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Abstract

Many scientific and engineering problems are described using Ordinary Differen-
tial Equations (ODEs), where the analytic solution is unknown. Much research has
been done by the scientific community on developing numerical methods which can
provide an approximate solution of the original ODE. In this work, two approaches
have been considered based on BDF and Piecewise-linearized Methods. The ap-
proach based on BDF methods uses a Chord-Shamanskii iteration for computing
the nonlinear system which is obtained when the BDF schema is used. Two ap-
proaches based on piecewise-linearized methods have also been considered. These
approaches are based on a theorem proved in this paper which allows to compute the
approximate solution at each time step by means of a block-oriented method based
on diagonal Padé approximations. The difference between these implementations is
in using or not using the scale and squaring technique.

Five algorithms based on these approaches have been developed. MATLAB and
Fortran versions of the above algorithms have been developed, comparing both pre-
cision and computational costs. BLAS and LAPACK libraries have been used in
Fortran implementations. In order to compare in equality of conditions all imple-
mentations, algorithms with fixed step have been considered. Four of the five case
studies analyzed come from biology and chemical kinetics stiff problems. Exper-
imental results show the advantages of the proposed algorithms, especially when
they are integrating stiff problems.

Key words: Ordinary Differential Equation (ODE), Initial Value Problem (IVP),
Backward Differentiation Formula (BDF) Method, Piecewise-linearized Method,
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1 Introduction

Much research has been done by the scientific community on developing nu-
merical methods which permit an approximate solution to ODEs. In recent
years many review articles and books have appeared on numerical methods
for integrating ODEs, in particular in stiff cases [1]. Stiff problems are very
common problems in many fields of the applied sciences: control theory, bi-
ology, chemical kinetics, electronic circuit theory, fluids, etc. One of the most
popular multistep method families for solving IVPs for stiff ODEs is formed
by the BDF methods [2–5]. Another approach used in this paper is based on
piecewise-linearized methods. These methods solve an IVP by approximating
the right-hand side of the ODE by means of a Taylor polynomial of degree
one. The resulting approximation can be integrated analytically to obtain the
solution in each subinterval and yields the exact solution for linear problems.
In [6,7] an exhaustive study of this approach is introduced. The developed
piecewise-linearized algorithms use Theorem 1 and Corollary 1 (Section 3)
which allow to compute the approximate solution at each time step by means
of a block-oriented method based on diagonal Padé approximations.

The paper is structured as follows. In Section 2 a BDF algorithm is presented.
The proposed approaches for solving IVPs by a piecewise-linearized method
based on diagonal Padé approximations are presented in Section 3. The exper-
imental results are shown in Section 4. Finally, some conclusions and future
work are outlined in Section 5.

2 A BDF algorithm

Let the IVP

ẋ(t) = f(t, x(t)), t ∈ [t0, tf ], x(t0) = x0, (1)

where f(t, x(t)) ∈ R
n , t ∈ [t0, tf ], satisfies the necessary conditions under

which the problem has a unique solution.

In this section an algorithm is presented which solves IVPs for ODEs by means
of a BDF approach [8, Chapter 5] which uses a Chord-Shamanskii method [9,
Chapter 5] to solve the implicit equations that appear in BDF methods. In a
BDF scheme, the integration interval [t0, tf ] is divided so that the approximate
solution at ti, xi, is obtained by solving an implicit nonlinear system obtained
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by differentiating the polynomial which interpolates past values of xi, and
setting the derivative at ti to f(ti, xi). Several methods have been implemented
for solving that implicit nonlinear system; however, in the context of stiff
ODEs, one of the better choices is to apply implicit schemes based on Newton’s
or quasi-Newton methods.

If {t0, t1, · · · tf} is a partition of interval [t0, tf ] and a BDF scheme is applied,
the approximate solution xi is obtained by solving the following equation:

xi −
r
∑

j=1

αjxi−j −∆ti−1βf(ti, xi) = 0, (2)

where ∆ti−1 = ti − ti−1, and αj (j = 1, 2, · · · , r), β are parameters which
appear in Table 1, where r is the order of BDF method

Usually a Newton method is used to solve (2) at each time step. In this way,
xi is obtained from the Newton iteration

x0
i = xi−1,

(

In − hβJ l−1
i

)

∆x = −F (xl
i), x

l
i = xl−1

i +∆x, l ≥ 1, (3)

where J l−1
i is the Jacobian matrix evaluated at (xl−1

i , ti).

In this paper an inexact Newton technique for solving (3) has been used which
significantly speeds up the implicit BDF integrator without loss of accuracy.
This approach [9, pp. 86] uses a combination of the Chord and Shamanskii
methods, based on the reduction in the nonlinear residual. This latter option
decides if the Jacobian should be recomputed based on the ratio of successive
residuals.

If two consecutive approaches xl−1
i and xl

i verify that
∥

∥

∥F (xl
i)
∥

∥

∥ /
∥

∥

∥F (xl−1
i )

∥

∥

∥ is
below a given threshold, the Jacobian is not recomputed. If the ratio is too
large, the Jacobian matrix at xl

i is computed for use in the subsequent chord
steps. In addition, a threshold for the ratio of successive residuals is also input.
The Jacobian matrix is recomputed and factored if either the ratio of succes-
sive residuals exceeds the threshold 0 < ρ < 1 or the number of iterations
without an update exceeds a parameter m ∈ N . Algorithm 1 (iodbcs) solves
the IVP for ODEs (1) by means of the above BDF Chord-Shamanskii method.

Algorithm 1 [{xi} , e] = iodbcs(ff, Jf, x0, t0, tf ,∆t, r, tol,m, ρ)
Inputs: functions ff and Jf compute f(τ, x) ∈ R

n and the Jacobian matrix
J(τ, x) ∈ R

n (τ ∈ R, x ∈ R
n); vector of initial conditions x0 ∈ R

n; initial
time t0 ∈ R; final time tf ∈ R; step size ∆t; order r ∈ N of the BDF method;
tolerance vector tol ∈ R

2 that contains the relative error tolerance (tol1) and
the absolute error tolerance (tol2); maximum number m ∈ N of iterations

3



β α1 α2 α3 α4 α5

r = 1 1 1

r = 2 2/3 4/3 -1/3

r = 3 6/11 18/11 -9/11 2/11

r = 4 12/25 48/25 -36/25 16/25 -3/25

r = 5 60/137 300/137 -300/137 200/137 -75/137 12/137

Table 1
BDF method parameters (order r=1, 2, 3, 4 and 5).

without computing the Jacobian matrix; threshold ρ
Outputs: Solutions {xi} (xi ∈ R

n) at t0, t0+∆t, t0+2∆t,. . . ; e ∈ Z indicates
the convergence of the method (if e = −1 the method does not converge)

1 Initialize α and β according to the values given in Table 1
2 i = 0
3 m = ⌈(tf − t0)/∆t⌉;
4 For i = 1 : m
4.1 ti = ti−1 +∆t
4.2 p = min(r, i)
4.3 f0 =

∑r
j=1 αjxi−j

4.4 xi = xi−1

4.5 f = ff(ti, xi)
4.6 rc = ‖f‖

∞
; rc = r0

4.7 While rc ≥ t1r0 + tol2
4.7.1 J = Jf(ti, xi)
4.7.2 [L,U ] = lu(I −∆tβpJ) (LU decomposition)
4.7.3 is = 0; ρ = 0
4.7.4 While is < m and ρ ≤ m

4.7.4.1 is = is + 1
4.7.4.2 Solve the lower linear system Ly = f0 − xi + f for y
4.7.4.3 Solve the upper linear system U∆x = y for ∆x
4.7.4.4 xi = xi +∆x
4.7.4.5 f = ff(ti, xi)
4.7.4.6 r+ = ‖f‖

∞

4.7.4.7 σ = r+/rm; rc = r+
4.7.4.8 If ‖∆x‖ < tol1r0 + r1 Leave While loop 4.7.4

4.8 If σ > 1
4.8.1 e = −1 (The method does not converge)
4.8.2 Return

4



3 A piecewise-linearized approach for solving IVPs for ODEs

Given a partition t0 < t1 < · · · < tl−1 < tl = tf of interval [t0, tf ], IVP (1) can
be approximated by means of a set of IVPs obtained as a result of the linear
approximation of f(t, x(t)) at each subinterval [6,10]

ẏ(t) = fi + Ji(y(t)− yi) + gi(t− ti), t ∈ [ti, ti+1],

y(ti) = yi, i = 0, 1, · · · , l − 1,

where

fi = f(ti, yi) ∈ R
n,

Ji =
∂f

∂x
(ti, yi) ∈ R

n×n(Jacobian matrix),

gi =
∂f

∂t
(ti, yi) ∈ R

n(gradient vector).

The IVP associated to the first subinterval is

ẏ(t) = f0 + J0(y(t)− y0) + g0(t− t0), t ∈ [t0, t1],

y(t0) = y0 = x0.

Its analytic solution is given by

y(t) = y0 +
∫ t
t0
eJ0(t−τ)[f0 + g0(τ − t0)]dτ , t ∈ [t0, t1],

therefore it is possible to compute y1 = y(t1).

By proceeding in the same way, the analytic solution of IVP associated to
subinterval i, i = 1, · · · , l − 1,

ẏ(t) = fi + Ji(y(t)− yi) + gi(t− ti), t ∈ [ti, ti+1], y(ti) = yi

is given by

y(t) = yi +
∫ t
ti
eJi(t−τ)[fi + gi(τ − ti)]dτ, t ∈ [ti, ti+1] . (4)

If second order partial derivatives of f(t, x) are bounded on [t0, tf ]×R
n, then

the above piecewise-linearized method converges [6]. If a (1,1) Padé approxi-
mation is used for computing eJi(t−ti), the above method is consistent of order
1 for autonomous ODEs and 2 for non-autonomous ODEs and linearly stable
[7, pp. 26].

The piecewise-linearized approaches for solving IVPs presented in this paper
are based on the following theorem and corollary.
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Theorem 1 The solution of IVP

ẏ(t) = fi + Ji(y(t)− yi) + gi(t− ti), t ∈ [ti, ti+1], (5)

y(ti) = yi ∈ R
n,

fi ∈ R
n, Ji ∈ R

n×n, gi ∈ R
n,

is

y(t) = yi + F
(i)
12 (t− ti)fi + F

(i)
13 (t− ti)gi, (6)

where F
(i)
12 (t − ti) and F

(i)
13 (t − ti) are the blocks (1, 2) and (1, 3) of eCi(t−ti),

and

Ci =















Ji In 0n

0n 0n In

0n 0n 0n















.

Proof. Defining s = τ − ti and θ = t− ti, the integral which appears in (4) can
be expressed as

∫ t

ti
eJi(t−τ)[fi + gi(τ − ti)]dτ =

[

∫ θ

0
eJi(θ−s)ds

]

fi +

[

∫ θ

0
eJi(θ−s)sds

]

gi. (7)

Because Ci is an upper-triangular block matrix, the exponential of Ciθ has
the same structure,

eCiθ =















F
(i)
11 (θ) F

(i)
12 (θ) F

(i)
13 (θ)

0n F
(i)
22 (θ) F

(i)
23 (θ)

0n 0n F
(i)
33 (θ)















,

where F
(i)
jk (θ), 1 ≤ j ≤ k ≤ 3, are square matrices of order n. Since

deCiθ

dθ
= Cie

Ciθ , eCiθ|θ=0 = I3n,

the following IVPs are obtained
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dF
(i)
11 (θ)

dθ
= JiF

(i)
11 (θ), F

(i)
11 (0) = In, (8)

dF
(i)
22 (θ)

dθ
= 0, F

(i)
22 (0) = In, (9)

dF
(i)
33 (θ)

dθ
= 0, F

(i)
33 (0) = In, (10)

dF
(i)
23 (θ)

dθ
= F

(i)
33 (θ), F

(i)
23 (0) = 0n, (11)

dF
(i)
12 (θ)

dθ
= JiF

(i)
12 (θ) + F

(i)
22 (θ), F

(i)
12 (0) = 0n, (12)

dF
(i)
13 (θ)

dθ
= JiF

(i)
13 (θ) + F

(i)
23 (θ), F

(i)
13 (0) = 0n. (13)

The solutions of (8), (9) and (10) are given by

F
(i)
11 (θ) = eJiθ,

F
(i)
22 (θ) = In,

F
(i)
33 (θ) = In.

Therefore the solutions of (11), (12) and (13) are

F
(i)
23 (θ) = θIn, (14)

F
(i)
12 (θ) =

∫ θ

0
eJi(θ−s)ds, (15)

F
(i)
13 (θ) =

∫ θ

0
eJi(θ−s)sds. (16)

Note that the integrals involved in (7) can be computed by means of (15) and
(16). In conclusion, once the Jacobian matrix Ji and the vectors gi and fi have
been computed, the solution of IVP (5) is given by

y(t) = yi + F
(i)
12 (θ)fi + F

(i)
13 (θ)gi.

As θ = t− ti, then

y(t) = yi + F
(i)
12 (t− ti)fi + F

(i)
13 (t− ti)gi, (17)

so the theorem is proved. �

According to Theorem 1, the approximate solution of IVP (5) at ti+1 is ob-
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tained from the approximate solution at ti by the following expression

yi+1 = yi + F
(i)
12 (∆ti)fi + F

(i)
13 (∆ti)gi, (18)

where ∆ti = ti+1 − ti.

For autonomous ODEs the following result is obtained.

Corollary 1 The solution of IVP

ẏ(t) = fi + Ji(y(t)− yi), y(ti) = yi, (19)

is

y(t) = yi + F
(i)
12 (t− ti)fi,

where F
(i)
12 (t− ti) is the block (1,2) of matrix eCi(t−ti), and

Ci =







Ji In

0n 0n





 .

Proof. It is enough to apply Theorem 1 for gi = 0n×1 ∈ R
n. �

According to Corollary 1, the approximate solution of IVP (19) at ti+1 is
obtained from the approximate solution at ti by the following expression

yi+1 = yi + F
(i)
12 (∆ti)fi. (20)

Algorithm 2 is consequence of Theorem 1. This algorithm (inolex) computes
the approximate solution of the IVP for non-autonomous ODEs (1) by means
of a piecewise-linearized method based on the exponential of matrix Ci∆ti.

Algorithm 2 {xi} = inolex(data, x0, t0, tf ,∆t)
Inputs: Data is a function that computes Jacobian matrix J(τ, x) ∈ R

n×n

and function vector f(τ, x) ∈ R
n (τ ∈ R, x ∈ R

n); vector x0 ∈ R
n of initial

conditions ; initial time t0 ∈ R; final time tf ∈ R; step size ∆t ∈ R

Output: Vector of solutions {xi} (xi ∈ R
n) at t0, t0 +∆t, t0 + 2∆t,. . .

1 m = ⌈(tf − t0)/∆t⌉
2 For i = 0 : m− 1
2.1 [J, f, g] = data(ti, xi)

2.2 C =















J In 0n

0n 0n In

0n 0n 0n















2.3 F = eC∆t
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2.4 ti+1 = ti +∆t
2.5 xi+1 = xi + F12f + F13g

3.1 Algorithms based on the scaling and squaring technique

The (p, q) Padé approximation to eA is defined by

Rpq = [Dpq(A)]
−1Npq(A),

where

Npq(A) =
p
∑

k=0

(p+ q − k)!p!

(p+ k)!k!(p− k)!
Ak

and

Dpq(A) =
p
∑

k=0

(p+ q − k)!p!

(p+ k)!k!(p− k)!
(−A)k.

Non-singularity of Dpq(A) is assured if p and q are large enough or if the
eigenvalues of A are negative.

The problem with this method is that it only provides good approaches near
the origin [11, p.573]. This problem can be avoided by using the widely used
scaling and squaring method for computing the matrix exponential [12,13] by
exploiting the equality

eA =
(

eA/m
)m

.

The idea is to choose m to be a power of two (m = 2j) for which eA/m can

be reliably and efficiently computed, and then to form the matrix
(

eA/m
)m

by
repeated squaring. One commonly used criterion for choosing m is to make it
the smallest power of two for which ||A||/m ≤ 1.

Diagonal Padé approximants (p = q) are preferred, since Rpq (p 6= q) is less
accurate than Rll, where l = max(p, q), but Rll can be computed at same cost.

Algorithm 3 (exmdpa) computes the exponential of a matrix by means of a
scaling-squaring diagonal Padé approximation method with variable order q.

Algorithm 3 F = exmdpa(A, q)
Inputs: Matrix A ∈ R

n×n; order q ∈ N of diagonal Padé approximation of
the exponential function
Output: Matrix F = eA ∈ R

n×n

1 nor = ||A||∞
2 jA = max(0, 1 + int(log2(nor)))

9



3 s = 1
2jA

4 A = sA
5 X = A
6 N = In + c1(1)
7 D = In + c2(1)
8 For k = 2 : q
8.1 X = XA
8.2 N = N + c1(k)X
8.3 D = D + c2(k)X

9 Solve DF = N for F using Gaussian elimination
10 For k = 1 : jA
10.1 F = F 2

In order to reduce the high computational and storage costs of Algorithm 2,
a block oriented version of Algorithm 3 has been developed. In this way, yi+1

can be computed without explicitly computing the exponential of matrix C∆t
(step 2.3 of Algorithm 2). This algorithm only computes blocks (1,2) and (1,3)
of the exponential of matrix

A =















Ji In 0n

0n 0n In

0n 0n 0n















. (21)

With this goal, some steps of Algorithm 3 are adapted to matrices

X =















X11 X12 X13

0n X22 X23

0n 0n X33















,

N =















N11 N12 N13

0n N22 N23

0n 0n N33















,

D =















D11 D12 D13

0n D22 D23

0n 0n D33















,
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F =















F11 F12 F13

0n F22 F23

0n 0n F33















.

Step 4: A = sA.

A = sA =















sJi sIn 0n

0n 0n sIn

0n 0n 0n















.

Let Ji = sJi, then A can be expressed as

A =















Ji sIn 0n

0n 0n sIn

0n 0n 0n















.

Step 5: X = A.

X =















Ji sIn 0n

0n 0n sIn

0n 0n 0n















.

Step 6: N = In + c1(1)A.















N11 N12 N13

0n N22 N23

0n 0n N33















=















In + c1(1)Ji c1(1)sIn 0n

0n In c1(1)sIn

0n 0n In















,

therefore

N11 = In + c1(1)Ji,

N12 = c1(1)sIn,

N13 = 0n,

N22 = In,

N23 = c1(1)sIn,

N33 = In.
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Step 7: D = In + c2(1)A.















D11 D12 D13

0n D22 D23

0n 0n D33















=















In + c2(1)Ji c2(1)sIn 0n

0n In c2(1)sIn

0n 0n In















,

therefore

D11 = In + c2(1)Ji,

D12 = c2(1)sIn,

D13 = 0n,

D22 = In,

D23 = c2(1)sIn,

D33 = In.

Substep 8.1: X = XA.















X11 X12 X13

0n 0n X23

0n 0n 0n















=















X11 X12 X13

0n 0n X23

0n 0n 0n





























Ji sIn 0n

0n 0n sIn

0n 0n 0n















=















X11Ji sX11 sX12

0n 0n 0n

0n 0n 0n















.

Bearing in mind data dependencies, Xij , 1 ≤ i ≤ j ≤ 3, can be computed as
follows

X13 = sX12,

X12 = sX11,

X11 = X11Ji,

X22 = 0n,

X23 = 0n,

X33 = 0n.

Substep 8.2: N = N + c1(k)X.















N11 N12 N13

0n N22 N23

0n 0n N33















=















N11 + c1(k)X11 N12 + c1(k)X12 N13 + c1(k)X13

0n N22 N23

0n 0n N33















.
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As matrices N22, N23 and N33 do not vary inside loop 8, then

N22 = In,

N23 = c1(1)sIn,

N33 = In.

Substep 8.3: D = D + c2(k)X.















D11 D12 D13

0n D22 D23

0n 0n D33















=















D11 + c2(k)X11 D12 + c2(k)X12 D13 + c2(k)X13

0n D22 D23

0n 0n D33















.

As matrices D22, D23 and D33 do not vary inside loop 8, then

D22 = In,

D23 = c2(1)sIn,

D33 = In.

Step 9: To compute F by solving DF = N .














D11 D12 D13

0n In c2(1)sIn

0n 0n In





























F11 F12 F13

0n F22 F23

0n 0n F33















=















N11 N12 N13

0n In c1(1)sIn

0n 0n In















,

therefore

D11F11 = N11,

D11F12 +D12F22 = N12,

D11F13 +D12F23 +D13F33 = N13,

F22 = In,

F23 + c2(1)sF33 = c1(1)sIn,

F33 = In.

Since c1(1) = 0.5 and c2(1) = −0.5, then F23 = sIn and matrices F11, F12 and
F13 can be computed solving the equations

D11F11 = N11,

D11F12 = N12 −D12,

D11F13 = N13 − sD12 −D13.

13



It is only necessary to know N11, N12, N13, D11, D12 and D13 to compute F11,
F12 and F13 in step 9.

Substep 10.1: F = F 2. Making the product















F11 F12 F13

0n F22 F23

0n 0n F33















=















F11 F12 F13

0n F22 F23

0n 0n F33





























F11 F12 F13

0n F22 F23

0n 0n F33















,

and equaling the corresponding blocks, then

F11 = F 2
11,

F12 = F11F12 + F12F22,

F13 = F11F13 + F12F23 + F13F33,

F22 = F 2
22,

F23 = F22F23 + F23F33,

F33 = F 2
33.

Bearing in mind that before entering in loop 10 F22 = In and F33 = In, then
inside the above loop F22 = In and F33 = In, therefore

F23 = F23 + F23 = 2F23.

Because before entering loop 10 F23 = sIn, then

F23 = 2ksIn

in the k iteration. According to data dependence, F11, F12 and F13 can be
computed as

F13 = F11F13 + F12F23 + F13,

F12 = F11F12 + F12,

F11 = F 2
11.

The complete algorithm that solves IVP (1) corresponds to Algorithm 4 (inolsp).
This algorithm solves IVPs for non-autonomous ODEs by a piecewise-linearized
approach with scaling-squaring of the diagonal Padé approximants. This al-
gorithm uses the following auxiliary algorithms:

• Algorithm 5 (coedpa) computes the coefficients of the polynomials of degree
greater than zero in the diagonal Padé approximation of the exponential
function.

• Algorithm 6 (inlbsp) computes the approximate solution at ti+1 of IVP for
non-autonomous ODEs (1), obtained after the piecewise-linearized process,
by a block-oriented version of the scaling-squaring diagonal Padé method.
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This is the block oriented version of Algorithm 2. The approximate com-
putational cost of Algorithm 6 is 2

(

q + 3jJ∆t +
7
3

)

n3 flops, where jJ∆t =

max(0, 1 + int(log2(‖J∆t‖
∞
))).

Algorithm 4 {xi} = inolsp(data, x0, t0, tf ,∆t, q)
Inputs: Data is a function that computes function vector f(τ, x) ∈ R

n, Jaco-
bian matrix J(τ, x) ∈ R

n×n and gradient vector g(τ, x) ∈ R
n (τ ∈ R, x ∈ R

n);
vector x0 ∈ R

n of initial conditions; initial time t0 ∈ R; final time tf ∈ R;
step size ∆t ∈ R; order q ∈ N of the diagonal Padé approximation of the
exponential function
Outputs: Vectors of solutions {xi} (xi ∈ R

n) at t0, t0 +∆t, t0 + 2∆t,. . .

1 [c1, c2] = coedpa(q) (Algorithm 5)
2 m = ⌈(tf − t0)/∆t⌉
3 For i = 0 : m− 1
3.1 [f, J, g] = data(ti, xi)
3.2 xi+1 = inlbsp(J, f, g, xi,∆t, c1, c2) (Algorithm 6)
3.3 ti+1 = ti +∆t

Algorithm 5 [c1, c2] = coedpa(q)
Inputs: Order q ∈ N of the diagonal Padé approximation of the exponential
function
Outputs: Vectors c1, c2 ∈ R

q with the coefficients of terms greater than 0 in
the (q,q) diagonal Padé approximation of the exponential function

1 c1(1) = 0.5
2 c2(1) = −0.5
3 For k = 2 : q
3.1 c1(k) =

q−k+1
(2q−k+1)k

c1(k − 1)

3.2 c2(k) = (−1)kc1(k)

Algorithm 6 yi+1 = inlbsp(J, f, g, yi,∆t, c1, c2)
Inputs: Jacobian matrix J ∈ R

n×n; function vector f ∈ R
n; gradient vec-

tor g ∈ R
n; vector yi ∈ R

n; step size ∆t ∈ R; vectors c1, c2 ∈ R
q with the

coefficients of terms of degree greater than 0 in the (q,q) diagonal Padé ap-
proximation of the exponential function
Output: Vector yi+1 ∈ R

n given by expression (18)

1 nor = ‖J‖
∞
∆t

2 jJ∆t = max(0, 1 + int(log2(nor))); s =
∆t

2jJ∆t
; J = sJ

3 X11 = J ; X12 = sIn; X13 = 0n
4 N11 = In + c1(1)J ;N12 = c1(1)sIn; N13 = 0n
5 D11 = In + c2(1)J ;D12 = c2(2)sIn; D13 = 0n
6 For k = 2 : q
6.1 X13 = sX12; X12 = sX11; X11 = X11J
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6.2 N11 = N11 + c1(k)X11; N12 = N12 + c1(k)X12; N13 = N13 + c1(k)X13

6.3 D11 = D11 + c2(k)X11; D12 = D12 + c2(k)X12; D13 = D13 + c2(k)X13

7 Solve D11F11 = N11 for F11

8 Solve D11F12 = N12 −D12 for F12

9 Solve D11F13 = N13 − sD12 −D13 for F13

10 For k = 1 : jJ∆t

10.1 F13 = F11F13 + sF12 + F13; F12 = F11F12 + F12; F11 = F 2
11

10.2 s = 2s
11 yi+1 = yi + F12f + F13g

For autonomous ODEs the computational and storage costs can be reduced
if Corollary 1 is applied. Hence, another algorithm (iaolsp) can be developed
to solve IVPs for autonomous ODEs by a piecewise-linearized approach with
scaling-squaring of the diagonal Padé approximants.

This algorithm uses the auxiliary Algorithms 5 (coedpa) and 8. Algorithm 8
(ialbsp) computes the approximate solution at ti+1 of IVP for autonomous
ODEs (1), obtained after the piecewise-linearized process, by a block-oriented
version of the scaling-squaring diagonal Padé method. The approximate com-
putational cost of Algorithm 8 is 2

(

q + 2jJ∆t +
4
3

)

n3 flops, where jJ∆t =

max(0, 1 + int(log2(‖J∆t‖
∞
))).

Algorithm 7 {xi} = iaolsp(data, x0, t0, tf ,∆t, q)
Inputs: Data is a function that computes function vector f(τ, x) ∈ R

n and the
Jacobian matrix J(τ, x) ∈ R

n×n; vector x0 ∈ R
n of initial conditions; initial

time t0 ∈ R; final time tf ∈ R; step size ∆t ∈ R; order q ∈ N of the diagonal
Padé approximation of the exponential function
Outputs: Vectors of solutions {xi} (xi ∈ R

n) at t0, t0 +∆t, t0 + 2∆t,. . .

1 [c1, c2] = coedpa(q) (Algorithm 5)
2 m = ⌈(tf − t0)/∆t⌉
3 For i = 0 : m− 1
3.1 [f, J, g] = data(ti, xi)
3.2 xi+1 = ialbsp(J, f, xi,∆t, c1, c2) (Algorithm 8)
3.3 ti+1 = ti +∆t

Algorithm 8 yi+1 = ialbsp(J, f, yi,∆t, c1, c2)
Inputs: Jacobian matrix J ∈ R

n×n; function vector f ∈ R
n; vector yi ∈ R

n;
step size ∆t ∈ R; vectors c1, c2 ∈ R

q with the coefficients of terms of degree
greater than 0 in the (q,q) diagonal Padé approximation of the exponential
function
Output: Vector yi+1 ∈ R

n given by expression (20)

1 nor = ‖J‖
∞
∆t

2 jJ∆t = max(0, 1 + int(log2(nor))); s =
∆t

2jJ∆t
; J = sJ
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3 X11 = J ; X12 = sIn
4 N11 = In + c1(1)J ; N12 = c1(1)sIn
5 D11 = In + c2(1)J ; D12 = c2(1)sIn
6 For k = 2 : q
6.1 X12 = sX11; X11 = X11J
6.2 N11 = N11 + c1(k)X11; N12 = N12 + c1(k)X12

6.3 D11 = D11 + c2(k)X11; D12 = D12 + c2(k)X12

7 Solve D11F11 = N11 for F11

8 Solve D11F12 = N12 −D12 for F12

9 For k = 1 : jJ∆t

9.1 F12 = F11F12 + F12

9.2 F11 = F 2
11

9.3 s = 2s
10 yi+1 = yi + F12f

3.2 Algorithms not based on scale-squaring technique

Since matrix C of Algorithm 2 is multiplied by ∆t, it is possible compute
the approximate solution xi+1 without using the scaling-squaring technique.
Therefore, the computational costs are reduced without loss of accuracy (see
Section 4). Note that in this case it not is necessary to compute block N11.
The following algorithms solve IVPs for ODEs by that method:

• Algorithm 9 (inolwp) solves the IVP for non-autonomous ODEs (1) by a
piecewise-linearized approach without scaling-square of the diagonal Padé
approximants.

• Algorithm 10 (iaolwp) solves the IVP for autonomous ODEs (1) by a
piecewise-linearized approach without scaling-square of the diagonal Padé
approximants.

These algorithms use the following auxiliary algorithms:

• Algorithm 11 (inlbwp) computes the approximate solution at ti+1 of IVP
for non-autonomous ODEs (1), obtained after the piecewise-linearized pro-
cess, by a block-oriented implementation without scaling-squaring of diago-
nal Padé method. The approximate computational cost of Algorithm 11 is
2
(

q + 4
3

)

n3 flops.

• Algorithm 12 (ialbwp) computes the approximate solution at ti+1 of IVP for
autonomous ODEs (1), obtained after the piecewise-linearized process, by a
block-oriented version without scaling-squaring implementation of the diag-
onal Padé method. The approximate computational cost of this algorithm
is 2

(

q + 1
3

)

n3 flops.

Figure 1 shows a scheme with the developed piecewise-linearized algorithms.
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Algorithm 9 {xi} = inolwp(data, x0, t0, tf ,∆t, q)
Inputs: Data is a function that computes f(τ, x) ∈ R

n, J(τ, x) ∈ R
n×n and

g(τ, x) ∈ R
n (τ ∈ R, x ∈ R

n); vector x0 ∈ R
n of initial conditions; initial time

t0 ∈ R; final time tf ∈ R; step size ∆t ∈ R; order q ∈ N of the diagonal Padé
approximation of the exponential function
Outputs: Vector of solutions {xi} (xi ∈ R

n) at t0, t0 +∆t, t0 + 2∆t,. . .

1 [c1, c2] = coedpa(q) (Algorithm 5)
2 m = ⌈(tf − t0)/∆t⌉
3 For i = 0 : m− 1
3.1 [f, J, g] = data(ti, xi)
3.2 xi+1 = inlbwp(J, f, g, xi,∆t, c1, c2) (Algorithm 11)
3.3 ti+1 = ti +∆t

Algorithm 10 {xi} = iaolwp(data, x0, t0, tf ,∆t, q)
Inputs: data is a function that computes f(τ, x) ∈ R

n and J(τ, x) ∈ R
n×n

(τ ∈ R, x ∈ R
n); vector x0 ∈ R

n of initial conditions; initial time t0 ∈ R; final
time tf ∈ R; step size ∆t ∈ R; order q ∈ N of the diagonal Padé approximation
of the exponential function
Outputs: Vector of solutions {xi} (xi ∈ R

n) at t0, t0 +∆t, t0 + 2∆t,. . .

1 [c1, c2] = coedpa(q) (Algorithm 5)
2 m = ⌈(tf − t0)/∆t⌉
3 For i = 0 : m− 1
3.1 [f, J, g] = data(ti, xi)
3.2 xi+1 = ialbwp(J, f, xi,∆t, c1, c2) (Algorithm 12)
3.3 ti+1 = ti +∆t

Algorithm 11 yi+1 = inlbwp(J, f, g, yi,∆t, c1, c2)
Inputs: Jacobian matrix J ∈ R

n×n; function vector f ∈ R
n; gradient vec-

tor g ∈ R
n; vector yi ∈ R

n; step size ∆t ∈ R; vectors c1, c2 ∈ R
q with the

coefficients of terms of degree greater than 0 in the (q,q) diagonal Padé ap-
proximation of the exponential function
Output: Vector yi+1 ∈ R

n given by expression (18)

1 J = ∆tJ
2 X11 = J ; X12 = ∆tIn; X13 = 0n
3 N12 = c1(1)In; N13 = 0n
4 D11 = In + c2(1)J ;D12 = c2(2)sIn; D13 = 0n
5 For k = 2 : q
5.1 X13 = sX12; X12 = sX11; X11 = X11J
5.2 N12 = N12 + c1(k)X12; N13 = N13 + c1(k)X13

5.3 D11 = D11 + c2(k)X11; D12 = D12 + c2(k)X12; D13 = D13 + c2(k)X13

6 Solve D11F12 = N12 −D12 for F12

7 Solve D11F13 = N13 − sD12 −D13 for F13
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Piecewise-linearized Algorithms 

Autonomous ODEs Non-autonomous ODEs 

inolsp inolwp iaolsp iaolwp 

coedpa inlbsp inlbwp ialbsp ialbwp 

Auxiliary Algorithms 

Fig. 1. Schema of piecewise-linearized Algorithms 4(inolsp), 9(inolwp), 7(iaolsp)
and 10(iaolwp)

8 yi+1 = yi + F12f + F13g

Algorithm 12 yi+1 = ialbwp(J, f, yi,∆t, c1, c2)
Inputs: Jacobian matrix J ∈ R

n×n; function vector f ∈ R
n; vector yi ∈ R

n;
step size ∆t ∈ R; vectors c1, c2 ∈ R

q with the coefficients of terms of degree
greater than 0 in the (q,q) diagonal Padé approximation of the exponential
function
Output: Vector yi+1 ∈ R

n given by expression (20)

1 J = ∆tJ
2 X11 = J ; X12 = ∆tIn
3 D11 = In + c2(1)J
4 D12 = c2(1)sIn
5 For k = 2 : q
5.1 X12 = sX11; X11 = X11J
5.2 N12 = N12 + c1(k)X12

5.3 D11 = D11 + c2(k)X11; D12 = D12 + c2(k)X12

6 Solve D11F12 = N12 −D12 for F12

7 yi+1 = yi + F12f

4 Experimental results

The main objective of this section is to compare the algorithms developed
in Sections 2 and 3. What follows is a short description of the characteristic
parameters for the implemented algorithms:

• iaolsp and inolsp solve IVPs for ODEs by means of a piecewise-linearized
approach and a block-oriented version with scaling-squaring implementation
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of the diagonal Padé approximation method:
· Order (q) of the diagonal Padé approximation of the exponential function.

• iaolwp and inolwp solve IVPs for ODEs by means of a piecewise-linearized
approach and a block-oriented version without scaling-squaring implemen-
tation of the diagonal Padé approximation method:
· Order (q) of the diagonal Padé approximation of the exponential function.

• iodbcs solves IVPs for ODEs by means of a BDF method based on a Chord-
Shamanskii iteration:
· Order (r) of BDF method.
· Relative error tolerance (tol1) and absolute error tolerance (tol2).
· Maximum number of iterations without computing the Jacobian matrix
(m).

· threshold (ρ).

As test battery five case studies were considered. The criteria to select these
cases studies were:

• To solve physics and physical chemistry problems by the developed algo-
rithms (case studies 1, 2, 3 and 5). Case study 4 has been selected because
it has a known analytic solution.

• To prove the implementations on autonomous and non-autonomous ODEs:
three IVPs for autonomous ODEs and two IVPs for non-autonomous ODEs
have been selected.

• To compare the implementations when the ODE is stiff (cases studies 1, 2,
3 and 5) or non-stiff (case study 4).

Numerous tests were made (for each case study the characteristic parameters
were varied, although only the parameters which offered better accuracy and
lower computational cost for each algorithm are presented). Three kinds of
tests are shown:

• Variable step size.
• Variable final time.

For each test, the following results are shown:

• Tables which contain the relative error

Er =
‖x− x∗‖

∞

‖x‖
∞

,

where x∗ is the computed solution and x is the analytic solution (case study
4) or the solution computed by the MATLAB function ode15s with a vec-
tor of relative error tolerances rtol = 10−13 and a vector of absolute error
tolerances atol = 10−13 [14] (case studies 1, 2, 3 and 5).

• Tables with the execution time.
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All algorithms were implemented in MATLAB and Fortran. The MATLAB
implementations were tested on an Intel Core 2 Duo processor at 1.83 GHz
with 2 GB main memory, using MATLAB version 7.5. The tests for the larger
dimension problem (case study 5) were carried out on a SGI Altix 3700 node
[15], with 1.3 GHz Intel Itanium II with 3 MB cache. In this case the al-
gorithms were implemented in FORTRAN using the mathematical libraries
BLAS [16] and LAPACK [17]. The implementations were compiled with Intel
FORTRAN compiler (release 8.1) and SGI SCSL (Scientific Computing Soft-
ware Library) mathematical library (release 1.5.1) was used. The SCSL is an
optimized version of BLAS and LAPACK for SGI systems. The implemented
algorithms are available online at [18]. The case studies considered in this work
are presented below.

4.1 Case study 1 (Chemical Akzo Nobel problem)

This case study corresponds to the stiff autonomous ODE [19] defined by

ẋ = f(x), x = x(t) ∈ R
6, 0 ≤ t ≤ 180,

x(0) = [0.444, 0.00123, 0, 0, 0.007, 0.35999964]T ,

where

f(x) =



































−2r1 + r2 − r3 − r4

−0.5r1 − r4 − 0.5r5 + Fin

r1 − r2 + r3

−r2 − r3 − 2r4

r2 − r3 + 2r5

−r5



































,

and ri, i = 1, 2, 3, 4, 5, and Fin are defined as

r1 = k1x
4
1x

0.5
2 ,

r2 = k2x3x4,

r3 =
k2
K

x1x5,

r4 = k3x1x
2
4,

r5 = k4x
2
6x

0.5
2 ,

Fin = klA

(

p(CO2)

H
− x2

)

.
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Er ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 2.576e-5 1.223e-5 8.658e-7 2.323e-7 9.823e-9

iaolsp 2.080e-5 5.238e-6 1.485e-7 3.851e-8 1.588e-9

iaolwp 8.100e-6 2.824e-6 1.485e-7 3.851e-8 1.588e-9

Table 2
Relative errors considering tf=60 and varying ∆t (case study 1)

The tests were carried out considering:

k1 = 18.7, K = 34.4,

k2 = 0.58, klA = 3.3,

k3 = 0.09, p(CO2) = 0.9

k4 = 0.42, H = 737.

This problem originates from Akzo Nobel Central Research in Arnhem. It
describes a chemical process in which two species, FLB and ZHU, are mixed,
while carbon dioxide is continuously added. The variables xi correspond to the
following concentrations: x1 = [FLB], x2 = [CO2], x3 = [FLBT], x4 = [ZHU],
x5 = [ZLA] and x6 = [ZLA.ZHU], where FLBT, ZLA and ZLA.ZHU are other
species that appear in the chemical process.

The optimal values of characteristic parameters were:

• iodbcs: r=3, tol1=tol2=10−14, m=2, ρ = 0.5.
• iaolsp: q=1.
• iaolwp: q=1.

The following tests were done:

• First test (Tables 2 and 3): tf=60 and ∆t variable.
• Second test (Table 4 and Figure 2): ∆t=0.01 and tf variable.

Conclusions for this case study:

• Considering the same step size, the implementations based on the piecewise-
linearized approach have lower relative error and lower execution time than
the implementation based on BDF approach.

• The implementation based on the piecewise-linearized method and on the
diagonal Padé approach without scaling-squaring (iaolwp) has the shorter
execution time.
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Execution time (seconds) ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 0.196 0.253 1.275 2.545 11.43

iaolsp 0.087 0.153 0.745 1.493 7.462

iaolwp 0.058 0.114 0.570 1.138 5.692

Table 3
Execution time of the MATLAB implementations considering tf=60 and varying
∆t (case study 1)

Er tf=60 tf=90 tf=120 tf=150 tf=180

iodbcs 8.658e-7 5.388e-7 4.183e-7 3.607e-7 3.303e-7

iaolsp 1.485e-7 9.687e-8 7.838e-8 6.980e-8 6.546e-8

iaolwp 1.485e-7 9.687e-8 7.838e-8 6.980e-8 6.546e-8

Table 4
Relative errors considering ∆t=0.01 and varying tf (case study 1)
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Fig. 2. Execution time of the MATLAB implementations considering ∆t = 0.01 and
varying tf (case study 1)

4.2 Case study 2 (HIRES problem)

This case study is presented in [19] and it corresponds to the stiff IVP for
ODEs defined by

ẋ = f(x), x = x(t) ∈ R
8, 0 ≤ t ≤ 321.8122,

x(0) = [1, 0, 0, 0, 0, 0, 0, 0.0057]T ,
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Er ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 2.136e-4 5.279e-5 1.933e-6 4.767e-7 1.885e-8

iaolsp 4.185e-5 1.147e-5 4.8495e-7 1.219e-7 4.899e-9

iaolwp 4.183e-5 1.147e-5 4.8495e-7 1.219e-7 4.899e-9

Table 5
Relative errors considering tf=50 and varying ∆t (case study 2)

where

f(x) =










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




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
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





−1.71x1 + 0.43x2 + 8.32x3 + 0.0007

1.71x1 − 8.75x2

−10.03x3 + 0.43x4 + 0.035x5

8.32x2 + 1.71x3 − 1.12x4

−1.745x5 + 0.43x6 + 0.43x7

−280x6x8 + 0.69x4 + 1.71x5 − 0.43x6 + 0.69x7

280x6x8 − 1.81x7

−280x6x8 + 1.81x7



















































.

The name HIRES was given by Hairer and Wanner [1]. The HIRES problem
explains the ”High Irradiance Responses” (HIRES) of phytochrome-mediated
photomorphogenesis by means of a chemical reaction involving eight reactants.
The variables xi are the concentrations of the eight reactants.

The optimal values of characteristic parameters were:

• iodbcs: r=3, tol1=tol2=10−14, m=2, ρ = 0.5.
• iaolsp: q = 2.
• iaolwp: q=2.

The following tests were done:

• First test (Tables 5 and 6): tf=50 and ∆t variable.
• Second test (Table 7 and Figure 3): ∆t=0.01 and tf variable.

The conclusions obtained in this case are the same as for case study 1.
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Execution time (seconds) ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 0.199 0.300 1.521 2.471 10.258

iaolsp 0.137 0.250 0.991 1.819 9.098

iaolwp 0.069 0.139 0.709 1.316 6.578

Table 6
Execution time of the MATLAB implementations considering tf=50 and varying
∆t (case study 2)

Er tf=100 tf=150 tf=200 tf=250 tf=300

iodbcs 2.294e-6 2.989e-6 4.276e-6 7.425e-6 2.406e-5

iaolsp 5.753e-7 7.496e-7 1.072e-6 1.862e-6 6.041e-6

iaolwp 5.753e-7 7.496e-7 1.072e-6 1.862e-6 6.041e-6

Table 7
Relative errors considering ∆t=0.01 and varying tf (case study 2)
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Fig. 3. Execution time of the MATLAB implementations considering ∆t = 0.01 and
varying tf (case study 2)

4.3 Case study 3

This case study corresponds to the stiff autonomous ODE [14, pp. 29] defined
by

ẋ = f(x), x = x(t) ∈ R
3, 0 ≤ t ≤ 8 · 105,

x(0) = [0, 1, 0]T ,
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where

f([x1, x2, x3]
T ) =















−k1x1 + k2x3

−k4x2 + k3x3

k1x1 + k4x2 − (k1 + k3)x3















,

and

k1 = 8.4303270 · 10−10, k2 = 2.9002673 · 1011,

k3 = 2.4603642 · 1010, k4 = 8.7600580 · 10−6.

This case study corresponds to the proton transfer hydrogen-hydrogen bond
problem, where x1(t) and x2(t) are the solution components of the proton
transfer and x3(t) is the quickly reacting intermediate component.

The optimal values of characteristic parameters were:

• iodbcs: r=2, tol1=tol2=10−14, m=2, ρ = 0.5.
• iaolsp: q = 1.
• iaolsp: q=1.

The following tests were done:

• First test (Table 8 and Figure 9): tf=100 and ∆t variable. Since with small
values of ∆t very high precisions have been reached, only ∆t = 0.1 and
∆t = 0.05 have been considered.

• Second test (Table 10 and Figure 4): ∆t=0.01 and tf variable.

Conclusions for this case study:

• For the same step size, the relative errors committed by the implementa-
tion based on the piecewise-linearized method and on the diagonal Padé
approach without scaling-squaring (iaolwp) have been minor in comparison
to those committed by the other two implementations; also this implemen-
tation has the shortest execution time.

• The implementation based on the BDF method (iodbcs) has a lower relative
error than the implementation based on the piecewise-linearized method and
on the diagonal Padé approach with scaling-squaring (iaolsp), but execution
time is longer.
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Er ∆t=0.1 ∆t=0.05

iodbcs 4.104e-14 8.202e-14

iaolsp 4.706e-12 2.358e-12

iaolwp 6.274e-15 6.065e-15

Table 8
Relative errors considering tf=100 and varying ∆t (case study 3)

Execution time (seconds) ∆t=0.1 ∆t=0.05

iodbcs 0.199 0.300

iaolsp 0.137 0.250

iaolwp 0.069 0.139

Table 9
Execution time of the MATLAB implementations considering tf=100 and varying
∆t (case study 3)

Er tf=500 tf=1000 tf=1500 tf=2000 tf=2500

iodbcs 4.359e-12 8.787e-12 1.420e-12 1.995e-11 2.6616e-11

iaolsp 4.636e-12 9.071e-12 1.538e-12 2.130e-11 2.666e-11

iaolwp 3.838e-14 1.303e-13 1.927e-12 3.960e-12 5.814e-12

Table 10
Relative errors considering ∆t=0.01 and varying tf (case study 3)
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Fig. 4. Execution time of the MATLAB implementations considering ∆t = 0.01 and
varying tf (case study 3)
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Er ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 5.167e-06 1.171e-06 4.103e-08 1.009e-08 3.971e-10

inolsp 1.079e-15 1.447e-15 6.296e-15 2.268e-14 4.965e-14

inolwp 1.079e-15 1.447e-15 6.296e-15 2.268e-14 4.965e-14

Table 11
Relative errors considering tf=10 and varying ∆t (case study 4)

4.4 Case study 4

This case study corresponds to the non-stiff and non-autonomous ODE [6]
defined as

ẋ(t) = (t− x(t))2 + 1, t ≥ 3,

x(3) = 2.

The analytic solution is

x(t) = t+
1

2− t
.

The values chosen for the characteristic parameters were:

• iodbcs: r=2, tol1=tol2=10−12, m=2, ρ = 0.5.
• inolsp: q=1.
• inolwp: q=1.

The following tests were done:

• First test (Tables 11 and 12): tf=10 and ∆t variable. Since the piecewise-
linearized method presents a very small error for a step size equal to 0.1,
we will show only the results obtained for that increase.

• Second test (Table 13 and Figure 5): ∆t=0.1 and tf is variable.

Conclusions for this case study:

• For the same step size, the implementation based on the BDF method
iodbcs shows more significant error than the implementations based on the
piecewise-linearized method.

• The implementation based on the piecewise-linearized method and on the
diagonal Padé approach without scaling-squaring (inolwp) has the shortest
execution time.
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Execution time (seconds) ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iodbcs 0.015 0.027 0.071 0.121 0.609

inolsp 0.010 0.017 0.046 0.092 0.456

inolwp 0.008 0.015 0.040 0.080 0.400

Table 12
Execution time the MATLAB implementations for tf=10 and ∆t (case study 4)

Er tf=100 tf=200 tf=300 tf=400 tf=500

iodbcs 1.192e-08 1.460e-09 4.295e-10 1.807e-10 9.228e-11

inolsp 1.236e-14 1.904e-14 1.762e-14 5.032e-14 6.209e-14

inolwp 1.236e-14 1.904e-14 1.762e-14 5.032e-14 6.209e-14

Table 13
Relative errors considering ∆t=0.1 and varying tf (case study 4)
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Fig. 5. Execution time of the MATLAB implementations considering ∆t = 0.1 and
varying tf (case study 4)

4.5 Case study 5 (Medical Akzo Nobel problem)

This case study corresponds to a stiff non-autonomous ODE [19] defined as

ẋ = f(t, x) , t ≥ 0, x = x(t) ∈ R
2N , 0 ≤ t ≤ 20,

x(0) = [0, v0, 0, v0, · · · , 0, v0] ∈ R
2N , N = 200.
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Function f is defined as follows

f2j−1 = αj
x2j+1 − x2j−3

2∆ζ
+ βj

x2j−3 − 2x2j−1 + x2j+1

(∆ζ)2
− kx2j−1x2j ,

f2j = −kx2jx2j−1,

where

αj =
2(j∆ζ − 1)3

c2
,

βj =
(j∆ζ − 1)4

c2
.

The values of j are from 1 toN , ∆ζ = 1
N
,x−1(t) = φ(t), x2N+1 = x2N−1 and φ

function is given by

φ(t) =











2, t ∈ (0, 5]

0, t ∈ (5, 20]
.

The Akzo Nobel research laboratories formulated this problem in their study
of the penetration of radio-labeled antibodies into a tissue infected by a tu-
mor. This study was carried out for diagnostic and therapeutic purposes. The
desired results are the evolutions of the concentrations u and v of both ele-
ments (the antibodies and the tissue, respectively) along the discretized space
in function of time. This problem can be formulated as the above ODE by
using the lines method. In this formulation, the data vector is noted as x,
where elements x2j−1, j = 1, . . . , N , represent concentrations u along the spa-
tial dimension and elements x2j , j = 1, . . . , N , represent concentrations v. The
chosen values of k, v0 and c were 100, 1 and 4 respectively.

The optimal values of characteristic parameters were:

• iodbcs: r=2, tol1=tol2=10−14, m=2, ρ = 0.5.
• inolsp: q=1.
• inolwp: q=1.

Figure 6 summarizes the execution time of the Fortran implementation of
the algorithms considered in this work, considering ∆t = 10−6 and varying t.
The relative error in all algorithms was approximately equal to 10−6. In this
case, the implementation based on the piecewise-linearized method and on the
diagonal Padé approach without scaling-squaring (inolwp) has the shortest
execution time.
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Fig. 6. Execution time of the Fortran implementations considering ∆t = 10−6 and
varying tf (case study 5)

5 Conclusions and future work

In this paper three methods for solving IVPs for ODEs have been developed
and implemented. The first is a BDF method based on a Chord and Shaman-
skii iteration. The other two methods are based on the piecewise-linearized
method and the diagonal Padé approximants. These methods are based on
Theorem 1, which makes it possible to solve IVPs for ODEs. In addition, four
algorithms, two for non-autonomous ODEs (inolsp− inolwp) and another two
for autonomous ODEs (iaolsp− iaolwp), have been implemented. These algo-
rithms have been compared to the BDF algorithm based on Chord-Shamanskii
iteration (idobcs). According to experimental results, the algorithms based on
the piecewise-linearized method and on the diagonal Padé approach without
scaling-squaring (iaolwp − inolwp) behave better, both in terms of precision
and computational costs, than the BDF algorithm (see Tables 14 and 15).
Below is a summary of the five case studies:

(1) The optimal order of the BDF algorithm varies between 1 and 3, depend-
ing on the case study.

(2) The optimal order of algorithms based on diagonal Padé approximants
varies between 1 (case studies 1, 3, 4 and 5) and 2 (case study 2).

(3) Considering the same step size, the BDF algorithm (idobcs) is generally
less accurate than the piecewise-linearized algorithms. The more accurate
algorithms are based on the diagonal Padé approximants without scaling-
squaring (iaolwp and inolwp algorithms). Also these algorithms have the
lowest computational cost.

(4) All implemented algorithms show good behavior in stiff ODEs.
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Accuracy 1-A-S 2-A-S 3-A-S 4 NA-NS 5 NA-S

iodbcs − − − ∼=

iaolsp-inolsp + − + ∼=

iaolwp-inolwp + + + + ∼=

Table 14
Comparative precision of implemented algorithms for the five case studies: The
symbols +, − and ∼= indicate respectively greater, less and similar precision. A/NA
denotes Autonomous/Non-Autonomous ODEs, and S/NS denotes whether the prob-
lem is Stiff or Non-Stiff.

Execution times 1-A-S 2-A-S 3-A-S 4 NA-NS 5 NA-S

iodbcs + + +

iaolsp-inolsp + +

iaolwp-inolwp − − − − −

Table 15
Comparative execution times of the implemented algorithms for the five case stud-
ies: The symbols +, − indicate respectively greater and less execution time. A/NA
denotes Autonomous/Non-Autonomous ODEs, and S/NS denotes whether the prob-
lem is Stiff or Non-Stiff.

As future work, new improvements will be developed, such as:

(1) To consider adapting the methodology described here in order to obtain
efficient resolution of ODEs with sparse Jacobian matrices.

(2) To implement algorithms with error control in order to vary step size
dynamically. The tests reported here considered constant step size. It is
possible to improve the developed algorithms using a step size variable
by estimating the error committed in each iteration [10].

(3) To do parallel implementation of the algorithms presented in this work
in a distributed memory platform, using the message passing paradigm,
MPI [20] and BLACS [21] for communications, and PBLAS [22] and
ScaLAPACK [23] for computations.
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[6] J. I. Ramos, C. M. Garćıa-López, Piecewise-linearized methods for initial-value
problems, Applied Mathematics and Computation 82 (1997) 273–302.
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