special
carousel display mode is activated. Moreover DevExpress has special kind of controller
“repository item” which helps to present data in a grid controller in more user friendly way,
for example using icons or some graphics.

Another elements of race setup is an importation of athletes and chips. User can
import data from file, available formats .xls, .csv, .txt, other races or online platform. Online
platform has separate menu section, the communication between CubicSoft and online
platform is bidirectional but from assumption race participant are enrolling by web page and
then all data is downloaded by CubicSoft. All imported data athletes and chips are presented
in separate data grid controller for each event. Additionally user can add participants
manually using cleverly design form and verify correctness of introduced data by using
verification windows form. Every encountered error is listed and by one click user can get to
the place with erroneous data. The process of validating data is a more complex task which is

39

divided into three main parts: basic race configuration (where splits, categories, attributes, etc.
are checked), athletes (where all athlete information accordance is checked) and race number
(where all race numbers and chip tags are checked). The last item of race preparation section
is race management where user can select from the filtered and sorted grid earlier created race

and open it.

3.3.2 RACE TIMING PHASE

During the race day an user makes a use of a timing part of the application. This part
was basically simple in the design. A main feature here are enquiries design as a grid
controller where user can manipulate all athletes data and times, it also has a simple module to
generate fast report from the grid view. In this area timekeeper can manage all race data
necessary during competition. The discussed grid delivers a pallet of useful tools like sorting,
filtering (by columns and creation own complex filters), multiple column grouping, advanced
search based on “like” method and column selector to adjust the grid view to the user needs.
The grid posses own context menu to apply any required operation during a race like edit

athlete, change race data or export grid to the one of the available formats.

B O=Ha@ =T e
[E+ Race Timing Result Plataforma cnl &
e U = Tiemp = [] Tiempa manual
Gonsuft | Results Import
Consultas Resultados Varias
- - -l
| Buscar | vaciar =
IEventu A_ _ _
Dorsal Oleada Categoria Mombre ... Tipode E.. Mombre apelido | Sexo Edad Fecha de... | Pais Club Mavil E-mail Lacal Posicion Posici
@ Eve nto:
aE
RODRIGU. 54 D1/01/1960 650447080 BONASPO..
" p.. COSCULL... S0 D1/01/1964 618413443 AE, EKKE
6 Salidal GAYA Ch.. 38 D1/01/1976 606570338 AE, EKKE
7 salidal MORA ES... 45 DL/D1/1969 610456775 Alex Mora...
ORENSAN. 37 D1/01/1977 610560512 AQUAMA...
FONT FRA. 59 01/01/1955 679894529 AQUAMA...
PRESAS 44 DL/DLAO7D 849746253 AQUAMA...
12 salidal ADELL DU... 44 DL/D1/1970 667519991 ARSENAL
13 Salidal RETNA BE 43 DL/01/1971 609834142 ARSEMAL
14 Salida1 TRAVESS 30 01/01/1984 650306520 ARSENAL
15 Salidal CORAL A... 44 DL/DL/A970 855991662 BARCELO..
16 Salidal CRESPI G, 41 01/01/1973 B06850804 BARCELO...
17 Salidal FRIGOLA ... 35 01/01/1979 628748300 BEGUR
18 Salidal ESPONA .. 30 01/01/1984 34659921, BONASPO..
19 Salidal OLLER SAIZ 51 D1/01/1963 606367505 BONASPO...
20 Salidal RIGUALM... 44 0L/01/1970 646962431 BONASPO...
21 Salidal DALMAU ... S0 01/01/1964 654627287 C.N. MAT...
22 Salidal SANDOY. 47 DL/01/1967 619 7084.. C. TRL. G..
23 Salidal OBRADO... 37 DLA0L/1977 619979051 C.APALA..
wd
1808ad i] 5]

[y ‘rou are connected with DB tsdb , as user: root

Figure 11. CubicSoft - enquiries view

40

Other element is a result calculation module. Here user can start the result calculation
by a single button click (gets times reading, analyse data and calculate positions) and adjust
the advanced options like: gun time calculation, net time calculation, team position
calculation, etc. Additionally there is a possibility to initialize a new window form visualising
a live results which is still in developed. Next element of race timing is a start time where
timekeeper in a moment of race starting has to assign a race start time to each wave — start
group. In a design of race timing section there is a place for manual adding athlete race time
and editing/importing race raw times. Especially, importing race raw times directly from file
is sometimes a lifeline when communication between CubicSoft and TimingSense lector is
not working so the only possibility to get race raw times from TimingSense lector is
importing back up files from lector directly in the CubicSoft due to specially designed form

where all race raw times are presented in the data grid controller.

3.3.3 REPORTING PHASE

The last element is a report preparation and generation. User has two modes to prepare
reports: one is simpler and faster and second is for more expert users. The first one is for not
advanced users with friendly GUI where due to DevEXxpress controller user can “drag &
drop” chosen columns to the prepared before layout and can print it or export to the one of the
available format (.xIs, .html, .pdf, .jpg, .txt, .csv). The second, for expert users, inserts
specially prepared sql enquiry to chosen layout. Thanks to this option timekeepers can create
every required report. This part was designed in a way to give an user full control to report
preparation and generation process with the most friendly possible user interface.

The layout of the report is created in a Microsoft Word like document which give
a user an access to many formatting tools to create perfect report layout including objects
from external sources like images. Every generated report can be saved with a specific report
number in a template table. What is important for a timekeepers there is a possibility to
exchange prepared earlier reports with other timekeepers from the same company due to

online platform where user can upload or download all available reports.

41

3.4 CUBICSOFT ADDITIONAL MODULES

In this section are described all additional CubicSoft modules created to improve the
functionality and give some extra features to the program. The most important module is
a “Connector” which is a middleware between TimingSense lector which stores all readings
and CubicSoft which analyse all received data. “Connector” is a principle module without it
the whole TimingSense system cannot exists. Other module is a “Lector programmer” which
permits to program chip tags before the race. The third module is a “Fair” which is used
during race fair before a race where athletes come to collect its race numbers. This module
helps to assigned automatically to athletes a race numbers which will identify every

participant during the competition.

3.4.1 THE CONNECTOR MODULE

Connector is a small and complex program which deals with connection with
TimingSense equipments or online platform (if equipments are connected directly to online
platform) to gets readings and sends it to a CubicSoft database. Connector module was as
a first part of the project terminated and tested in a real race.

o5l TeConecktor =R

Inicio 'Red | Ficheros | BD

= i K ?’(K K -, Local Remato
Alk= [. .7('?('?('?(-, Local Remoto
Gestidn de Conexion
+ Guardar plantilla | 'Cargar plantilla Siempre arriba

Figure 12. CubicSoft Connector module — main view

THE CONNECTOR MAIN STRUCTURE

Connector was first discussed with a timekeepers and then was created a general
wireframe. Finally Connector was modelled like CubicSoft by Eclipse Ganymede using Ecore
modelling tools. Connector was designed in similar methodology as CubicSoft. The main part
of Connector are DevExpress controllers (like tabbed group form). The principle window

form consist of four tabs, general Connector configuration:

42

home — where all connectors are listed in graphical form, icons are indicting status of
connection with TimingSense equipment. There are also special kind of DevExpress
buttons to activate/deactivate connection. The whole connection configuration can be
saved or loaded to/from template stored in .xml file format encrypted by RIINDAEL
256, standard algorithm of .NET Framework.

network — in this tab user can edit network configuration of his own workstation or
general configuration like IP address to communicate with TimingSense equipment
files — this part serve as back-up system, when Connector lose connection with
database always all readings send by TimingSense lector are stored in file in one of
available format .csv or .txt. User can easily activate or deactivate the back-up mode
database — this is crucial part where user has to introduce all database connection data
and choose the race for which the readings will be send by lector. User can connect to
CubicSoft database or one specified by himself, available are two types of database
MySQL or Microsoft SQL.

a-' FrmConectorPropiedad) b
Config. local Configuracion de IP
Config. remoto || Direccidn IP: 1192.168.1,

Emulador

Test
Rebobinar
Sincronizacion
Fecha: _ [[—-pmmie- V| sincro. con Servidor
modo memoria
Carrera:
Split:
Conectar

Figure 13. CubicSoft Connector module — property window

43

THE CONNECTOR COMMUNICATION METHODS

The last step is to connect all TimingSense equipment with a connectors listed at the
main window (every connector has to be configured, every connector is working on separate
thread). User can connect with TimingSense equipment by means of two modes: first is
a local connexion by inserting proper IP address and synchronizing PC and TimingSense
lector with the same time. User PC clock is synchronizing always with Network Time
Protocol, NTP, pool and then this time is send by TimingSense protocol, described more
precise in implementation chapter, to TimingSense lector. NTP is a networking protocol for
clock synchronization between computer systems over packet-switched, variable-latency data
networks. NTP pool where user PC is connecting is a big virtual cluster of timeservers
providing reliable NTP services, PC always is connecting with the closer server available
depending on its location.[41] The second mode is a remote connection. TimingSense lector is
connected in cloud normally with online platform and Connector to grab readings connects
remotely to online platform to get data. This type of connection is realized by web service
lunched on the online platform side. There is an option to simulate reading and send data
manually to database and the last element is a “rewind”. “Rewind” tab is a vital element of
Connector where user can get in every moment (rewind process is working on separate
thread) any readings available on TimingSense equipment side. Connector communicate with
TimingSense lector and receive asked readings. Thanks to DevExpress’s controllers the

Connector’s forms look pretty and are intuitive in use for final users.

3.4.2 REST OF MODULES

THE LECTOR

Lector programmer is a module which permits to program chip tags which are used in
a race. Lector programmer is compatible with HBR-D406-E USB Reader and supports other
devices from this family. The hardware supplier delivers also WL-RFID105 demo software
with a documentation. Lector programmer was designed by use of DevExpress controllers
and then implemented by use of delivered WL-RFID105 demo software with
ZK_RFID105CSharp dynamic link library designed to facilitate EPCC1-G2 and 18000-6B

protocol UHF tag application software development.

44

Figure 14. HBR-D406-E USB Reader

Lector programmer first instruct the user to connect with USB reader due to
ZK_RFID105CSharp dynamic link library by COM port. Then user can perform two
operation: write chip tag or read chip tags. To write chip tags user first has to import a file
.csv with a list of race number and chip tags into a grid data controller then the process of
writing chip tag can be started by just simple button click. User put the chip near the USB
reader and Lector programmer automatically assign a new chip tag to given chip. To read the
chip tag user just put the chip near USB reader and Lector programmer save the given chip
tag in the grid data controller. When user terminate reading/writing chip the result grid can be

exported to .xls excel file.

THE FAIR

The next module is a “Race Fair” which is used during a race fair where athletes
come to collect its race numbers. This module helps to assigned automatically to athletes
a race numbers during fair which will identify every participant during the competition.
Usually timing companies use its own software to assign race numbers to athletes during
a fairs and then the exports result to a file which then is imported to manage time measuring
software. Timekeepers just assign an athlete to a race numbers which is stored directly in
CubicSoft database so there is no additionally work needed.

Thanks to all modules TimingSense system has fully equipment system with all
software integrated in one place. TimingSense system with CubicSoft and all its modules was
designed and created with idea of giving a fully functional software system with no need to

use additional tools.

45

4. SOFTWARE IMPLEMENTATION STAGE

This chapter illustrates the implementation process of earlier designed stages. The
implementation process presents the problems, which was needed to face up and then
overcame. This chapter omits an ordinary process of code writing which not give any
conclusions or problems. At the end of this chapter is emphasized the versatility of the
implementation and a direction of further development of the application.

At the beginning is worth mentioning that all project from the start point to nowadays
is stored in cloud like Dropbox and SVN servers. Dropbox is used more to give an access to
all timekeepers dealing with and testing TimingSense system. In this way the communication
between CubicSoft programmer and Cronochip workers was established. The most important
part is SVN which is a software versioning and revision control system. Developers use
Subversion to maintain current and historical versions of files such as source code,
documentation, etc. CubicSoft project is kept on Assembla SVN server.[40]

Other important aspect worth mentioning before the full implementation process will
be presented is a use of Redbooth (formerly Teambox) web-based collaboration tool. Due to
this tool all process of implementation TimingSense system was described in detailed tasks
with deadlines assigned to a particular persons dealing with TimingSense. Redbooth web page
tool caused that the process of TimingSense creation and CubicSoft implementation was in
order and all modules was done on time. Redbooth arrange work according to Gantt diagram.

4.1 CUBICSOFT DATABASE POPULATION

Database population concept corresponds to filling a database with a race
configuration data. The implementation process presented here consist of a coding all main
functionality of CubicSoft race preparation section. Most of this process is an insertion of
a few records to the database by means of Entity Framework which seems to have pretty well
efficiency for this task. Entity Framework (LINQ to Entity) has two main advantages is easy
to use for programmer and gives satisfactory results of insertion of a few records to a database
for a final user. Entity Framework has advantage over LINQ to SQL, it allows for a broad
definition of object domain models and is a bit faster and works with non Microsoft database
like MySQL.[44]

The problem occurred when CubicSoft start to dealing with a multi record insertion
like importation from file athletes with all corresponding data/attributes or importation of race

number with corresponding chip tags. The same problem occurred when CubicSoft was

dealing with importation data from online platform. In this case an appropriate tests was done
to calculate the speed of insertion multiple records to MySQL database be means of using
System.Diagostics .NET namespace.

THE PROBLEM OF INSERTING A HUGE AMOUNT OF DATA TO THE DATABASE

The test was conducted on “eventracenumbers” table which consists of 5 fields in
total 79 bytes per one record. Typical test performed an insertion of 10000 race number with
double chip tag so in total it gives 20000 records (20000 * 79 bytes = 1580 KB of data).
Entity Framework cannot perform this operation with satisfactory results. In the default
configuration of Entity Framework the discussed insertion take more than 7 minutes. Entity
Framework dealing with more advanced configuration and disposing ObjectContext gives the
best result almost 20 seconds but it is also not satisfactory. The solution was found after brain
storm. Microsoft SQL has a special type of fast insertion of many records BULK INSERT,
unfortunately MySQL do not has implemented such a method but has very powerful family of
INSERT statements like INSERT IGNORE, INSERT ... ON DUPICATE KEY UPDATE,
etc. Finally a huge INSERT IGNORE query was generated by processing whole imported file
and inserting it to MySQL database by use of native connection. The result time was
impressing, approximately 2 seconds, and 10 times faster than Entity Framework in the best
configuration. In a CubicSoft software Entity Framework is used to insert a small number of
records less than 100 at the same time, in other cases is used INSERT IGNORE query with
native connection to MySQL database.

Table 4. The test result of insertion 20000 records to “eventracenumber” database table.

Description Speed in

Milliseconds

Entity Framework - insert all records at once without dispose | almost 7 minutes
ObjectContext

Entity Framework - insert all records at once and dispose 21048.4575
ObjectContext 21152.943
Entity Framework — insert every 1000 records and dispose 21736.762
ObjectContext 21275.0055
Native Connection — insert all records in one INSERT INTO query 2057.4855

1998.855

47

RACE NUMBER AND CHIP TAGS IMPORTING PROCESS

Now the all process of importing data from the file to query generation will be
presented, it is one of more complex task in CubicSoft software. First a list of race numbers is
imported from one of the three types of file format: .xls, .csv or .txt with tabulation. An user
have a special button to select file or can just “drag & drop” file into the grid data controller
(race number also can be copied from another event from the same race to the new event).
The process of race numbers importing is much simpler than athletes importing. After
importing file user has to assign column in grid controller to appropriate column in a file, race
number to a race number and chip tags to a chip tags. Then the process of importing is started,
all document is processed and query is generated with every read of file line. The last process

is an injection of generated query to the database.

ATHLETES IMPORTING PROCESS

The process of athletes importing is more complex but also fast. First importing data
from file (name, surname, birthday, etc. and other attributes and information like: team name
and team type, wave, category, etc.) has to be assigned to adequate CubicSoft’s columns
(athlete name to a athlete name column in a file, etc). This process is a half automatic because
CubicSoft is reading all columns header from the file and if it find a one with the same name
as grid column, assigned it automatically. Athletes can be imported with race number or
without it. When athletes are without race number CubicSoft can auto-assign race number or
leave athletes without race number. The next step is an assignment of unique key to one of the
imported column by default race number is a unique key column, every imported athletes
have own unique key. If user imports athletes without a race number a special numeric
column has to be assigned as a unique key. Then if an user is importing another file and new
athletes have an unique key which already exists in a database, user can ignore or overwrite
them. Then all document is processed and query is generated and inserted to the database. For
every importing athletes is used a following methodology:

e if an athlete will be imported with a race number CubicSoft checks if the race number
is a numeric filed or create one automatically.
e the name and surname attributes are formatted to a given by a user style: upper case,

lower case, etc.

48

the gender attribute (male, female, mix) is assigned to the athlete (if specified gender
name does not exists the athlete gender information will be corrected).

the birthday attribute, if is given, is checked and converted to a MySQL date format
(mm-dd-yyyy) and age is calculated (or reverse the age is given and the birthday is
calculated). Then the athlete is assigned to an appropriate category (if there exist “age
based category” and birthday is in the given category range).

if the athlete is not assigned to any “age based category” or in the file is specified the
category/secondary category name, the athlete is assigned to it (if category/secondary
category name does not exists in given event the athlete category information will be
corrected).

if a given event has a team type created and the athlete in the file has specified team
type and team name this data is also imported (if a team name for a given team type
does not exists, is created, and if team type does not exists in given event the athlete
team information will be corrected).

the wave is assigned to the athlete, if in the file is specified the wave name the athlete
is assigned to it (if wave name does not exists in given event the athlete wave
information will be corrected). The other option to assignee the athlete to a wave if the
name was not given in the file is an assignment by a race number. If a waves have
introduced a range for race number (from race number to race number), the wave can
be assigned according to the athlete race number and the wave range.

the additional information like city, country, id, etc. if given in a file, are assign to the
athlete.

if in the given event exists extra attributes and the imported file specified some, first
the attribute value is verified (only Boolean) with attribute type and if it is correct, is
assigned to the athlete (if attribute is not valid the athlete attribute information will be

corrected)

The last process is an injection of all processed data to the MySQL database and eventual

correction by the user of all wrong imported data (gender, wave, category/secondary category,

teams type, attributes Boolean type).

The presented process of importing athletes seems to be very complex but due to great

logic of processing file and fast MySQL INSERT statement, user even not notice when the

process starts and ends. The full test of the importation of 10000 athletes with full information

49

and 10000 race number with single chip tag and one additional attribute in a race of one event
with 2 splits gives in total 10000 records inserted to “athletes” table (10000 * 514 bytes per
record = 5104 KB), 10000 records inserted to “eventracenumber” table (10000 * 79 bytes per
record = 790 KB), 10000 records inserted to “eventathleteattribute” table (10000 * 88 bytes
per record = 880 KB) and 10000 athletes * 2 splits = 20000 records inserted to “eventathlete”
table (20000 * 80 bytes per record = 1600 KB) in time of less than 20 seconds.

4.2 COMMUNICATION WITH TIMINGSENSE LECTOR

An important part in TimingSense system during a race competition is CubicSoft
module Connector. As was described earlier Connector is responsible for a communication
between TimingSense lector and CubicSoft software and insertion of a received chip tags
readings to database. Connector can receive readings in two ways. First by use of remote
connection, TimingSense lector is sending reading to online platform and Connector connects
by use of web service working on the side of online platform and downloads readings. In the
moment of writing this, given kind of connection is in a phase of development, not working
yet. Second by use of local connection where TimingSense lector communicate directly with
Connector by standard TCP/IP socket using own protocol presented later. Connector is
implemented to works not only with CubicSoft but with other programs to manage time
measuring like RaceTec. Connector permits the connection to Microsoft SQL and MySQL
database. This solution is prepared to not obligate TimingSense’s clients to use CubicSoft if
they prefer their own software. Connector is a crucial tool and every data Connector received
is stored in back-up file in the one of the available formats: .csv or .txt.

THE CONNECTOR SYNCHRONIZATION PROCESS

Connector can manage infinite number of connection with TimingSense equipment,
the only limitation here are the parameters of user workstation. Every local connection has to
be configured by introduction of proper ip address. Then before connection is established the
timekeeper pc is synchronizing clock with NTP server, http://www.pool.ntp.org. Connector
needs the administration rights to be executed, the reason of it is a necessity of modifying
windows registry and setting direction pool.ntp.org as a default pc NTP server. The
synchronization with NTP server is realized by NTP Client class using standard System.Net

.NET Framework namespace.

50

THE CONNECTER COMMUNICATION PROTOCOL

The next step is an establishment of connection with TimingSense lector by means of
specially prepared protocol with use JSON text format technology. Due to Newtonsoft.Json
class an objects send by communication protocol are serialized and deserialized. TimingSense
lector is active when equipment is turn on. Lector open TCP/IP socket and takes the server
role, remaining in listen state to connection requests. There are three sockets: data socket (to
interchange readings), control socket (to inform about TimingSense equipment state) and
rewind socket (to receive specific readings). At the beginning Connector set up connection on
a control socket by use of a four way handshake. Connector with TimingSense lector
interchange four packets: “hola”, “syncrequested”, “sync” (packet with the actual lector time)
and “carrera“ (packet with a race configuration data). For example the last packet contains
a name of the actual race and the point of control configured on the TimingSense lector and it
has a given form:

{"tipo":"CARRERA ", "carrera”: "xxxxx ", "split": "yyyyy " }\n

After this quick handshake the control socket is opened and Connector is listening for
any information from lector about TimingSense equipment state. Connector also established
connection on data socket with lector and is listening for new readings. A packet containing
a chip reading in JSON format is presented below where all labels are explain in Table 5:
{"":1L,"h":"20061230T14:05:20","c":39,"a":1,"x":"04","s": "split”,"r": "race”,"u”: "user” }\n

Table 5. Explanation of all labels used in JSON chip reading packet

Parameter Description

t reading type (integer)
h hour (date time)

c milliseconds (integer)
a antenna (integer)

X chip (string)

S split (string)

r race (string)

u timekeeper (string)

51

Every packet interchange between Connector and lector always contain a single
information, not in a list form. The last rewind socket can be used when two other sockets are
opened. Connector sends JSON packet “rebobinado” which contains a SQL query to be
executed on the lector side. In the response Connector receives a number of returned records
with error text message and rewound data. More technical information about interchange

information between Connector and TimingSense lector can be found in Appendix 1.

4.3 RESULT CALCULATION STAGE

The result calculation section is dealing with a management of race time measuring
during the competition. The most important elements are: enquiries where user can manage
and modify all race athlete data and result calculation module which performs every second
overview of “racerawtimes” database table to looks for new chip tags reading and conducts
the result calculation. Two speed up the result calculation process a special kind of database
was used, MySQL Cluster (to put all data in memory RAM). These two elements are
indispensible in a race timing, it is a CubicSoft brain, and were pretty complex in

implementation stage.

RACE DATA MANAGEMENT — ENQUIRIES

First will be discussed enquires part and methodology used to manage it. In a potent
DevExpress grid data controller are displayed athlete data with all necessary information. The
data loaded in the grid is a combination of JOIN (OUTER LEFT and OUTER RIGHT)
queries of 6 tables: “eventathletes”, athletes”, :eventsplits”, “eventgunwaves”,
“eventcategories” and “eventteams”. Whole enquiry in Visual Studio Query Builder is

presented in Figure 15 below.

52

Query Builder B 21|

-
B eventsplits B eventathletes B eventcategories H

& eventteams -]

[¢all Columns) - s
| JidRace | athletes
|_ideEvent [(all Colurns)
_idTeam idRace

v |idTeamType

v 2 e
> 2 Ml .
v e
o -
4 »
SELECT athletes.idEvent, athletes.idAthlete, athletes.name, athletes.surname, athletes.gender, athletes.age, athletes.birthday, athletes. :uuntry athletes provincia,

athletes.city, athletes.code, athletes.address, athletes.dni, athletes.phone, athletes.mail, athletes.club, athletes licenacia, athlets

eNumber entatt .idTeam, idCategory, ever idSecCateg &
Leg, eventath!etes categoryPosition, eventath\etes categoryPosltlonNet
at yPcsltlor\Leg CategoryPos!t\on eventathletes.secCat tegor CategoryPositionLeg,
..... eventath
veDescription, ever ;_1.name AS Cat eventcategories.name AS SeCCat idTeamType, eve name AS TeamNam:
Fmshhme finishPosition, evi A AS flnishStatusTeamJ eventathletes.idSplit,

lits.name AS Splithiame, its. i its.type:
FROM eventsphts RIGHT OUTER JOIN

.idRace AND tsplits.idEvent = .idEvent AND
eventsplits.| IdSpllt eventatl’dates IdSpht LEFT OUTER JOIN

Race = idRace AND eve vent = idEvent AND
f‘T am = evi idTeam LEFT OUTER JOIN
eventcategories ON eventath!etes idRace = eventcategones idRace AND eventathletes.idEvent = eventcategories.idEvent AND
id: ecCategory = eventc JidCate govy LEFT OUTER JOIN
& __l ON ice = e ies_1.idRace AND idEvent = evi ies_1.idEvent AND
dCate ory = evi ¥ |dCategDry LEFT OUTER JOIN
ON evi idRace = ce AND evi idEvent = idEvent AND
idGunWave = eventgl RIGHT OUTER JOIN

athletes ON event. idRace = athletes.idRace AND idEvent = athletes.idEvent AND event idAthlete = athletes.idAthlete
[ORDER BY athletes idEvent, athletes.idathlete

Execute Query Cancel

4

Figure 15. Microsoft Visual Studio Query Builder — view on the enquiries model

User can modify and manipulate all data showed in the grid. User can make use of
helpful tools which grid delivers like grouping column headers, filtering by column or used
filter query builder to build some expressions, multiple column sorting, advanced search using
“like” method. What is more user can adjust the grid layout by use of column selector or
possibility to load/save layout templates. The implementation methodology process of
modifying athlete data by grid context menu is described now. The context menu is composed
of 12 elements:

e edit participant, is a form which allow to modify all athlete information (name,
surname, birthday, etc.), attributes (all extra attributes if there exists) and principle
race configuration data (athlete wave, category, race number, team, etc.), the layout is
similar to the New Participant form available in race preparation section (one grid row
can only be selected).

e change event, is a more complex operation which involve coping or adding new item
to the database tables. The change event operation is as follow:

a) change wave, if there is the same wave in a new event choose this wave from
this new event if not, choose a new one wave from the new event or copy the

old one wave to the new event.
53

b) change category and second category, if there is the same category in a new
event choose this category from this new event if not choose a new one
category from the new event or copy the old one category to the new event.

c) change team type, if there is the same team type in a new event choose this
team type from this new event if not choose a new one team type from the new
event or copy the old one team type to the new event.

d) change team, if there is the same team in a new event choose this team from
this new event if not choose a new one team from the new event or copy the
old one team to the new event.

e) copy attributes, user can decide if all attributes from the previous event are
copied to a new event if these attributes do not exists in the new event.

change wave, change a wave to a new one from the same event.

change category and second category, change a category to a new one from the same
event.

change team, change a team to a new one from the same team type from the same
event.

change team type, change a team type to a new one from the same event.

change attribute, permit editing all attribute for the given athletes.

change race number and tag, change a race number to a one not assign yet or change
chip tag assign to a given race number (one grid row can only be selected).

swap race numbers, change a race number with chip tags between two athletes (two
grid’s row have to be selected).

bulk update, select from the grid controller all inserted by user athletes’ race numbers.
change finish status, the finish status for given athletes is changed to the selected one.
print gird/report, the grid can be adjusted before the print, user can use column
selector, filter or column grouping to create a view which want to print. Other facility
is a use of templates which user can save and load to have a grid adjusted to a printing.
First report preview is prepared with automatically added name race, date, logo and
additional information if needed. What is more the report preview is prepared to fit the
page to do this CubicSoft is using many tools like: grid scaling, choosing appropriate
page orientation, etc. One important thing to notice is when user is using column

grouping to print results then the presented logic is applied. Users are grouping

54

columns to create desire report view. When many columns are selected the CubicSoft
is looking for expanded groups (using parent and child methodology) and for the result
printing choose a first expanded group founded.

e grid/result exporting, user can export grid to the one of the given formats: .xls, .csv,
xt with tabulator, .pdf, .html. All generated documents are prepared similar like

printing one with appropriate page fitting, etc.

For fast work and no need to refresh a grid manually almost all modifying operations generate
queries (in multiple changes like edit participant or change event) or use Entity Framework

(for single row modifications) to update database and grid data in the same time.

RACE RESULT CALCULATION MODULE

Now will be discussed result calculation module which is composed of advanced
calculation’s options which have to been adjusted by user before calculation process start. The
result calculation module is run on separate thread and can work in two configurations: in
standard mode with MySQL InnoDB database or in memory mode with MySQL Cluster. In
the second case at the beginning all data needed is replicated from standard database to
memory database. First idea was to replicate all race data to memory which was time
consuming. Fortunately, due to great InnoDB database design to memory are copied only
three, really two, tables: “eventathletes” and “eventteams”. The third table “racerawtimes”
which stores all chip tags reading inserted by CubicSoft module Connector which during
insertion process verify if memory mode in CubicSoft is activated, if so, it inserts data two
both InnoDB and Cluster database.

For the process of inserting data to the Cluster database very precise calculation of
memory use have been done to avoid “run out of memory exception”. The Table 6 presents
the space occupied by each table, in total it gives 1,99 KB per one record in each of 12
InnoDB tables. In memory Cluster database each variable occupies more space so in
abbreviation Cluster occupies two times more space than InnoDB database, so it gives 3,98
KB per one record. Taking into account the newest assumption that only three tables are
stored in a memory mode the maximum size which can be consumed by Cluster during race is
the following: “eventteams” (102 bytes * 10.000 teams = 1020 KB per race), “eventathletes”
(80 bytes * 10 splits * 30.000 athletes = 24000 KB per race), “racerawtimes” (121 bytes * 10

55

splits * 30.000 athletes * 2 chip tags * 3 reading of each chip tag = 217800 KB per race) in
total 242,82 MB (MySQL InnoDB) * 2 = 485,64 MB (MySQL Cluster). From this
calculation a given assumption is done: Cluster node has to have minimum size of 485,64 MB
+ additional space for configuration data < 50 MB. A node of size 524 MB is sufficient to
process the heaviest race result calculation. The presented calculation and tables size are exact
on a day of writing this, takes into account that in the further development of CubicSoft the

given sizes will be changing.

Table 6. MySQL Cluster database memory usage

Name of table Size in KB
racerawtimes 121 bytes (multiple records)
eventraces 325 bytes
eventsplits 159 bytes
eventcategories 101 bytes
eventgunwaves 97 bytes
eventteamtypes 89 bytes
eventteams 102 bytes (multiple records)
eventattributes 339 bytes
eventathleteattributes 88 bytes (multiple records)
athletes 514 bytes/for memory 114* (multiple records)
eventracenumbers 79 bytes (multiple records)
eventathletes 80 bytes (multiple records)

Then the most crucial data used in result calculation is loaded from database and
stored in memory in form of objects like lists for example all male and female athletes id are
stored in a separate lists, all splits, waves, categories and race numbers are stored also in the
lists. Now the result calculation can be performed in the fastest possible way with all data
stored in memory.

1. the result calculation module every second is looking for a new chip tags readings in
database for given race and split name. Every record consist of unique key, race ID,
split name, chip tag (every athlete participating in race has a chip with coded unique
tag, usually chip is glued to a race number), chip time (time recorded by TimingSense
lector when athlete pass through control point - split), create date, antenna (indicates

56

which antenna from control point reads given chip tag), type (indicates type of the
antenna read 0 — low power, 1 — high power). Every reading of chip is send by the
lector to a CubicSoft due to the additional module Connector.

2. every record from the database is processed, and chip tag from the selected record is
matched to the race number form a race configuration data.

3. split name form the selected record is matched to the split ID from a race
configuration data.

4. chip time is inserted in an appropriate row (race ID, race number, split ID, athlete ID)
for appropriate athlete in the database table “eventathletes”. Additionally the table can
store and calculate up to three type of time for every split: gun time, net time and leg
time.

5. the last part in a calculation process is a setting position for every athlete. Due to great
logical design of the database table “eventathletes” which store the race result to
obtain a classification is only needed a pair of sorting technique:

a. Overall position, sorting event column, split column and the meta split time
column (gun, net or leg time).

b. Category position, sorting event column, split column, category column and
meta split time column (gun, net or leg time).

c. Secondary category position, sorting event column, split column, secondary
category column and meta split time column (gun, net or leg time).

d. Gender position, sorting event column, split column, male athlete/female
athlete column and meta split time column (gun, net or leg time).

e. Attribute position, depend on a data type of the selected attribute (int, string,
select, bool) and value of the given attribute (int value, string value, select
value, bool — true, false). Selecting attribute column and choosing athlete
column corresponding to the selected attribute column and then sorting event

column, split column and the meta split time column (gun, net or leg time)

Moreover when is a team race the additional calculation is performed to obtain a team
classification:

6. Teams position, the calculation of teams position depends on the user choice of the

calculation method (the most common are: summing team total time or summing team

total position), program can be extended by any additional calculation method if it is
57

needed. Selecting team column and athlete column corresponding to the same team
column where a sufficient number of athletes of a team have finished race and have
their finish time and positions. Then the team points and team time is saved and sorted

by event column and one of the points/time column to obtain a team positions.

There are additional aspect considered during the result calculation (depends on an
advanced options chosen by the user) like backup splits, laps or promotion category, and
always athlete/team finish status is taken into account. There is an option of gun/net time
rounding up or down. Another important aspect is a distance unit which is used to calculate
average speed. In the event configuration data user choose individual and team time type to be
used to calculate positions, additional there is a possibility to configure multi lap event. In
split configuration data user choose maximum and minimum time for given control point,
multiple readings (use first or last chip tag reading) and split time calculation interval, there is
an option to configure backup split. The presented result calculation process in one second
can process more than 300 athletes what during the race competition is more than sufficient.
What is important to mention for timekeepers using CubicSoft every changes made in race
configuration for example modification in race category or for example addition of new
athletes demands the recalculations of results.

Additional element of result calculation module is a live result display which can be
adjust by user and use to show classification on a big screen, but this part is under

construction yet.

4.4 REPORTS GENERATION STAGE

At the end of the race a results are presented to a participants. The process of report
generation must be fast and easy to manage by a timekeeper who not always is a computer
scientist. Due to use of well defined logic the timekeeper can create every kind of
classification with every single data included in the race configuration. CubicSoft has two
forms of preparing and generating reports.

58

REPORTS GENERATION FROM GRID CONTROLLER

First method is a very fast and demands only a grid data display modification then user
can generate and print report with a default layout created by application. CubicSoft takes
header names of grouped columns or filtered columns and put all together in the header on the
left hand side of the generated document. In the middle is placed a race name and actual date.
On the right hand side is inserted logotype of the given timing company inserted by user in
the application setting window. Moreover generated reports adjust grid display to A4 paper

size using scaling and best fitting methods.

Archivo Vista Fondo de pagina -
I =8 a0 S L e S ESIR7 SR 100 @& FHE Y @ =-Toy
<}
PAWELPAWEL = E
f/‘,r(—; 5 =
tunes, 09 de junio de 2014 g
3 Ly -
Evento: Eventol —ljj
Sexo:
Dorsal | Posicien Nombre Apelido [== -
554, DANEL 2ZALBA ESTRADA Opciones de Impresion x|
553 JUAN PEDRO KIBERTA PAGES
= S STEL AN Configurar varias opciones de impresién de la vista actual.
551 ALEX VILR GIRBAL = i e
s50) avIER ErETaERTREN pciones | Comporta. ista preliminar:
549, JOAQUIM VELASQO ORTEGA Imnprimir Product Name Category Unit Price Discor
548 MARC VALLDENEU ROGELL. Lj & cabscera Tofu 6‘ Produce 23,25 €
547 RAI URIACH PARELLADA] @l vista previa Gorgonzola Telino ¥ Dairy Products 9,50 €
548 JORDI UBACHIOCORW = e Mascarpone Fabioli %% Dairy Products 32,00 €
545 MANLEL TORRES -
- Geitost 7#] Dairy Products 2,50 €
544, RAFEL TEXIDO VALS i L] Pie de Grupo
543 JUAN LUIS SOUCHEIRON |2 ™ ineas Horiz Manjimup Oried Apples| @ Produce 59,00:€
o : Filo Mix /) Grains/Cereals 10,20 €
542 MARC SOLER MEMBRIVES u] ¥l iLineas Vert =
= AR S beA = _I‘F"m Ravioli Angelo s Grains/Cereals 19,50 €
540 A oA ol i Raclette Courdavault 5% Dairy Products 55,00 €
599 or SERRA GUIVERNAL B EDetalles Camembert Pierrot 5¢] Dairy Products 34,00€
538 DAVID SERRA GUILLAVET =l
537 ANDRE SANTACREU TORRENS
536 ALEX SALVADOR MR
535 EDUARDO SALARICH GABARRO i
534 IGNACIO SAJOLK =1 L Selected Rows
533 JESUS SAIZ) 2
532 NSCAR RUBINAT MIQUEL
531 ANDREA ROSSIGNANI DE -STEFAN
530 CLAUDIO ROSSIGNAN Acsptal ‘ Sancalay J Apliczg J
529 MARS ROSANES = = —
528 DANEL ROSAL
527 ATTOR RODRIGUEZ BASSA
526 CARLES RODES 0CMA
525 MANLEL ROBLES AMARD
524/ JAVIER RIOJA FRAILE
523 NACHO PLUOL PERETTA
= = T ——— wd
Pégina 1 de 6 100% De——" o

Figure 16. Enquiry report view.

REPORT GENERATION USING GUI

Second method is a generation of reports in a reporting section. Here user can use
more complex but with intuitive and user friendly interface tool. Report preparation here is
divided into two modes: expert and standard. In an expert mode an advanced user can used
SQL query to get result data. In a standard mode user has an interface where can choose
a data (columns) which want to include in a report. Then expert mode like a standard mode

can create report layout due to DevExpress controller where a selected data will be placed.
59

DevExpress controller gives an user an interface similar to Microsoft Word where the user
can prepare adequate to needs reports. What is more report configuration with layout can be
saved or loaded to further use by means of online platform. Thanks to this solution whole
timing company has own base of reports stored in one place. This section is in a constant

development.

4.5 COMMUNICATION WITH TIMINGSENSE ONLINE PLATFORM

Online platform is a crucial element of TimingSense system. The platform is
developed by third company placed in Valencia. During all implementation process there was
a close collaboration between CubicSoft and online platform developers. Till now there exists
6 web services to data download (wsGetLicense, wsValidateLicense, wsGetRacesList,
wsGetRace, wsGetlnscriptions) and data upload (wsSaveRace). There is still a lack of two
services to exchange reports and to receive chip tags reading send by lector directly to online
platform instead of CubicSoft Connector. The connection to a web services is established by
use of a standard .NET Framework System.Net namespace (HttpWebRequest class) over
TCP/IP. In a communication process both response and request are encrypted by RIINDAEL
256 algorithm to preserve confidentiality and data security. The messages consist of JSON

interchange text format (data is serialized/deserialized by means of Newtonsoft.Json class).

& Acceso/Registro

MARTACS

MANTACS

3= Clasificaciones

BUSCADOR DE CARRERAS

Competicién Fecha
XXl Volta a peu a Benetusser - Cursa del Solstici 21-06-2014 Iralacarrera
Trail Anochecer Calles 28-06-2014 Ir alacarrera

IV Carrera Solidaria de L'Eliana Contra el Cancer 29-06-2014 Ir alacarrera

Figure 17. Online Platform web page.

60

LICENSING WEB SERVICES

The existing web services can be divided into two groups: web services dealing with
licensing and web services responsible for a race configuration data interchange. First time
when user executes CubicSoft there is a login window where user has to introduce its email
and password generated in online platform. Through wsGetLicense web service CubicSoft
interchange data with online platform, CubicSoft receives information about unique license
number, validate date of the license, company id and unique user id (timer id).

Then there is generated an unique id which is used as a race id (every new race created
in CubicSoft increments given race id by 1). The construction of discussed id is the following:
race id has given format 000001111122222 where 00000 corresponds to a company id where
given timer works, 11111 corresponds to a timer id, 22222 corresponds to the id part of the
race id.

The following id format is preserved by both sides CubicSoft and Online Platform,
and is crucial in functionality of TimingSense system. An user of TimingSense system can
create new race in online platform as well as in CubicSoft software the race id has to be
always unique therefore there is a race numeration logic applied. Online platform starts
numbering race id from 00001 whereas CubicSoft starts from 50001. Secondly the user
license received from online platform is processed by CubicSoft and with specially prepared
xml file encrypted with RIINDAEL 256 cipher is saved in database. The encrypted xml file
consist of given labels:

e <Empresa></Empresa> - stores a company id

e <Timer></Timer> - stores a timer id

e <Fechalni></Fechalni> - stores the first date of initializing license key

e <FechaFin></FechaFin> - stores the finish license date

e <FechaActual></FechaActual> - stores the last date of synchronizing with platform

e <Windows></Windows> - stores the specially calculated system distribution key

Due to given construction of license file the software cannot be corrupted so easily.
First the CubicSoft need a connection to Internet to perform well time measuring during race
competition so license key with date fields can be checked and updated due to
wsValidateLicense web service. Storing information about actual pc system version protect

CubicSoft from coping version of program from one computer to the other one.

61

RACE DATA INTERCHANGE WEB SERVICES

The next portion of web services are used to interchange race configuration data. In
most cases there is performed an online inscription to a race. Then before a race will start
timekeeper has to download all inscribed athletes to CubicSoft program. For it first CubicSoft
uses wsGetRacesList web service to get a list of existing races created in online platform, the
races are grouped in two parts: future races and old races. The next step is to download race
configuration data by means of wsGetRace web service and then download all athletes
inscribed to the given race due to wsGetlnscriptions web service, the presented order of data
downloads is obligatory. In just two simple click user can transfer all race data from online
platform inside CubicSoft software. The process of downloading inscribed athletes can last
a bit as a large data packet is being transmitted by the network. Finally all received
information is deserialized from JSON object and processed to generate SQL INSERT query
and update database by use of native connection. Every race downloaded again from online

platform first is removed and then inserted once more.

Futuras Antiguas

Elige carrera: Il Carrera Solidaria Popular de Cruz Roja en Valencia §

Importar

Figure 18. CubicSoft uses web service to download race configuration data from platform.

The last web service wsSaveRace is useful when a race is finished and user wants to
uploads result to online platform. CubicSoft first gather all race data from database, then
serialized it and sends to online platform. The generated data has a large size so the upload
process will last a bit more. In the future when online platform will be more powerful the

calculation process will be performed also online.

62

4.7. FUTURE DEVELOPMENT

CubicSoft with its modules is creating a part of TimingSense system which is
supposed to be a commercial product addressed to a customer from all over the world.
CubicSoft is in a constant development and surely as a commercial product will be adjusting
to the customers’ needs.

At the present moment two elements are in a developing phase: result display and
report layout builder. Result display will serve to presents live result in user friendly way with
nice designed interactive interface. User will decided which information want to display and
in which order, all of this can be shown on an extern display like other computer screen or big
TV screen during race competition. Result display module will work only with executed
result calculation module. The second element, report layout builder, is used by user to
prepare own layout by means of DevExpress controller with a similar interface to Microsoft
Office Word. Report layout builder is helping an user to easily create demanded layout with
just only a few clicks. It always gives a great support to less advanced users.

There are some ideas to future development, additional functionality for CubicSoft.
One of the ideas is adding a special method which will verify, during importing athletes
process, if corresponding athlete name corresponds to athlete gender. The action method is the
following: checking if an athlete with the same name was imported earlier to the database, if
so checking if the gender corresponds to the gender of newly imported athlete, if not user will
be inform about it and will choose which gender is a correct gender for the given athlete. This
problem is a very common as during competition organizer gives wrong sex or forget about
delivering this data. Then the given athlete does not have a gender position or is assigned to
wrong category, then to correct it all result recalculation is required.

Likewise there are two pending web services to be developed. Exactly communication
between CubicSoft and online platform to interchange reports data. Timekeepers from a given
timing company can shared all their reports with other colleagues. Sharing reports it means
storing layout design and SQL query which construct proper classification. User can in every
time upload or download reports from templates stored in database. Another aspect is adding
new web service to CubicSoft module, Connector, to communicate with online platform and
download chip tags reading. As TimingSense lector can send readings directly to online
platform, the Connector will need to connect with platform to receive data. This type of
communication will be used commonly if the online platform will be enough powerful to run

result calculation module on the server side.
63

CubicSoft is the program that will be developed surely in the future as the
TimingSense system will became more common and start gaining the market. The needs of

customers will be increasing so more work will be required.

64

5 TESTING

This is the last stage of the software development before it can be widely applied to
normal use. In this phase, a general tests to verify the main functionality of CubicSoft
software on various user’s behaviours were performed. Likewise a tests to check the
performance of the race result calculation capability during a real race were conducted. The
testing part is a time consuming part where very precise work is needed. There is a lot of work

for programmers and testers.

5.1. SOFTWARE TESTING

The software testing was performed to verify and validate the CubicSoft. The most
important part was to validate if the software reacts correctly on the user’s behaviours, if there
are any unexpected exceptions. CubicSoft software will be used in many race’s competitions
so any unhandled exceptions are unacceptable, especially operations including data
manipulation can have catastrophic results, for example modifying an athlete race
configuration data or coping information from one event to other.

First tests were performed during implementation phase. CubicSoft was frequently
checked if a new added structure works as expected and does not influence incorrectly on the
others parts by means of traditional method of breakpoints and watches, both tools are
available in Microsoft Visual Studio. This was a white-box testing carried out by software
developer. Techniques used in white-box testing including: API testing, code coverage testing
and static testing (code reviews and inspections). Tests were performed at all levels: unit
testing, integrated testing, system testing and now application is in the phase of acceptance
testing (where timekeepers are testing CubicSoft as a fully functional product). CubicSoft was
exactly checked if manage to react correctly on every type of behaviours and now application
IS testing in a real race competition environment. CubicSoft now is in Alpha testing where
independent TimingSense test team is dealing with it. What is more to handle an unaccepted
behaviours, a list of exceptions for correct interaction of the software with the user was
implemented, a given list is presented in the next chapter in a user documentation.

The last part of testing was an installation and compatibility testing. CubicSoft has
been installed and executed successfully on three most commonly used operating systems:
Windows 8, Windows 7 Home Premium SP1 and Windows Vista Home Premium SP2 each
of them with minimum .NET Framework 4.0 and MySQL database with MySQL
Connector/NET installed.

5.2. EXAMINATION OF TIMING CAPABILITIES

There were performed many result calculation to examine the efficiency and timing
capability of CubicSoft with many parameters’ configurations. The general rule is the bigger
race is (with many athletes and attributes) more complex and time consuming the result

calculation process is.

CUBICSOFT DOMESTIC TESTS

The tests of result calculation capability was done with use of chip tags reading
simulator, created for test purposes, which was inserting chip tags in the database table
“racerawtimes”. CubicSoft was receiving every entrance of new reading and perform all
process of result calculation with insertion of correct classification data to database table
“eventathletes”. In a domestic condition the result calculation module was able to process
between 300 (MySQL InnoDB) and 400 (MySQL Cluster) athletes which gives more than
satisfactory results. During a race the more loaded point of control is a “start” where during
short period of time a huge amount of athletes is crossing the line for example start of 10000
athletes in a one wave can last approximately 4 minutes what gives 42 athletes per second and
every athlete has many chip tags readings. However capability of processing more than 300
athletes per second is enough. The heaviest aspect of processing calculation is a reading of
new chip tags time from database and then inserting the calculated result back to database.
Here is visible a difference between database storage engine where better performance has
MySQL Cluster over MySQL InnoDB. The less important here is an aspect of performing
sorting to obtain athletes’ positions. The Cluster memory mode result calculation can process
more athletes per second then InnoDB. Although bigger difference between given database
storage engines can be seen on a race result calculation at once for example when is need to
recalculate all results. In this case CubicSoft has to gets all chip tags reading for given race, it
can be more than 100.000 records, then conducts positions calculation and finally inserts
result back to database. Here the MySQL Cluster seems to have two times better efficiency
than MySQL InnoDB thanks to storing all data in memory.

66

CUBICSOFT REAL RACE TESTS

CubicSoft is now in a phase of real race environment testing. In a domestic condition
is impossible to deal with all kind of situation which can occur during a race competition. The
result of this testing are still developed, but generally CubicSoft seems to work as expected
with high efficiency.

67

6. SOFTWARE DEPLOYMENT

This chapter is presenting the final release of the CubicSoft with all details about the
installation process, the usage requirements and the user documentation. The release version
was prepared for installation purposes where all source code was inspected to eliminates all
unnecessary classes, methods, variables and comments. Additionally there was used
a specially prepared compilation method “release” available in Microsoft Visual Studio which

makes use of compiler optimizations to obtain final version of the software.

6.1. SOFTWARE INSTALLATION AND MAINTENANCE

This section presents the last aspect of the project which is an installation process
phase and a general requirements description. Before the installation process will be described
the CubicSoft main requirements will be presented. After a creation of the final release
version 1.0 of CubicSoft it was possible to set the final requirements of user workstation. It is
obvious that CubicSoft was written in C# programming language and is using .NET
Framework 4.0 which is indispensable to be installed on user workstation. Apart from it the
necessary is MySQL database with MySQL Connector/NET to be installed on an user pc. The
CubicSoft is compatible with 32 bits architecture and works on 64 bits architecture as well.
The operating system compatible with CubicSoft is Microsoft Windows XP SP3 up to the
newest Windows 8. The user pc must have 2 GB of memory RAM as a minimum to correct

runs and executes result calculation module.

INNO SETUP INSTALLATION PROGRAM

The final released version of CubicSoft 1.0 was prepared to the distribution by use of
the free installer for Windows platform Inno Setup.[45] Inno Setup is a powerful script based
on an installation builder. To build any installer knowledge of a main Inno Setup’s script
commands is necessary. CubicSoft installer version was prepared with the aid of the Inno
Setup. Figure 17 presents a snippet of the installation script which generates the CubicSoft

installer.

& C:\Users\admin\Documents'Inno Setup Examples Dutput\CubicSoft.iss - Inno Setup Compiler 5.4.0 (a) -1&] x|

file Edt View Buld Run Tools Help

IV EH& 0 0FE e

¢ ==~ CubicSeoftiiss: -~ -~

[Setup]
AppName=CubicSoft

AppVersion=1.0.0.0
DefaultDirNawe={pf}\CubicSoft
DefaultGroupName=CubicSoft
UninstallDisplayIcon={app})cubicsoft.exe
Compression=1zma2

SolidCompression=yes

OutputDir=userdocs: Inno Setup Examples Output
ShowUndisplayableLanguages=yes

[Languages]
Nawe: es; MessagesFile: "cowpiler:Languages)Spanish.isl"
Name: en; MessagesFile: "compiler:Default.isl"

Messages]
es.BeveledLabel=Espanol
en.BeveledLabel=English

[Setup]
LicenseFile=C:\Users)admin} DocunentsiVisual Studio 2008)Projects)cronochip)TS\biniRelease) licencia.txt

[Types]
Nawe: "full"; Description: "Instalacion completa”; Languages: es;
Newe: "custom"; Description: "Instalacién personalizada”; Languages: es; Flags: iscustom;

[Components]

Nawe: "cubicsoft"; Description: "CubicSoft”: Types: full custom; Flags: fixed

Name: "uysglconnector”; Description: "Mysgl-connector-net”; Types: full: —
Nawe: "dotnet4”; Description: "dotNet4”; Types: full:

[Tasks]
Name: "desktopicon"; Description: "Create a &desktop icon"”; GroupDescription: "Additional icons:"

[Files]
Source: "C:)Users)admin)DocuwentsiVisual Studio 2008\Projects)cronochip)TSibin}Release\readwe.txt"”; DestDir: "{app}"; Components: cubicsoft; Flags:
isreadme
Source: "C:\Usershadmin)DocumentsiVisual Studio 2008\Projects\cronochipTS\bin\Release\cubicsoft.exe”; DestDir: "{app}": Components: cubicsoft
Source: "C:\Users)admin\DocumentsiVisual Studio 2008\Projects)\cronochiphTS\bin\Release)ico.ico”; DestDir: "{app}"; Components: cubicsoft
Source: "C:\Users)admin)DocumentsiVisual Studio 2008\Projects)cronochiphTS\biniReleaselcubicsoft.exe.config”; DestDir: "{app}"; Components: cubicsoft
Source: "C:\Users)admin)DocumentsiVisual Studio 2008\Projects’\cronochip)TSibin}Release\cubicsoft.exe.manifest”; DestDir: "{app)}"; Components: cubicsoft
Source: "C:\Users)admin)DocumentsiVisual Studio 2008%\Projects)cronochip)TS\bin\Release\NySql.Data.dll”; DestDir: "{app}": Components: cubicsoft j
[Tizizz | [Tmsert [[

Figure 19. A part of the CubicSoft script installer builder.

The script consist of tags. Every tag has specified values and options that can be used.

In the first part are defined major properties of the CubicSoft like name, current version. Then
are prepared installer options. The tag [Languages] allows to choose multi-language interface.
As CubicSoft is also a multi-language application there is a need of this type of the installer.
The tag [Tasks] provides additional options like desktop shortcut. The main function in the
script has the tag [Files]. Here are defined all necessary files for CubicSoft which will be
copied and without them the application will not work properly. The installer is including all
CubicSoft configuration files (.exe, .xml, etc.), all dII’s (DevExpres, MySQL, etc.) and other
files (readme, license, etc.). There was an idea to bundle with the installer, .NET Framework
4.0 installation file, but after short examination this idea was denied as all new Windows
system has it installed as default. The same idea to bundle the installer of MySQL server was
raised, but unfortunately because of license term and complexity of the above it cannot be
done. The CubicSoft installer when finished its work indicates a user that he has to install the
MySQL server with Connector/NET and provides a MySQL download site URL. The whole
process of CubicSoft installation take a few minutes. There is one recommendation to install
CubicSoft outside the Program Files directory because when user do not have the
administration privileges Windows operating system makes CubicSoft unable to modify the
69

configuration layout file stored in this directory. Moreover the installer package provides the
uninstall program, as well. This feature makes easy to uninstall earlier installed program with

all its files from the user computer.

CUBICSOFT UPDATE PROCESS

The last aspect not mentioned here is a CubicSoft auto-update. Till now the updating
process is not developed. The idea is to use a web service running on online platform side
with a very simple methodology:

e check the new version by comparing numbers from last version update on server side
with current Assembly version on user pc.

e if the version is higher on server side, the latest installer is downloaded

e run the downloaded installer and close the application (installer will take care of the

rest)

The Visual Studio has a built-in installer builder and auto-update tool which name is
ClickOnce. However, CubicSoft use very personalize installer with many advanced functions
like multi language, bundled installers, etc. which ClickOnce not support. Therefore

alternative way was used.

6.2. USER DOCUMENTATION

The user documentation provides full information about how to use the application in
form of brief tutorial. The tutorial guides an user through each step of configuration and usage
of the CubicSoft. Moreover user documentation provides thorough troubleshooting assistance.

There is also included a list of typical exceptions handled by CubicSoft software.

6.2.1. TUTORIAL

The tutorial is divided into two parts: installation and first configuration part, and
usage part. It supports an user from the beginning, setup, through the usage of the program.
Each step is described in the manner that even not advanced user can go through the tutorial
and understand it clearly. The tutorial is presenting a real race case - a creation and a

management of a race data.

70

INSTALLATION AND CONFIGURATION

After downloading the installer from online platform and executing it the first window
of the installer will occur. The user must select one of the given language: Espafiol or English.

Then will appear the installer welcome window in the selected language.

15! Setup - CubicSoft i =10 x|

Welcome to the CubicSoft Setup
@ Wizard

This will install CubicSoft version 1.0.0.0 on your computer,

It is recommended that vou close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Figure 20. CubicSoft installer window.

The installation process consists of a few steps which user has to follows. Then user will go
form CubicSoft installer directly to MySQL server download page where after downloading
the MySQL installer and executing it the user has to follow the setup (remembering to install
Connector/Net and setting default user and password for root user of the database). After
installation is finished user can execute installed application, CubicSoft.

During the first run of CubicSoft there will occurred login window where user has to
introduce e-mail and password received during registration on online platform. Then the
application will open, it can last a few seconds because during the first execution MySQL
Cluster and InnoDB database will be created and will be configured. Then CubicSoft
configuration window will occurs where user can adjusts the application interface to its needs

for example timekeeper can select the interface language, default is Spanish, can indicate the

71

actual country and time zone or can select appropriate theme interface, etc. Then finally the
user can start to use the CubicSoft and create a first real race.

o Ajustes (el ‘
Generales Varios Temas
i J < (€) Q ﬁ
Datos basicos
Idioma: espanol v
Pais: Spain v
Zona horaria: GMT +02 Europe/Madrid v

Figure 21. CubicSoft settings window.

CUBICSOFT USAGE

This part presents the principle usage of the CubicSoft, creation of the real race,
without description of the user interface which is detailed featured in design chapter. User can

get know with principle information, how to create and then manage a race data.

([Ee Race Tirming Result Plataforma Online
= ‘7 = . ‘ I y
| W i Edit V_-"_r; L] i_J 'Oyé
Mew Open = Guja Importar New Participant Chips Validate
data
Races ! Management o Yalidation =

Figure 22. CubicSoft principal ribbon menu.

Apart from a main ribbon menu, CubicSoft posses additional pop-up menu with access to all
CubicSoft extra modules (Connector, Lector, Fair) and quick access bar menu. Quick bar
menu consist of shortcuts to the most commonly used items, it is: enquiries, result calculation

module, reports, general application settings and about program information.

72

RACE DATA PREPARATION

The main window of CubicSoft consists of a ribbon menu bar where are placed all

available options of the application. First section is a race preparation where user creates and

then configure a race. By clicking button New user starts to create a new race in a wizard form

which consist of 10 steps which a timekeeper has to follow. First user has to introduce basic

information about created race (fields with asterisk ‘*’ are mandatory) and decides if created

race will copy all basic configuration data from earlier created race or puts the number of

event and splits for new race. The user configure every event by introducing data.

Considering that the user is dealing with a marathon race which consist of two events: 10 km

and 42 km race. Then a timekeeper go to the next steps where configures for every event:

number of splits (the obligatory is one split of type “meta”), in a marathon race case
will be 3 splits: 1 — start, 2 — control point on a distance of 21 km, 3 — meta.

all categories (are two types of categories: primary category and secondary category
which can be age based categories or standard categories sorted by gender type, every
athlete can pretend to only one category), in a marathon race case will be created
a categories consisting of an age ranges. User can copy once created categories from
one event to another as the two events will use the same categories classification.
number of waves (the mandatory is one wave which provide a race start time), in
a marathon race case the user will define one wave for every event.

all team types (if the competition is a team race, user has to define here all types of
teams participating in a race), in a marathon race case the user will omit this step as
a marathon is a individual race.

all attributes (every additional information about athlete which is not included in
a standard athlete data), in a marathon race case the user will omit this step as any

additional information about an athletes will not be imported.

73

Datos de Carmrera
Rellena los campos para defnir datos de la carrera

EIEEEEEEEER =
LT

Datos basicos

Morbre de carrera® TEST

Descripcion

Qrganizador

Pais Espana w Provincia |Valencia e Ciudad |valencia e
Fecha* 25/07/2014 Unidades* km e Zona* (GMT +0Z2 Europes...
Tipo* |Carrera pie en ruta w
Creacidn de carrera:; de plantilla ' de otra carrera
Murnero de eventos® 2]
Modo de carrera® Split3 e
< Anterior | Siguiente = Cancelar

Figure 23. CubicSoft wizard window, a new race preparation.

The next step is an athlete and chip importation where user selects a file to import an athlete
information and a race number with a chip tags. Chip importation also allow a coping chips
from earlier created races. The file with athletes data is usually prepared by a race organizer
and a few days after the race a timekeeper receives the given information. The race number
file is prepared by a timekeeper by use of additional CubicSoft module the Lector
programmer which is programming chips and generating a given file. The last step is just
adjusting an advanced race calculation options like a race time type for result calculation (gun
time, net time, leg time in a marathon race case). What is more the every presented step
posses its own functionality and options like coping data from other event, loading/saving

templates, etc.

74

RACE DATA CONFIGURATION

B Race Timing Result Plataforma Online

L @ Edit | [| i d@
MNew Open = Guia Importar New Participant Chips = Validate
data
Races u Management s Validation

Race Event| Split| Category Wave Team Attribute

Datos basicos

Mombre de carrera* TEST

Descripcién

Organizador
Pais |Espana v| Provincia v| Ciudad

Fecha* 18/04/2014 Unidades* km & Zona* GMT +02 Europe/Madrid |v

Tipo* | Carrera pie en ruta v

Creacién de carrera:

Avanzados

Redondea de tiempo oficial ninguno v Redondeo de tiempo neto ninguno v

[You are connected with DB: tsdb , as user: root

Figure 24. CubicSoft main window, a race data configuration.

After the wizard window is closed and a race data is basically prepared the user can
manipulate all race data from CubicSoft main window view (an user can come back to the
wizard window only if the given race was created in the same session). All steps presented in
the wizard are grouped now in tabs: edit (race, events, splits, categories, waves, teams type,
attributes), import athlete/chip. User in every moment can edit or add a new race information
like change a second split distance on demand of the marathon race organizer and put it at 22
km not as earlier on 21 km. There are additional element like add new athlete where user can
append a new athletes manually, in case of marathon race the organizer send as mail in the
race day with two new athletes so a timekeeper has to introduced this data to the program.

The last step recommended for a timekeeper is a race data validation. The timekeeper
will perform a race validation to check a race configuration correctness in the marathon race
day by use of validation window. If the validation window shows some errors, user with
a single click can go to an exact place in the program where the given error is occurring like

the Figure 25 below is presenting there are some athletes without race number assignation.

75

£ e EH=EHe -

[E+ Race Timing Result Plataforma Online

] 5 [Edit A ‘ i d@
New Open = Guia Importar New Participant Chips Validate
data

Races El Management s Validation »
P Buscar Vaciar

Arrastre una columna aqui para agrupar por dicha columna

Evento Dorsal oOleada Categoria | Equipo Tipo de E... Nombre Apellido Sexo Edad Fecha de... Direccién Club Mévil E-mail Posicion | Po

Eventol [Vacio] NACHO ESCOFET masculino 46 01/01/1968 ARSENAL 627595999

Eventol [Vacio] JOAN ORENSAN... masculino 37 01/01/1977 AQUAMA...

Eventol [vacio] JOSEP MA... COSCULL... masculino 50 01/01/1964 A.E. EKKE

Eventol Salidal 50-59 [vacio] PETER PETROVIC masculino 29 01/01/1985 A.E: EKK...

Eventol pawel Eq3 HUGO AL... CARDOS... masculino 26 01/01/1988 GESPACO...

Eventol TEST Eq3 HUGO AL... CARDOS... masculino 26 01/01/1988 GESPACO...

Evento2 [vacio] JOSEP MA... COSCULL... masculino 50 01/01/1964 A.E. EKKE

Evento2 [Vacio] JOAN ORENSAN... masculino 37 01/01/1977 AQUAMA... B

Evento2 [Vacio] JORDI FONT FRA... masculino 59 01/01/1955 AQUAMA... é

N cento [Vacio] DAVID |PRESAS masculino 44(01/01/1970 AQUAMA 3

Evento2 [vacio] MANUEL MARTIN masculino 44 01/01/1970 ARSENAL 616464862 g

Evento2 [vacio] JAUME CANAS B... masculino 41 01/01/1973 BCN TRIA... 654085994 E
s
&
&)

+® Editar - Error

—:@® Aatletas - Error
@ atletas sin salida - Error
1@ Atletas sin categoria - Error

[@ iAtletas sin dorsal - Error

4B Nareal - Frear
¥ 2 A7 <

5 You are connected with DB: tsdb , as user: root

Figure 25. CubicSoft validation window, enquiries view showing all athletes without race

number assignation.

MANAGEMENT OF RACE TIME MEASURING

The next section a result calculation is a timing part which the user is handled during
a competition, marathon race. It consists of enquiries where user can modify all race athlete
data created earlier like: edit athlete information, change athlete race status, change event
(coping old configuration and adjusting it to a new event), change wave, change category,
change secondary category, change team, change team type, change attribute (edit every
attribute value), change race number and corresponding chip tags, swap race number only
with selected by user chip tags. In this part the timekeeper spends most time of the race
dealing with all type of incidence which the marathon organizer before and during a race
delivers to the timekeeper for example the provided information contains the change of event
for 3 athletes who decided to participate in a 10 km race instead of a marathon race and the

change of the category for 1 athlete.

76

[E= Race Timing Result Plataforma Online

gmnedit =) \;/ L] o)

New Open = Guia Importar New Participant Chips Yalidate
data
Races El Management ¥ Validation »
Cambiar
Category: 50-59 X

Mombre
10-19
20-29
30-39
40-49
50-59
1]

¥ 2T

[y You are connected with DB: tsdb , as user: root

Figure 26. CubicSoft enquiries view, change the race category for a selected athlete.

The next step before the race will start is necessary to execute the Connector module
and configure it with TimingSense lectors. In case of the marathon race there are 3 splits with

three distinct TimingSense equipment which will send a chip tags readings. After the all

connections are established the user can go to the next step.

"o 'FrmConectorPropiedad

Config. local Configuracién de IP
| ag Config. remoto | Direccién IP: |192.168.43. 3111
|| Inicio 'Red | Ficheros | BD | Emulador -
Test
14 Rebobinar
Sincronizacion
16 ! Fecha: _J_J v! sincra, con Servidor
modo memoria
3 1 Carrera:
“Gestién de Conexidn split:
+ Desde: Hasta:
Conectar

Local Remoto
Local Remoto
Local Remoto

Siempre arriba

Figure 27. CubicSoft Connector module, connections with TimingSense lectors.

Selector de Columnas

77

The next element is a results calculation to perform result calculation process by just
one click with additional calculation options which can be adjusted by user. The timekeeper
should execute a result module before a race starts to check if an every chip tags readings is
process correctly (the result calculation process is performed every second). The user choose
if wants to use a memory mode to calculate results which speeds up the calculation process
(the memory mode result calculation is not recommended only if the user is recalculating all

results after the race competition).

[E+ Race Timing Result Plataforma Online

= Tiempos |_| Tiempo manual
Consult | Results Importar

Consultas = Resultados 3 Varios

Resultado Tiempos

Ajustes avanzados de cronometraje

]

Progreso de carrera

Calcular vueltas
Calcular categorias destacadas

Calcular split de respaldo

v/ Posicién de tiempo netto

v/ Split posicién

Ejecuta una vez
Iniciar

Modo memoria

5 You are connected with DB: tsdb , as user: root

Figure 28. CubicSoft result calculation module.

Then the timekeeper move to the wave times part where user places a start time for
every wave in every event. The timekeeper can update time manually, with PC clock or with
online platform. This part is crucial as the race start time is being saved. In the presented
marathon race are two events: 10 km and marathon with one wave each so the timekeeper

presses update button during the race start.

78

| @ Race Timing Result Online

o . =

= Tiempos
“ Importal
> =

] Tiempo manual
r

|Resultada Tiempos |

- : 1
| salida. | Tiempo | Tiempo apr I
Evento: 10K

:
Salidat
Evento: Marathon

. ActualizarconPC | | Actualizar Online

| B4 You are connected with DB: tsdb , as user: root

Figure 29. CubicSoft event wave time view.

REPORTS GENERATION

During the race and after the race, the timekeeper has to prepare reports for a speakers
and for the race organizers. The user can make it with very easy way just adjusting the
enquiries grid layout and then generates/prints final report by choosing appropriate option

from the contextual menu.

¥ Vista previa
i Na’w Vista Fﬁmgdzmm
200 e B B2 Oy P & [100% &) b MR B i D)

TEST

martes, 24 de junio de 2014

Evento: 10K

Nombre Apellido Club
FREDERIC MARTI SANTANACH i IRSIONISTA DE PAL
ENRIC ENRICH MULS
ENRIC COLL MESA
ISRAEL RODRIGUZ USON
RAMON BOFARULL.
NACHO ESCOFET
TOMEL FIOL VIRGILT
J0AN JOFRA
MIGUEL ‘GALAN GUERRERO
FREDERIC SAVALLS GRASSOT
JoAQUIM SEVILLLA SALAZAR
BORM MARCOS

ToNI KERPACH MARTINEZ
VICTOR SENOR GONZALEZ
DAVID MATEL BAGARIA
VICTOR BERGNES DE LAS CASAS g SPORT
JosE TURLLL
ALFONS ‘SANCHIS COT lino| C. POLIESPORTIU PUIGCERDA
RAUL MORENO VALERA i LAFRUGELL-TRIATLO

GUILLEM DOMINGO PEREZ FASTTRIATLON
RAUL MOYA BLASOO i FASTTRIATLON
PATRICK BOHAN lino| C.E. NO TE PARES

CARLOS RUEDA VARO i
LA lino| C.E. WHERE IS THE LIMIT?
VICTOR ino| C.E. WHERE IS THE LIMIT?
VICTOR lino| C.E. WHERE IS THE LIMIT?
JUAN CARLOG ino| C.E. WHERE IS THE LIMIT?
MARC-AUGLET PUIGDOLLERS VIVES ino| C.E. WHERE 15 THE LIMIT?
JOAN-FRANCESC RECASENS COLLADO. ino| C.E. WHERE IS THE LIMIT?
CHRISTIAN REINA MUKOZ ino| C.E. WHERE 1S THE LIMIT?
PERE RAMPENY ino| C.E. WHERE IS THE LIMIT?

|Pagina 1 des | | 100% = o]

Figure 30. CubicSoft grid report view.

ONLINE PLATFORM RESULT PUBLICATION

The last section which the user can use is the online platform where the timekeeper

can upload the race result data. The timekeeper with a just single click can export all result

with a race configuration data to the online platform. Then the race participants can check the

race result in the internet.

6.2.2. LIST OF COMMON EXCEPTIONS

The list of common exceptions presents the most frequent exception which may occur

during usage and execution of the CubicSoft program. The list of exceptions is an important

part of the user guide as it provides thorough troubleshooting assistance. Given list of the

exceptions of CubicSoft software is described in the Table 7 below.

Table 7. List of the basic exceptions handled by CubicSoft

Type of message

Description

DB connection failure

A connection to MySQL database failed

License error

Verify correctness of provided data

Invalid license

The license is not valid, contact with TimingSense

Download error

Error occurred during downloading data

Upload error

Error occurred during uploading data

File incompatible

Check the content of the file

Restricted area

The given area is inaccessible

Operation not allowed

The operation cannot be performed in given grid customization

Distinct events

This change is not permitted for multiple events

Empty column

Race number column cannot be empty

Incompatible column

Birthday column has wrong format

Lack of race

Corresponding race has to be downloaded first

Validate race

The race validation is needed

80

7. CONCLUSIONS

The goal of this project was to design and implement a specialized software for the
time control purposes of the high participation non-motorized sports events (athletic races,
cycling, triathlon, etc.) where a timing process is done by the RFID technology. The project
till now is developing successful, and the developed application, CubicSoft, already has been
testing in real race environment. Implemented application was coded in C# programming
language and .NET Framework 4.0 technology. CubicSoft fully manage all aspects and
features of the race, starting from race preparation, result calculation and ending on reports
generation. Additional feature of the program, essential for TimingSense system, is
communication with online platform, to import participants and race configuration data and to
publish the results so that the whole process becomes easier for the timekeeper, and all due to
web services. Moreover the software can communicate with a timing equipment to receive
a chip tags readings, monitor the status of equipment or recover old chips readings. Described
software, CubicSoft, is a motherboard for the newly formed sport timing system,
TimingSense, and it manages all necessary race timing functions and communication between
timing equipment and online platform. To sum up the practical part, as a result of the
cooperation with Cronochip company a technologically advanced application with
alternatively simple and efficient interface was implemented and now it is preparing to be
used by timing companies all over the world.

The theoretical part shows all stages of the software development: modelling, design,
implementation, testing and deployment phase. Moreover, this dissertation explains all
technical aspects and a theoretical issues necessary to understand the construction of the
TimingSense system and the basis of the race timing.

8. REFERENCES

8.1 PRINTED SOURCES

[1] Cornel Turcu, “Current Trends and Challenges in RFID”, InTech, Croatia, 2011

[2] Daniel Dobkin, “The RF in RFID: Passive UHF RFID in Practice”, Newnes, Oxford, 2008
[3] Jeff Ferguson, Brian Patterson, Jason Beres, Pierre Boutquin, and Meeta Gupta, “C#
Bible”, Wiley Publishing, Indiana, 2002

[4] Wei-Meng Lee, “C# 2008 Programmer's Reference”, Wiley Publishing, Indiana, 2008

[5] Weis Stephen, “RFID (Radio Frequency Identification): Principles and Applications”,
MIT CSAIL, 2007

[6] ECMA-334 Standard, “C# Language Specification”, Ecma International, 2006

[7] ECMA-404 Standard, “The JSON Data Interchange Format”, Ecma International, 2013

[8] ECMA-335 Standard, “Common Language Infrastructure (CLI)”, Ecma International,
2010

8.2 INTERNET SOURCES

[20] http://msdn.microsoft.com/en-us/library/8z6watww.aspx, available at April 2014

[21] http://msdn.microsoft.com/en-us/library/z1zx9t92.aspx, available at April 2014

[22] http://www.oracle.com/us/products/mysql/overview/index.html, available at April 2014

[23] http://msdn.microsoft.com/en-us/library/zw4w595w.aspx, available at April 2014

[24] http://msdn.microsoft.com/en-us/library/kx37x362.aspx, available at April 2014

[25] http://www.mysql.com/about, available at April 2014

[26] http://www.oracle.com/us/sun/index.htm, available at April 2014
[27] http://dev.mysgl.com/doc/refman/5.7/en/storage-engines.html, available at April 2014

[28] http://www.mysql.com/products/cluster/, available at April 2014

[29] http://www.json.org/json-pl.html, available at April 2014

[30] http://www.microsoft.com/visualstudio/products/default.mspx, available at April 2014

[31] http://www.mysql.com/products/workbench, available at April 2014

[32] https://www.devexpress.com/Products/NET/Controls/WinForms, available at April 2014

[33] http://www.telerik.com/products/winforms.aspx, available at April 2014

[34] http://www.mysql.com/products/connector, available at April 2014

[35] http://www.nuget.org/packages/newtonsoft.json, available at April 2014

[36] http://www.codeproject.com, available at April 2014

http://msdn.microsoft.com/en-us/library/8z6watww.aspx
http://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
http://www.oracle.com/us/products/mysql/overview/index.html
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://www.mysql.com/about
http://www.oracle.com/us/sun/index.htm
http://dev.mysql.com/doc/refman/5.7/en/storage-engines.html
http://www.mysql.com/products/cluster/
http://www.json.org/json-pl.html
http://www.microsoft.com/visualstudio/products/default.mspx
http://www.mysql.com/products/workbench
https://www.devexpress.com/Products/NET/Controls/WinForms
http://www.telerik.com/products/winforms.aspx
http://www.mysql.com/products/connector
http://www.nuget.org/packages/newtonsoft.json
http://www.codeproject.com/

[37] http://stackoverflow.com/, available at April 2014

[38] http://www.racetectiming.com, available at April 2014
[39] http://balsamig.com/, available at May 2014

[40] https://www.eclipse.org/ganymede, available at May 2014

[41] http://www.pool.ntp.org/, available at May 2014

[42] https://www.assembla.com/, available at May 2014
[43] http://www.redbooth.com/, available at May 2014
[44] http://msdn.microsoft.com/data/ef.aspx, available at May 2014

[45] http://www.jrsoftware.org/, available at June 2014

83

http://stackoverflow.com/
http://www.racetectiming.com/
http://balsamiq.com/
https://www.eclipse.org/ganymede
http://www.pool.ntp.org/
https://www.assembla.com/
http://www.redbooth.com/
http://msdn.microsoft.com/data/ef.aspx
http://www.jrsoftware.org/

APPENDIX 1 - COMMUNICATION BETWEEN

CONNECTOR AND LECTOR
DATA SOCKET

Description of the interchange protocol of the information about chip readings by data
socket. Socket TCP/IP by default work on port 10. For the negotiated connection, the lector
takes the server role, remaining in listening state to connection requests.

The basic unit of information transferred by the socket data from lector to the

Connector, is a follow JSON package with the following labels:

t reading type (integer)
h hour (date time)

c milliseconds (integer)
t reading type (integer)
h hour (date time)

c milliseconds (integer)
a antenna (integer)

X chip (string)
S split (string)
r race (string)

u timekeeper (string)

Example
Suppose the following reading: aa00470011223344090006123014052027xX.
A message delivered by the lector to the Connector, is following:
{"t":1,"h":"20061230T14:05:20","c":39,"a":1,"x":" 044" ,"s" ’split1”,"r":’racel”,"u":"user1”’}
The message corresponds to an entity of JSON serialized through the Newtonsoft.Json
package. The aim is a brevity of the package and reduced number of padding characters.

Always after a message, end of line character appears, ASCII 10 character (\n).

REWIND SOCKET
Description of the interchange protocol of the information about chip readings by
rewind socket. Socket TCP/IP by default work on port 9998. For the negotiated connection,

the lector takes the server role, remaining in listening state to connection requests.

Rewind request
The prompt rewind message (pc — lector), has the following format:
{"tipo":”"REBOBINADO”,"sql":"xxx"
Knowing ‘xxx’ is a SQL query to be executed on the lector database and respecting:
e adata to return, must match all fields in the table 'Lecturas’ (select * from Lecturas)
e must be a SELECT query

Always after a message, end of line character appears, ASCII 10 character (\n).

Rewind response
The response to the request rewind (lector — pc), has the following format:
{"tipo":" REBOBINADO”,"rows":"yyy","msg":"xxx"
Knowing the following:
e ‘yyy’ the number of rows that has resulted from the SQL query (the number of
readings that will proceed to be sent by rewind socket)
e ‘xxx’ the message which has returned a database manager system (for the malformed
query). If the query has been executed correctly, the message will contain 'OK' value.
If the query has generated any results, it is sent by the rewind socket. No further
communication by the pc is necessary. Each of the data row sent, has the same format as the
data interchanged by data socket. Always after a message, end of line character appears,
ASCII 10 character (\n).

CONTROLL SOCKET
Description of the interchange protocol of the information by control socket. Socket
TCP/IP by default work on port 9999. For the negotiated connection, the lector takes the

server role, remaining in listening state to connection requests.

Messages from Connector to lector
Handshake message send to lector has the following format:
{"tipo":”"HOLA”}\n

This message has to be responded by lector with sync request packet.

Information about new race data send to lector has following format:
85

{"tipo":”"CARRERA”,"carrera":"xxxxx”,"split":"yyyyy”}\n
Knowing the following:
® XXXXX — New race name
* yyyyy — new split name
The Connector issues this message when user wants to change the configuration of a race of
the lector. This message must be answered by lector with race configuration information
packet.

Synchronization information for lector has the following format:
{"tipo":”SYNC”,"datetime":"xxxxx”}\n

Knowing that ‘xxxxx’ is a System.DateTime’ object with a date of the Connector pc.

This message is a response to the lector synchronization request. This message must be

answered by lector with synchronization confirmation.

Messages from lector to Connector
CPU temperature alarm send to Connector has the following format:
{"tipo":”ALARMA”,"temperatura":"cpu|XX”}\n
Knowing that ‘XX’ is a CPU temperature.
Lector broadcasts this message every time when checks a temperature of the CPU, and it is
greater than that established in the following firmware parameter:
<add key="cpu.temperatura.maxima" value="65"/>

No response awaiting.

Lector temperature alarm send to Connector has the following format:
{"tipo":”ALARMA”,"temperatura":"1|XX”}\n
Knowing that ‘XX’ is a Lector temperature.
Lector broadcasts this message every time when checks a temperature of the Lector, and it is
greater than that established in the following firmware parameter:
<add key="cpu.temperatura.maxima" value="65"/>

No response awaiting.

Antenna configuration alarm send to Connector has the following format:
{"tipo":”ALARMA”,"antena":"XX”}\n
86

Knowing that ‘XX’ is a decimal value that indicates the status of the 4 antennas connected to
a lector and has following meaning:

e XX =00 (dec)=0000 (bin) — no antenna connected

e XX =01 (dec)=0001 (bin) — antenna 1 is connected

e XX =02 (dec)=0010 (bin) — antenna 2 is connected

e XX =04 (dec)=0100 (bin) — antenna 3 is connected

e XX =08 (dec)=1000 (bin) — antenna 4 is connected

e XX =03 (dec)=0011 (bin) — antenna 1 and 2 are connected

e XX =05 (dec)=0101 (bin) — antenna 1 and 3 are connected

e XX =09 (dec)=1001 (bin) — antenna 1 and 4 are connected

e XX =06 (dec)=0110 (bin) — antenna 2 and 3 are connected

e XX =10 (dec) = 1010 (bin) — antenna 2 and 4 are connected

e XX =12 (dec)=1100 (bin) — antenna 3 and 4 are connected

e XX =14 (dec)=1110 (bin) — antenna 2, 3 and 4 are connected

e XX =13 (dec)=1101 (bin) — antenna 1, 3 and 4 are connected

e XX =07 (dec)=0111 (bin) — antenna 1, 2 and 3 are connected

e XX =11 (dec)=1011 (bin) — antenna 1, 2 and 4 are connected

e XX =15(dec)=1111 (bin) — antenna 1, 2, 3 and 4 are connected
Lector broadcasts this message whenever the Lector will communicate a change in the
antenna settings.

No response awaiting.

Battery alarm send to Connector has the following format:
{"tipo":”ALARMA”,"bateria":"XXX”}\n
Knowing that XX is a decimal value that indicates, as a percentage, the state of charge battery
and has following meaning:
e XXX =100— 100% available battery charge
o XXX =45 — 45% available battery charge
.
It remains to define when lector deliver this message. It is not yet developed.

No response awaiting.

87

Electrical connexion alarm send to Connector has the following format:
{"tipo":”ALARMA”,"conexion":"X”}\n
Knowing that X is the binary value that indicates the state of the connection to the electricity
network and has following meaning:
e X =0 — not connected to the power supply
e X =1 — connected to the power supply
It remains to define when lector deliver this message. It is not yet developed.

No response awaiting.

Information about new race data send to Connector has following format:
{"tipo":”"CARRERA”,"carrera":"xxxxx”,"split":"yyyyy”}\n
Knowing the following:
® XXXXX — Nnew rac€ name
* yyyyy — new split name
Lector issues this message as a response once a communication is established with Connector.

No response awaiting.

Synchronization request send to Connector has the following format:
{"tipo":”SYNCREQUESTED”}\n
Lector broadcast this message in a given situations:
e at the beginning of the communication with Connector
e when from the display of TimingSense lector, time synchronization is requested again

Lector expects response with the message synchronization information from Connector.

Synchronization acknowledgment send to Connector has the following format:
{"tipo":"SYNC”,"offset":”xxxx”,"synctime":’yyyy”}\n
Knowing the following:
e xxxxx — ‘TimeSpan’ object with the offset that has needed the lector clock to
synchronize with Connector. This is the offset of the lector relative to Connector.
e yyyyy — lector time in the moment of delivery of this message

This message is a reply to message synchronization information send from Connector.

88

APPENDIX 2 - COMMUNICATION BETWEEN
CUBICSOFT AND PLATFORM

Communication between CubicSoft and online platform is base on web services. The
discussed services can be divided into two groups: download data and upload data. In
a communication process both response and request are encrypted by RIJNDAEL 256
algorithm, whole message of the post request is encrypted within the variable content. The

message consist of JSON text format.

DATA DOWNLOAD
wsGetLicense
Request:
In this service we receive by means of post request the following information encrypted in the
variable content of the petition post:
array(‘user’: usuario, ‘password”: password)

Knowing the following:

o user — is an email
. password — is a user password
Response:

The system will return a JSON encrypted with the following structure:
array(‘error’: errvor, ‘license’: licencia, ‘finish’: fecha, idEmpresa’: empresa, ‘idTimer’: timer)
Knowing the following:
e error - can has following values: 0 - request completed successfully, 1 — incorrect user
data, 2 — other error

e license — license number associated with the given user in varchar(32) format if

request completed successfully
e finish - date of license validity in given yyyymmdd format
e idEmpresa — unique timing company identification in given 00000 format

e idTimer — unique timer identification in given 00000 format

wsValidateLicense
Request:

In this service we receive by means of post request the following information encrypted in the
variable content of the petition post:
array(‘license’: licencia)
Knowing the following:
o license — is a application license
Response:
The system will return a JSON encrypted with the following structure:
array(‘error’: error, ‘date’: hoy, ‘finish’: fecha)
Knowing the following:
e error - can has following values: 0 - request completed successfully, 1 — incorrect user
data, 2 — other error
e hoy - today date on the server side in given yyyymmdd format

e finish - date of license validity in given yyyymmdd format

wsGetRacesL.ist
Request:
In this service we receive by means of post request the following information encrypted in the
variable content of the petition post:
array(‘license’: licencia)
Knowing the following:
. license — is a application license
Response:
The system will return a JSON encrypted with the following structure:

array(‘error’: error,‘tsdb’: tsdb)
Knowing the following:
e error - can has following values: 0 - request completed successfully, 1 — incorrect user

data, 2 — other error
e tsdb —JSON information {"tsdb":{"races":[{"idRace":,"name":,"date":}]}}

wsGetRace
Request:
In this service we receive by means of post request the following information encrypted in the

variable content of the petition post:

90

array(‘license’: licencia, ‘race’: carrera)

Knowing the following:

o license — is a application license

. race - is a race id of the given format 000001111122222 where 00000
corresponds to idEmpresa provided in wsGetLicense service, 11111 corresponds to
idTimer provided in wsGetLicense service, 22222 corresponds to the id part of the

race

Response:

The system will return a JSON encrypted with the following structure:

array(‘error’: error,‘tsdb’: tsdb)

Knowing the following:

error - can has following values: 0 - request completed successfully, 1 — incorrect user
data, 2 — other error
tsdb — JSON information {"tsdb": {"races™: {"idRace": "","idRaceType": ", "name":

" "organizer”: "" "description™: " "country”: " “province": " city": " "date":
" "finishTimeR": """, "netTimeR": "”}"eventraces": [{"idRace": "" "idEvent":
" "description™: " "dateTime": " “distance": "","cutoffTime™": ™" "positionEqual":
" "positionTimeType™: ", "teamResultType": " “teamTimeType™: ", isMultiLap":
" McutoffType™: " "cutoffLap™: " "lapDistance": " "minLapTime":

" "intermediates": ", "eventsplits": [{"idRace": "","idEvent™: "","idSplit": ""',"name":

" UtimerName™: " "type: """minTime™: " "maxTime": "","minLapTime":
""" "lapNumber™: " "multipleReads": " "calcTimes": " "finishStatus":
" "distanceFromStart™: " "deadZone™: " "idBackup™: " "backupAfter":
" "backupTimeDifference": " "backupTimeWait": ""}],"eventcategories":
[{"idRace": " '"idEvent": " "idCategory": " '"name": "' “isAgeBased":
" "fromAge": "","toAge"™: "","onDate": ""/“fromYear": ""/toYear": " ’gender":

" "isPromotionCategory”: "","maxPromotionCategory"”: "","idPromotionCategory":

" "idPromotionCategory2": " "isSecondaryCategory™: ""}],"eventattributes":
[{"idRace": "" "idEvent™: "" “idAttribute": " 'name": "" “description™: " “type":
"], "eventgunwaves": [{"idRace": " "idEvent": " "idGunWave":
" "waveDescription™: " aproxTime™: " "waveTime": " "dorsalFrom":

" "dorsalTo": ""}],"eventteamtypes™: [{"idRace": "" "idEvent": " "idTeamType":

,"typeName": " "maxAthlete": " "resultAthleteCount": " "gender":

91

"2 "eventteams”: [{"idRace™: "/ "idEvent": " "idTeam": " "idTeamType":

" "name’”; "}

wsGetlnscriptions
Request:
In this service we receive by means of post request the following information encrypted in the
variable content of the petition post:
array(‘license’: licencia, ‘race’: carrera)
Knowing the following:
o license — is a application license
o race - is a race id of the given format 000001111122222 where 00000
corresponds to idEmpresa provided in wsGetLicense service, 11111 corresponds to
idTimer provided in wsGetLicense service, 22222 corresponds to the id part of the
race
Response:
The system will return a JSON encrypted with the following structure:

array(‘error’: errvor, ‘tsdb’: tsdb)
Knowing the following:

e error - can has following values: 0 - request completed successfully, 1 — incorrect user

data, 2 — other error

e tsdb — JSON information {"tsdb™:{"inscription":[{"idRace": "","idEvent": "","name":
"t Usurname™: """gender”: " age": "","birthday": " “country": " “provincia":
"t teity™: " "code™: " address": " “dni": " ,"phone": ™ "mail": " club":
"" “dateCreate": "" "lozalizador": " idUser": """ "idInscripcion”:
" "inscriptionattributes”: [{"idRace": "","idEvent": " "idAthlete": "" “idAttribute":

" "value'": ""}IH}}

DATA UPLOAD
wsSaveRace
Request:
In this service we receive by means of post request the following information encrypted in the
variable content of the petition post:

array(‘license’: licencia, ‘tsdb’: tsdb)

92

Knowing the following:

o license — is a application license
o tsdb - JSON information {"tsdb": {"races": {”idRace": "","idRaceType":
nn Hname nn !!Organlzer . HH, Hdescrl‘ptl‘on ", mnn Hcount}/y I!H’ ”pl"OVll’lCe IIII) ”cilj}”‘.

" "date": " finishTimeR": " "netTimeR": " "unidades": " "timeZone":

""},"eventraces": [{"idRace": "™ idEvent": " description™: " "dateTime":

" "distance™: " "cutoffTime™: " "positionEqual™: " "positionTimeType™:
" "teamResultType": " “teamTimeType™: " “isMultiLap”: ™", "cutoffType":
" "cutoffLap™: " "lapDistance": " "minLapTime": " "intermediates”:

" "idEventRace": ", "eventsplits": [{"idRace": "","idEvent": " ,"idSplit": " "name":

,"type":
,"lapNumber"': " "multipleReads":

,"timerName": ,'minTime": ,"maxTime": ,'minLapTime":

ScalcTimes™: SfinishStatus'':

" "distanceFromStart": " "deadZone": " "idBackup™: " "backupAfter":

""" "backupTimeDifference": " "backupTimeWait": ""}],"eventcategories":
[{"idRace": " 'idEvent": " "idCategory": " '"name": " “isAgeBased":
" "fromAge”: " ,"toAge™: " "onDate": "",“fromYear": " "toYear": "","gender":

" "isPromotionCategory”: "","maxPromotionCategory": "","idPromotionCategory":
" "idPromotionCategory2™: """ "isSecondaryCategory": ""1],"eventattributes":
[{"idRace": "" "idEvent™: ™" “idAttribute”: "" ''name": "" description™: " “type":

" "value": ""}],"eventgunwaves": [{"idRace": "™ idEvent": " "idGunWave":

,"waveDescription™: " aproxTime": ,"waveTime": ,"dorsalFrom":

" "dorsalTo": ""}],"eventteamtypes™: [{"idRace": "" 'idEvent": ", “idTeamType":
" "typeName": " "maxAthlete": " "resultAthleteCount": " "gender":

"}],"eventteams™: [{"idRace": "","idEvent": ""idTeam": ™,"idTeamType":

name" SfinishTime™: S'finishPosition™: S'finishTeamPoints":

" "finishStatus": ""1],"eventracenumbers":[{"idRace": " "idEvent":
" "idRaceNumber”: ™" "chipCode": ""}],"athletes": [{"idRace": ™" ,"idEvent":

" "idAthlete": "","name™: ™" “surname": S'gender”: " "age": """birthday":

,‘country™: "™ "provincia™: "™, "city": " "code": ", "address": "","dni ,"phone":
" M mail™: " club™: " "dateCreate": " "lozalizador": " idUser™:
" "idInscripcion™: " licencia™: "/ local”: "™idTeamType": """ “teamName":
""eventathleteattributes": [{"idRace"™: " "idEvent": "","idAthlete":
" "idAttribute”: " "value": ""}]}],"eventathletes": [{"idRace": ", "idEvent":

93

S'dorsal™:

" ridSplitt: " "idAthlete™: ™","idRaceNumber™: " "idGunWave": " "idTeam":

" "idCategory": " "idSecCategory": " "isManualTime": " rsplitTime":
" UsplitTimeNet": ™","splitTimeLeg": "","overallPosition": ™" "overallPositionNet":
" "overallPositionLeg": " "categoryPosition": " "categoryPositionNet":
" "categoryPositionLeg": " "isPromCategoryP": " "secCategoryPosition™:
""" "secCategoryPositionNet": " "secCategoryPositionLeg":
" "isPromoSecCategoryP": " "genderPosition": """ "genderPositionNet":

,"genderPositionLeg": ", "laps™: "","averageSpeed": ", "finishStatus™: "'} }1}}
Response:
The system will return a JSON encrypted with the following structure:

array(‘error’: error)
Knowing the following:
error - can has following values: 0 — created request completed successfully, 1 — updated

request completed successfully, 2 — given license does not exist, 3 — other error

94

