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Abstract. This paper, first, introduces the space phasor 

theory from a general mathematical viewpoint and, above 

all, from a physical one as well. The theory is then applied 

to the particular case of constant airgap multiphase ma-

chines (MM´s) fed by arbitrary voltage waveforms. It is 

mathematically proven, and thereafter checked by simula-

tions too, that these machines can be split into a set of 

equivalent three phase machines mechanically coupled but 

electrically  independent. This electrical decoupling leads 

immediately to develop the very fast torque control 

schemes of the MM´s. All of them boil down to a mere ex-

tension of those already used in the homologous three 

phase machines. 

Keywords  Multiphase machines, torque control, 

space phasor theory, GAFTOC principle    

1. Introduction 

The electrical machine user is mainly interested 

in its external quantities (voltages, currents, 

speed, torque). On the other hand, understanding 

the machine behaviour in depth needs the analy-

sis of its main internal quantities (current sheet, 

induction wave, etc.). In this respect it should be 

said that the classical theory shows clear differ-

ences in its analysis method, depending on which 

of these two quantity types is under survey. 

As for the external quantities a number of precise 

techniques (geometric constructions, equivalent 

circuits, etc.) were early developed, although 

most of them were only valid for particular appli-

cations. However, as for the internal quantities, 

what predominated were rather a graphical de-

scription and an intuitive reasoning. In addition, 

there was no analytical tool which showed in a 

precise and easy way how the evolution of the 

machine internal quantities results in changes of 

its external ones. Thus, the correlation between 

both quantity types became blurred, and with the 

increasing mathematical formalism it was gradu-

ally set aside in many books on electrical ma-

chines which focus, almost exclusively, on their 

external quantities.   

After Kapp´s proposal in [1] the theory of elec-

trical machines in steady state makes use of time 

phasors
1
 to represent sinusoidal waves in time. 

Representing the induction or the m.m.f. spatial 

wave in steady state through phasors was some-

times used, although mainly as a mere tool for 

                                                 

1
 Time phasors, after Steinmetz´s work [2], have been 

mathematically characterized in A.C. circuits theory 

by means of complex quantities  
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graphical explanations. In spite of that, as early 

as the 1910´s Dreyfus proposed to characterize 

through phasors the m.m.f. spatial waves in tran-

sient state and to take them as essential tools for 

dynamic studies, as shown in [3]. Yet, his meth-

od, restricted to m.m.f. space waves, could hard-

ly compete with Park's one [4,5]. 

Park introduced his complex quantities in order 

to simplify the transient equations of three phase 

machines. Thereafter, Kron indicated that Park's 

equations could be interpreted as "a transfor-

mation of the coordinates axes from the moving 

terminals to the stationary polar and interpolar 

space for the purpose of eliminating the trouble-

some cos θ term". ([5], p. 355).He also indicated 

in passing that there was a second interpretation 

for the Park's current complex quantity: it could 

be considered as a "current linear density 

wave"([5], p. 354]. 

The first interpretation is of operational type and 

general, for it can be applied to all of the varia-

bles in Park's equations. Yet, this is not the case 

with the second one. There is indeed no difficul-

ty in defining and visualizing a current sheet 

space wave and to correlate it with Park’s current 

complex quantity. However, in his later highly 

abstract and mathematical publications, Kron 

does not seem to have been interested in defining 

or searching for similar correlations between 

other (if at all existing) machine space waves and 

Park’s voltage and flux linkage complex quanti-

ties. In any case, when he generalized Park's 

work, he decidedly insisted on the first interpre-

tation. These facts greatly influenced the Gener-

alized Machine Theory (GMTh) development, in 

which the concept of coordinates transformation 

(and, more in general, the concept of matrix 

transformations) played from the beginning an 

outstanding role. 

In the 1950´s the authors in [6] emphasized that 

when analyzing the transients in A.C. machines 

it was important to provide a picture and a physi-

cal insight into the phenomena. To this end, the 

interpretation of Park’s current complex quantity 

as a symbolical representation of a transient 

space wave is much more suitable than that given 

in the GMTh. This interpretation is the one they 

promoted and widely spread, and leads immedia-

tely to analyze the transient state in terms of si-

nusoidal space waves. And since in that context 

the main variables are sinusoidal waves (alt-

hough their amplitude and speed are not con-

stant) it Dreyfuss´s old idea of representing these 

space waves by means of "space vectors”. 

emerges again. It is worth mentioning that resort-

ing to space vectors (thus, for three-phase ma-

chines without space harmonics) an interesting 

proposal was made in [7] several decades later to 

relate machine transient condition to the propa-

gation process in space of distributed magnetic 

fields. 

The Space Vector Theory (SVTh) in [6] aroused 

somehow as an alternative and reaction to the 

GMTh´s exacerbated mathematical formalism, 

which was most pronounced in some books, 

where the machine is viewed completely "from 
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outside", as a “black box” to which different ma-

trix transformations are applied. By contrast, one 

of the main ideas in [6] was to look at the ma-

chine “from the inside”, to start its dynamic 

analysis on the base of its space waves, and to 

proceed in this direction as far as possible.  

However, the SVTh achieved his goal only in a 

modest scope. Indeed, their authors, which al-

ways assume the hypothesis of no space 

harrmonics, analyzed first in all detail [6, pp 61-

67] from a physical perspective the dynamic 

m.m.f. space wave produced by a three phase 

winding. They characterized it in an original 

manner by a graphical tool they called “current 

space vector”, i. The expression of i has a direct 

correlation with the phase currents and coincides 

with the current complex quantity Park had in-

troduced years ago following a different path. 

Later on, as they could not find space quantities 

related to the phase flux linkage and voltage time 

quantities, they introduced the formulae for the 

so called voltage (u) and flux linkage () space 

vectors by a mere mathematical analogy to the i 

space vector [6, p.75]. Obviously, due to their 

mathematical definition, u and  were restricted 

to three phase machines. However, although, as 

just said, there was no physical meaning for them 

in terms of space waves, the authors in [6] pro-

fusely used these u and  space vectors (together 

with the i vector) in a graphical manner in order 

to explain the machine equations. This new 

graphical viewpoint of approaching and illustrat-

ing the transients, in contrast to the abstract ma-

trix transformation perspective, provided a much 

better insight into the phenomena, even in the 

sophisticated cases when machines are fed 

through electronic converters. That is why space 

vectors became in addition very useful for elec-

tronic control studies in three phase machines,  

and as early as the 1970´s they were widely used 

in Central Europe in numerous books on this 

subject [8 – 11]. The important influence of the 

new space vector viewpoint on the development 

of modern control methods for three phase ma-

chines was also pointed out in [12]. It should be 

added that the approach in [6] was mainly spread 

in German language and remained practically 

unnoticed in the English literature until the eight-

ies of the past century. (See, e. g., the prefaces to 

books [13] and [14]). 

Combining the approach in [6], restricted to three 

phase machines without space harmonics, with 

the work in [15], Stepina showed that it was also 

possible to characterize through space phasors 

(this correct term was introduced by him) the 

m.m.f. wave produced by a multiphase winding 

including its space  harmonics. This was an im-

portant contribution. Relying on it, he tried to 

develop a general theory encompassing all kind 

of machines (arbitrary air gap structure and arbi-

trary number of space harmonics). Unfortunate-

ly, his general formulae [16,17] are incorrect 

(The starting point of his deductions is erroneous 

for machines with no small air gap, since in this 

case, contrary to his assumption, the airgap re-

luctance is different for different m.m.f. harmo-
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nics, as already proven in [18, pp 916 and 938] 

or in [19, p 102]. Moreover, the fundamental u 

and  space phasors are fully unknown in his 

work [16, 17]. Yet, partial aspects of this work 

are very interesting, especially for design studies 

of single phase inductions motors (small air gap 

machines in which, moreover, phasors u and  

are not needed). His very valuable contribution 

in this field [20] should be underlined.  

The approach actually underlying Park´s work, 

the so called magnetic coupling circuit approach 

(MCCA), was very much enhanced by [4,5] and 

became the approach overwhelmingly used all 

over the world in machine transients analysis. 

Put it simply: the MCCA regards the machine as 

a network made up of resistances, and inductanc-

es, many of which vary with the rotor position. 

Park applied in [4,5] the MCCA to three phase 

machines (m = 3) taking only into account the 

fundamental space wave. The method was ex-

tended first to machines with m > 3 in the GMTh 

and later on to machines with arbitrary number 

of space harmonics and phases (e. g. [21]). 

Interesting investigations on converted fed mul-

tiphase machines (MM´s) have been known for 

several decades (e. g. [22]). But it is nowadays 

when MM´s in conjunction with power electron-

ics are becoming more usual. This trend, very 

probably, will increase in the future (See, e. g., 

the surveys [23, 24] with more than 140 and 220 

references, respectively). Yet, MM´s can not be 

analyzed by means of the SVTh in [6] for, as al-

ready indicated, it is restricted to three phase ma-

chines without space harmonics. Since, besides 

these two limitations, the u and  space vectors, 

even in this simple case of three phase machines, 

are introduced in the same formal way as in the 

MCCA (i. e., lacking physical interpretation), it 

could be argued that the advantages and useful-

ness of trying to extend the new path open by [6] 

were clearly questionable. And that, in summary, 

as to the MM´s, it was much better to simply let 

aside digressions on space waves and to further 

develop the theory on the powerful base of the 

MCCA with the help of matrix transformations. 

On the light of these facts, it can hardly surprise 

that the great and expansive force of the SVTh in 

Central and East Europe during the second half 

of the past century has gradually vanished. Actu-

ally it matches quite better the facts evolution to 

state that, even before the MCCA was applied to 

MM´s, it already had “absorbed and digested” 

the SVTh to a great extent within its mathemati-

cal formalism. In view of the SVTh limitations 

and the undeniable power and success of the 

MCCA, needless to say that in today’s publica-

tions on MM´s, the old (and only partially suc-

cessful) efforts in favour of a space wave ap-

proach have been fully abandoned worldwide. 

They are regarded as a waste of time and consid-

ered to be doomed to failure in MM´s analysis 

and control.  

This paper holds just the opposite thesis. It states 

that for transients analysis and especially for de-

veloping and understanding the control schemes 

of MM´s, it is highly advantageous to make use 
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of the space wave approach. Yet to find out and 

show the very high potential of this approach, a 

starting point and procedure quite different from 

those used in [6] are needed. This results in the 

space phasor theory (SPhTh) as presented in this 

paper. 

 The structure of this paper is as follows: the 

fundamental idea underlying the SPhTh is pre-

sented in chapter 2. Chapter 3 introduces the 

concepts of a dynamic polyphase system of se-

quence “g” and its associated dynamic time 

phasor. Chapter 4 defines the concept of dynamic 

space phasor, introduces the u and  phasors and 

analyzes them in all detail. It shows that each one 

of the different u and  phasors existing in the 

MM is related to one specific and independent 

group of MM space harmonics. This fact (valid 

for the i phasors too) is extensively discussed, 

since it constitutes the hard core of the later MM 

decoupling into independent machines. Chapter 5 

analyzes in a similar manner, but now much 

more briefly, the different MM i space phasors. 

The conclusions and formulae in chapters 4 and 

5, of general validity, are applied to the particular 

case of constant air gap MM´s fed by arbitrary 

voltages (chapter 6). It is then proven that the 

MM can be decomposed  into a set of mechani-

cally coupled  machines, equal to the original 

one, but each of them fed exclusively by just one 

voltage space phasor, so that the problem of con-

trolling the MM is tantamount to control a set of 

equivalent three phase machines mechanically 

coupled, but electrically independent. This theo-

retical conclusion, also reinforced by simula-

tions, is then used (chapter 7) to deduce the very 

fast torque control schemes of the MM´s, which 

become a mere extension of those applied to 

three phase machines. In this regard it is also 

shown that the GAFTOC principle is the truly 

(although often unknown) driving idea behind all 

of the schemes. This fact, combined with the 

space wave approach, enables explaining in a 

rigorous, and at the same time very physical and 

didactic manner, how the whole MM control sys-

tem actually works.       

2. FUNDAMENTAL IDEA UNDERLYING 

THE SPACE PHASOR THEORY 

Let it be very long (negligible end effects) salient 

pole machine with axial conductors at the stator 

surface. As  

B rot(A)  (1) 

the total flux linkages of an arbitrary stator single 

turn, “ab” (Fig. 1) of any stator phase is given by  

ab

S S

za zb z,y
y a,b

B dS rot(A) dS A dl

(A A )·l l A



    

   

  


  (2) 

that is, ab is the sum of the vector potential val-

ues, Az, at the positions of the two turn conduc-

tors, multiplied by the machine length, l. (Notice 

that A and B are constant in the axial direction, z, 

since, as usual, the magnetic field distribution in 

the machine is considered to be bidimension-

al).Therefore, the flux linkages of the whole 

phase are simply the algebraic sum of the A val-
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ues at its conductor positions. The sign ± in (2) 

corresponds to the direction attached to each 

conductor (aa´ or a´a in Fig.1) when moving all 

along the phase. The conductors are assumed to 

be of negligible cross section. Notice that eq (2) 

always holds, no matter the rotor shape or 

whether the magnetic circuit be saturated or not. 

Thus, if the magnetic vector potential space wave 

at the stator surface is known, the phase flux 

linkages are obtained immediately in the most 

general case.  

ab

a

'a
b

'b
zbA

zaA

l

Fig. 1  Flux linking a stator coil of a salient pole machine. 

Analogously, if the space distribution (the space 

wave) of the stator electric potential difference in 

axial direction, φz, is known (potential difference 

between the two ends of an axial conductor), the 

voltage of any stator phase K is obtained by 

simply adding up the electric potential difference 

values at all of the conductor positions:  

K z,y

y a,b,c,d....

u (t)


   (3) 

Let us now reproduce one of Kron's basic ideas 

(see introduction to [25]): "The terminology and 

presentation of many engineers actually assumes 

that electricity may be transported across a net-

work as if it were a package of merchandise.... 

Not one of the writers on the theory of such net-

works ever stops for a minute to ask the key 

question: In what truly basic respect does an 

electric network differ from the large variety of 

non-electric networks? Even a layman feels in-

stinctively that transporting electric current 

across a network requires a different mechanism 

from transporting a package of butter across the 

same network¡ An electric network differs from 

all other types of non-electric network in that an 

electric network is always surrounded by a dy-

namic electromagnetic field of its own crea-

tion…” (underlined by Kron).  

In keeping with this fundamental fact (which, 

surprisingly, many engineers tend to ignore 

completely), the SPhTh in this paper considers 

that a rotating electrical machine can be regarded 

as an electromechanical device that, when con-

nected to an electric source, produces electro-

magnetic (field) waves with a restricted propaga-

tion capacity, namely they are forced to turn in-

side the air gap. These space waves, especially 

the scalar electric potential difference and the 

vector magnetic potential waves (and the linear 

current sheet wave) can be characterized very 

easily by space phasors (the u,  and i phasors, 

respectively). These space phasors: 

- enable to formulate the MM transient equations 

in a very simple manner, giving at the same time 

a very powerful and physical insight into the ma-

chine transient behaviour.  

- make possible the fast decoupling of the MM 

into a set of equivalent three phase machines 

(chapter 6). This turns out to be extremely useful 
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for developing the MM torque control schemes 

(chapter 7).  

Thus, the SPhTh in this paper fully rejects space 

phasors to be mere abstract mathematical entities 

(an idea often found in papers on three phase 

machines, let alone in MM´s). Its starting point is 

just the opposite: space phasors are always to be 

introduced representing well defined machine in-

ternal (space) quantities. And what else these 

space quantities could be, if not Maxwell’s field 

theory quantities? Furthermore, they must be the 

most significant and powerful ones. These re-

quirements are fully met by A and φ which are, 

by far, the most important quantities in electro-

magnetics [26, 27]. 

According to the statement above, it can hardly 

surprise that with the help of  (just the space 

phasor assigned to A), all of the modern control 

methods for d. c. and three phase machines (e. g. 

field oriented or direct torque control) can be de-

duced in a simple and systematic way, proving 

that all of them are particular variants of a very 

simple and much more general principle [28].  

How to get an intuitive picture of A in simple 

cases is shown in a didactic manner, e.g., in [29]. 

Nevertheless, since the average electrical engi-

neer is less familiar with flux linkages than with 

voltage, this last quantity will be used in the next 

chapter to introduce some previous concepts 

which are essential in the SPhTh.  

3. DYNAMIC POLYPHASE SYSTEMS AND 

DYNAMIC TIME PHASORS OF SE-

QUENCE  “g”  

Since all the essential features of the SPhTh can 

be illustrated with systems having an odd num-

ber of phases, henceforth this number, m, will be 

assumed odd unless otherwise stated. Likewise, 

phase 1 axis will be assumed to be always placed 

on the real axis. Term γ stands for 2π / m.  

Let it be a three phase symmetrical winding with 

arbitrary voltages, u1(t), u2(t) y u3(t), but without 

homopolar components. It must be possible to 

obtain these voltages by means of the projection 

of a “rotating vector”
2
 (the voltage phasor uA) 

onto the phase axes, that is ( e stands for “real 

part of”): 

1 2

2
3

( ) ; ( )

( ) e

j
A A

j
A

u t e u u t e u e

u t u e





    
   

  
 




 (4) 

Indeed, since the sum of the phase voltages is ze-

ro, there are only two independent equations in 

(4), which just determine magnitude and angle of  

uA. After a very simple calculation it follows  

( ) 2
1 2 3

2
( ) ( ) ( ) ( )

3

j t j j
A Au u t e u t u t e u t e    

 
    (5) 

Let it be now a five phase winding with arbitrary 

voltages, but again without homopolar compo-

nents. Since there are four independent voltages, 

                                                 

2
 The term “rotating vector” should be interpreted in 

this paper from a graphical viewpoint, as often done 

in the literature in similar cases. From a mathematical 

viewpoint, these “rotating vectors” (as well as time 

and space phasors) are complex time varying quanti-

ties.  
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it seems at first sight that the two independent 

voltage phasors  

( ) ( )
( ) ; ( )A Bj t j t

A A B Bu u t e u u t e 
   (6) 

would suffice to determine the voltage of any 

phase (sum of the two phasor projections onto 

the phase). Yet, this way all the voltages would 

actually be derived from the projections of only 

one effective phasor (sum of uA and uB). There-

fore, and for the purpose of specifying the phase 

voltages, it is necessary to impose the additional 

condition that uA and uB also differ from one an-

other as to the way in which their projections 

over the winding phases take place. This could 

be done in many ways.  The most direct one is to 

image that the phase positions are exchanged in 

cyclic manner depending on the  phasor consid-

ered (e.g. for uA the phases are placed in their ac-

tual sequence, 1, 2, 3, 4, 5 whereas for uB they 

are  assumed
3
 to be in the sequence 1, 3, 5, 2, 4. 

Mathematically we get:  

0 0
1

1 1 2
2

2 2 2
3

3 3 2
4

4 4
5

( )

( )

( ) e e

( ) e e

( ) e e

 

 

 



 

    

    

   

  

     
   

     
   

     
   

     
   

   
 

A B

A B

A B

A B

A B

j j

j j

j j

j j

j j

u t e u e e u e

u t e u e e u e

u t u e u e

u t u e u e

u t u e u e 2  
 

 (7) 

                                                 

3
 Two other cyclic changes seem possible: instead of 

phase 3, we could place phase 4 or 5 behind phase 1. 

The first change leads  to a phasor  uB conjugate of 

the uB in (8) The second one simply corresponds to 

the inverse phase sequence 1, 5, 4, 3, 2, 1. So there is 

actually only one effective symmetrical and cyclic 

phases exchange. Analogous conclusions are ob-

tained no matter the phases number. 

Solving (7) with the additional condition of no 

homopolar voltage components, a very simple 

calculation yields:  

5
( ) ( 1)

1

5
( ) ( 1) 2

1

2
( ) ( )

5

2
( ) ( )

5

A

B

j t j x
A A x

x

j t j x
B B x

x

u u t e u t e

u u t e u t e

 

 









 

 





 (8) 

If there is a homopolar component, u0(t), in the 

phase voltages, this value must be simply added 

to the right of the expressions in  (7). Of course, 

u0(t) can also be obtained by the projections of a 

third phasor. The condition as to the phase se-

quence in this case reads obviously that all the 

phase axes coincide. The expression for this ho-

mopolar voltage phasor is:  

0 0

1

1
( ) ( )

m

x

x

u u t u t
m 

    (9) 

u0, uA and uB are called voltage phasors of se-

quence 0, 1 and 2 respectively. It is important to 

keep in mind that, obviously, only phasors of the 

same sequence can be vectorially combined and 

added up. In other words trough the phasors of 

sequence 0, 1 and 2, the original five voltages 

system has been decomposed into three inde-

pendent systems (originated by three independ-

ent phasors of different sequence).  

Analogously, to characterize the arbitrary voltag-

es of a seven phase winding, three independent 

voltage phasors, uA, uB and uC plus one homopo-

lar phasorr, u0 (given by (9), with m = 7) are 

needed. The phase sequence for the phasor pro-

jections are (1, 2, 3, 4, 5, 6, 7), (1, 3, 5, 7, 2, 4, 6) 

and (1, 4, 7, 3, 6, 2, 5) for uA, uB and uC, respec-
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tively. Extending (7) to the projections of the 

three phasors uA, uB and uC and solving the sys-

tem, it quickly follows by analogy to (8):  

7 7
( 1) ( 1)2

1 1

7
( 1)3

1

2 2
( ) ( )

7 7

2
( )

7

j x j x
A x B x

x x

j x
C x

x

u u t e u u t e

u u t e

 



 

 





 



 



(10) 

This process can be easily extended to symmet-

rical windings with an arbitrary number of phas-

es, m. In that case  (m – 1)/2 phasors of sequenc-

es   “g” = 1, 2, … (m – 1)/2 plus a homopolar 

voltage phasor given by (9) are needed. The ex-

pression for the general phasor of sequence “g” 

is: 

( 1)

1

2
( )

m
j x g

x
g

x

u u t e
m





  
    (11) 

Next, the concept of a dynamic m–phase system 

(DmPhS) of sequence “g” will be introduced. By 

definition, the m quantities (m currents, m volt-

ages, etc) of a m-phase symmetrical winding are 

said to constitute a DmPhS of sequence “g”, if 

they meet the following equations  

1

2

2
( ) ( )cos[ ( ) 0 ]

2
( ) ( )cos ( ) 1

.........................................................
2

( ) ( )cos ( ) ( 1)m

x t x t t g
m

x t x t t g
m

x t x t t g m
m










   

 
    

 

 
     

 

 (12) 

x(t) and (t) can be arbitrary time functions. For 

g = mq+1, mq+2, mq+3, etc., where q is any pos-

itive natural number, the values in (12) are the 

same than for g= 1, 2, 3 etc. respectively. For g = 

mq or zero the system is called the homopolar 

DmPhS. 

A DmPhS of sequence “g” only has two inde-

pendent variables, x(t) and (t). Thus, it can be 

fully characterized by a new mathematical tool 

that will be called in this paper “dynamic time 

phasor of a DmPhS of sequence g” 

( )( ) j t

g g
X x t e   
   

  (13) 

Variables x(t) and ε(t) correspond with the in-

stantaneous amplitude and position of the dy-

namic phasor in the complex plane. Notice that 

the quantity of any phase with its axis placed at 

the actual position “y” is obtained by simply pro-

jecting the phasor onto the axis that would be-

long to this phase after having performed with 

sequence “g” the cyclic exchange of phases 

above referred to. Mathematically:  

2
( 1)

( )
j g y

m
yx t e X e

  
  
 
 



 (14) 

The sum of currents, voltages, etc. of several 

DmPhS´s, S1, S2, etc of the same sequence, “g”, 

produces a DmPhS which also has the sequence 

“g”. The dynamic phasor of the resultant DmPhS 

equals the vectorial sum of the dynamic phasors 

associated to S1, S2, etc. (This is by total analo-

gy to the classical polyphase sinusoidal systems, 

which are a very simple family of DmPhS´s, the 

phasors of which turn at constant speed with 

constant amplitude). Notice that although func-

tions x(t) and ε(t) in (12) may be arbitrary and 

very different for the different systems S1, S2, 
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etc. ., the statement above on the vectorial sum of 

dynamic phasors always holds. 

Sequences “g” and (m – g) are called comple-

mentary sequences. Any DmPhS of sequence “g” 

defined by its phasor (13) can be converted into a 

DmPhS of sequence (m – g) according to the 

formula (* stands for conjugate complex): 

*

g m g

X X


   
    

 (15) 

Indeed, according to (12) the quantity in the gen-

eral phase “y” for the DmPhS , X , in (13) , of 

sequence “g”, is   

2
( ) ( )cos ( ) ( 1)

g
y X

x t x t t g y
m



 

    
 

 (16) 

and the quantity in the same phase “y” for the 

DmPhS,  X
*
 , of sequence (m – g )  

*

2
( ) ( ) cos ( ) ( ) ( 1)

2
( ) cos ( ) ( 1) ( )

m g

g

y X

y X

x t x t t m g y
m

x t t g y x t
m









 
        

 

 
      

 

 (17) 

These formulae show that DmPhS´s with equal 

or complementary sequences can be added up, 

and the result can be characterized by just one 

dynamic time phasor.  

 Notice on the other hand that the “voltage phas-

ors of sequence g” previously introduced (see 

text after (9)) are simply dynamic time phasors 

of sequence “g”.  

In summary, in this section it has been shown 

how to decompose a m–phase system of arbitrary 

time quantities into its independent DmPhS´s   

(e. g. eq. (7) for  m = 5) and how to calculate 

their corresponding dynamic time phasors (e. g., 

equations (8) and (9) for m = 5). The dynamic 

time phasors in this section can be regarded as a 

powerful extension of the steady state time phas-

ors. Their amplitude and speed may vary follow-

ing an arbitrary law. They incorporate the phase 

sequence concept and are very useful for dealing 

(in analytical and graphical manner) with time 

quantities of arbitrary evolution in multiphase 

windings. The suitable tools for dealing with ma-

chine space quantities of arbitrary evolution are 

introduced in the next section.   

4. SPACE PHASOR CONCEPT.  PHAS-

ORS U AND Ψ AND THEIR ASSOCIATED 

SPACE WAVES. CORRELATING PHASE 

QUANTITIES WITH AIRGAP WAVES 

Electrical machines studies require operating 

with certain quantities which are spatially dis-

tributed (current sheet, induction, etc). Dynamic 

space phasors are very suitable to this task. By 

definition a dynamic space phasor is an oriented 

segment in the complex plane that symbolically 

represents the spatial sinusoidal distribution of an 

internal machine quantity. The phasor always 

points to the positive maximum of the wave (in 

the case of bipolar waves) and its modulus is 

equal to the wave's amplitude. Both wave ampli-

tude and speed may vary in an arbitrary manner 

   1 2 3 
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Fig. 2 Space wave of five pole pairs in the machine domain 

(left) and its corresponding space phasor in the phasorial 

domain (right). 

Usually the internal quantity is not sinusoidal. 

Then a harmonic space phasor is assigned to 

each space harmonic of its Fourier expansion. To 

this end a domain transformation is defined in 

such a manner that any angle, α, in the machine 

domain becomes an angle να (ν = absolute har-

monic order) in its corresponding phasorial do-

main. Notice that in this way every multipolar 

wave is characterized by one only space phasor 

(the same coordinate in the phasorial domain 

corresponds to all its positive crests in the ma-

chine. Fig. 2). Since all the harmonic space 

waves become bipolar waves in their correspond-

ing phasorial domains, this transformation 

(which  boils down to transform the mechanical 

angles into electrical ones) turns out to be very 

useful, not only for the mathematical treatment, 

but also for the physical and graphical interpreta-

tion of later equations. 

Let it be a sinusoidal wave with hp pole pairs 

distributed over the stator cylindrical surface of a 

salient pole machine (for instance, an induction 

wave, a wave of electrical potential difference in 

axial direction, etc. ). If xhp(t) is the instantaneous 

amplitude of the space wave and ε(t) defines any 

of its instantaneous positive crests in the ma-

chine, the wave expression becomes: 

  ( , ) ( )cos ( ) )hp hpx t x t hp t     (18) 

On the other hand this wave, as just stated, is ful-

ly characterized in its phasorial domain by its 

space phasor, whose most general expression is:  

( )( ) jhp t
hp hpX x t e    (19) 

From (19) and (18) it follows immediately  

 ( , ) jph
hp hpx t e X e    (20)  

that is, the quantity (e. g. induction, electric po-

tential difference in axial direction, etc.) at any 

point (or at any axial straight line) of the stator 

surface specified by the coordinate α in the ma-

chine domain is given by the projection of the 

space phasor onto the straight line defined by 

hpα in the phasorial domain (Fig. 3)  

 

 

Fig. 3 Geometric Interpretation of eq. (20) 

 

Therefore the voltage of a stator phase k due ex-

clusively to one electric potential wave with 2hp 

poles is equal to the sum of the projections of the 

wave space phasor, uhp, onto the Zk phase con-

ductors translated into the phasorial domain. This 

sum becomes (see appendix A):   

 *

,( )     phase k k hp hp kwave hp
u t Z e u   (21) 

where complex winding factor, ,hp k , in (21) is a 

complex constant whose modulus equals the one 
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of the classic winding factor for the harmonic of 

relative order h. (More details in Appendix A).  

In summary, (21) states that the k-phase instan-

taneous voltage due exclusively to the wave with 

hp pole pairs is simply the projection of the wave 

phasor onto the corresponding phasorial axis of 

phase k (multiplied by a constant).  

Let it be a 2p poles salient pole machine with a 

m-phase symmetrical winding on the stator. Let 

us choose as abscise axis the symmetry axis of 

first phase, and define ξh,wndg as the winding fac-

tor of relative order h of this first phase. Due to 

winding symmetry, the phase in the generic posi-

tion “k” reproduces the configuration of phase 1 

but with an angular displacement in the machine 

2·(k-1)/(p·m).Therefore its complex winding 

factor in the phasorial domain becomes:  

   
2 ( 1) 2

( 1)

,
1

k
j h p j h k

p m m
hp hp h wndg

phase k phase
e e

 

  




 

(22) 

By simply applying (21) und (22) it follows that 

the instantaneous phase voltages of a m–phase 

stator winding due exclusively to the axial elec-

tric potential difference space wave with hp pole 

pairs characterized by its phasor (19) become:  

1 ,

2 ,

( ) ( )cos[ ( )]

2
( ) ( )cos ( ) 1

......................................................................................

( )

phas h wnd hpwave hp

fase h wnd hpwave hp

fase m w

u t Z u t h p t

u t Z u t h p t h
m

u t

 


 

   

 
       

 

   ,

2
( )cos ( ) ( 1)h wnd hpave hp

Z u t h p t h m
m


 

 
   

 

 (23) 

For instance, let it be a seven phase (m = 7) 

winding, and assume the general case of space 

waves with arbitrary changes in their amplitude 

and speed. According to (23), each of the waves 

with p, 8p, 15p, etc. pole pairs (that is, each of 

the harmonic waves of relative order h = 7q + 1 

with q = 0, 1, 2, 3, etc.) produces a voltage 

DmPhS of sequence 1. Likewise, each of the 

waves of order h = 7q + 2; h = 7q +3, etc. pro-

duces a voltage DmPhS of sequence 2, 3, etc, re-

spectively.  

Therefore, for a 7-phase stator winding all of the 

electric potential waves in axial direction at the 

stator surface can be classified into seven fami-

lies. The instantaneous amplitudes and positions 

of the different waves belonging to the same 

family are, in the general case, quite different 

from one another, and so are as well their corre-

sponding space phasors. However, all of them 

originate DmPhS´s of the same sequence which 

can be added up to give a resultant DmPhS of 

this same sequence. Thus, the combined action of 

all of the waves of a family on the phase voltages 

can be characterized by just one equivalent or 

effective voltage space phasor. Or alternatively: 

the resultant voltage DmPhS produced by a 

whole family of waves can be imagined to be 

produced by one only effective or equivalent 

space wave, the phasor of which is just the effec-

tive phasor of the waves family.  

Moreover, the two voltage DmPhS´s produced 

by the families with h = 7q +1 and h = 7q +6 are 

DmPhS´s of complementary sequence. There-

fore, they can be added up so that just one space 

phasor suffices to characterize the combined ac-
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tion of both families. The same statement applies 

to the families with h = 7q +2 and h = 7q + 5 as 

well as to the families with h = 7q + 3 and h = 7q 

+ 4. Thus, the combined effect of all of the elec-

trical potential waves on the voltages of the sev-

en phases is fully characterized by just four ef-

fective voltage space phasors.  

This reasoning can be extended to symmetrical 

windings with arbitrary phases number. For in-

stance, in order to obtain the voltages of a five 

phase winding due to all the machine space 

waves three effective voltage space phasors (one 

of which being the effective homopolar space 

phasor) suffice in the most general case. 

As just seen, the set of effective voltage space 

phasors determines the instantaneous voltage of 

any winding phase in a very simple way: by pro-

jecting the phasors onto the phase axis and 

summing up the projections. The inverse prob-

lem (determining the effective voltage space 

phasors out of the instantaneous phase voltages) 

is quite simple too. Notice that each one of these 

space phasors produces one of the independent 

DmPhS´s into which the voltage system of the 

polyphase winding can be decomposed (simply 

compare equations (23) and (12)). Therefore, 

from a merely mathematical viewpoint, obtaining 

the effective space phasors out of the phase volt-

ages boils down to get the dynamic time phasors 

which define the polyphase voltage system. This 

problem has already been solved in section 3 (see 

especially its final remarks). Anyway, it is useful 

an additional comment on the physical meaning 

of the solution obtained this way by means of an 

example. 

Let it be again a salient pole machine with, for 

instance, a five phase stator winding without 

homopolar components. In this case, two effec-

tive stator voltage space phasors, uA and uB must 

be computed. Their expressions are given in (8). 

Phasors uA and uB symbolize (at a given scale) 

two effective stator electrical potential difference 

space waves, with different pole pair number, p 

and 3p, respectively. (More precisely: these two 

effective phasors characterize the total action on 

the phase voltages of two different sets of actual 

stator electric potential difference space waves. 

The first phasor refers to the families with waves 

of relative order h = 5q +1 and h = 5q+4. The 

second one to the families with h = 5q+3 and 

h=5q+2). Amplitude and speed of both effective 

space waves vary in due manner to give the 

phase voltages.  

In summary, for an m-phase stator symmetrical 

winding, the numerous and actual stator electric 

potential difference space waves which appear at 

the stator cylindrical surface can be classified, in 

the most general case, into m families. For m 

odd, (m – 1)/2 of these families have a comple-

mentary family. Yet, the combined action on the 

stator phases voltage of all the waves of two 

complementary families can be accounted for by 

just one effective stator voltage space phasor. 

Thus (m – 1)/2 effective independent space phas-

ors (plus one homopolar phasor) suffice to char-

acterize the action of all of the stator electric po-
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tential waves. These phasors fully define the in-

stantaneous phase voltages and, conversely, ac-

cording to (11), they are determined out of the 

stator phase voltages as follows:  

2
( 1)

, ( )

1

2
( )

m j x g
m

familes g m g x

x

u u t e
m








   (24) 

The statement above as well as the correspond-

ing equation (24) hold no matter the rotor shape 

or whether the magnetic circuit be saturated or 

not.  

Analogous statements apply to the magnetic vec-

tor potential waves over the cylindrical stator 

surface. Again, the combined action on the stator 

phase flux linkages of all of the magnetic poten-

tial space waves of two complementary families 

can be accounted for by just one effective stator 

magnetic vector potential space phasor, families, 

Its expression can be obtained out of the flux 

linkages of the stator phases, no matter the rotor 

shape or whether the machine be saturated or 

not. Operating as done with the electric potential 

waves, it follows, by analogy with (24),  

2
( 1)

, ,

1

2
( )

m j x g
m

families g m g x

x

t e
m








     (25) 

It is convenient to insist on the physical content 

of (23). It states that, given a m-phase winding, 

any electric (or vector magnetic) potential space 

wave with hp pole pairs always produces in the 

winding a voltage (or flux linkage) DmPhS of a 

sequence “g”, no matter the changes in the wave 

amplitude and speed. Sequence “g” only depends 

on the wave poles number. Waves with different 

poles number but belonging to the same family 

produce DmPhS´s of the same sequence. 

It is worth mentioning that even in the simple 

case of three phase machines, and even in good 

books ( e.g. [30], p. 286  or  [31], p. 21]) it has 

been explicitly stated that phasors  u and   lack 

a physical interpretation. Yet assigning a physi-

cal meaning to the u phasor was already done in 

[32], where the u phasor definition was carried 

out from a field perspective (axial electric poten-

tial difference) and a circuit perspective (average 

value of conductors voltages).The second defini-

tion was later used to also introduce the  phasor 

and, unfortunately, it was the one almost exclu-

sively used by this author in his later publications 

on the SPhTh (e. g. [33,34]). The procedure and 

definitions in those publications are in itself le-

gitimate and correct, but they are useful for tran-

sients analysis only if the space harmonics are 

neglected, otherwise, the expressions for u and  

become too complex, as explicitly acknowledged 

in [33,34]. Therefore, those space phasor defini-

tions and their corresponding developments in 

previous author’s publications which do not co-

incide with the ones given here or in [35] are to 

be replaced in due manner. In other words, the 

“field perspective” in [32] is the truly suitable 

one and the one to be chosen for introducing the 

space phasors definitions and formulae, as done 

and explained in detail in this paper. 

Formulae (24) and (25) coincide with the so 

called instantaneous symmetrical components 

(ISC) of voltages and flux linkages. Although 
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these ISC have been profusely used all over the 

world for more than half a century, it has been 

impossible so far to attach a clear physical inter-

pretation to them. They keep on being introduced 

directly as a mere (and fortunate) transformation 

of variables that simplify the solution of the sys-

tem equations. Yet, according to previous para-

graphs, they have a deep and double physical 

meaning: effective voltage and flux linkage dy-

namic space phasors associated to the different 

(and independent) space waves families (first in-

terpretation. Machine viewpoint). Dynamic (and 

decoupled) time phasors which fully describe (by 

simple projection) the time evolution, in the most 

general case, of phase voltages and flux linkages 

of a m-phase symmetrical winding (second inter-

pretation. Circuits viewpoint. See eq. (11)).  

 

 5. CURRENT SPACE PHASORS AND 

THEIR ASSOCIATED SPACE WAVES   

Any phase A placed in the cylindrical stator (D = 

inner diameter) of an electrical machine produces 

a current sheet space wave that can be split into 

space harmonics. If iA(t) is the phase current, the 

space phasor, a, that characterizes the harmonic 

of relative order h of the current sheet wave pro-

duced by the phase A is [35]  

 , ,

2
( )A

h p A A h p A

Z
a i t

D



   (26) 

The current sheet space phasor of a polyphase 

winding is  the sum of the space phasors of all of 

its phases Thus the space harmonic of relative 

order h of the current sheet wave produced by a 

m-phase symmetric winding fed by arbitrary cur-

rents can be represented by its space phasor, 

whose expression, deduced immediately from 

(26) and (22), is: 

 
 

2
1

, ,

1

2 m j h k
m

hp wnd hp hp wnd k

phases k

Z
a a i t e

D










  

 (27) 

Instead of the current sheet space phasor it is of-

ten advantageous to use the so called current 

space phasor, defined as:  

 
 

2
1,

,

1,

2 m j h khp wndg m
hp wndg k

khp wndg

i i t e
m










   (28) 

Notice that both phasors only differ by a constant 

and therefore they represent (at different scales) 

the same space quantity. For h = 1 (fundamental 

wave) and m=3 the current space phasor in (28) 

results in the Park´s current vector.  

As readily expected, like the u phasor (electric 

potential) and the  phasor (magnetic vector po-

tential), also the i phasor has a direct relationship 

with one of the Maxwell´s field theory quantities. 

The current sheet (i phasor) at any point of the 

stator surface is equal to the tangential compo-

nent of the magnetic field intensity, Ht, at this 

point, assuming the classical hypothesis of µFe to 

be infinite (e. g., [30, p. 342])  Furthermore, the 

vectorial product of the space phasors of voltage 

(related with the axial electric field) and current 

(related with the tangential magnetic field) is di-

rectly related with the well known Poynting vec-

tor, S = E x H. Starting from S the different elec-

trical machines and their main formulae can also 
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be deduced, as done in a systematic and beautiful 

manner in [36]. This allows a deep physical in-

sight into the machine behaviour from a perspec-

tive quite different from the usual one.   

In view of the relationships between DmPhS´s 

and waves families for phasors u and , it is on-

ly logical to expect that a current DmPhS applied 

to a symmetrical m–phase winding will produce 

current sheet waves belonging to specific fami-

lies. And this is just what happens: if the se-

quence of the current DmPhS is “g”, all the 

waves are of order h = qm ± g, (See appendix B). 

For instance, a current DmPhS of g = 2 applied 

to a seven phase winding only produces space 

waves of relative order h = 2, 5, 9, 12 etc.  

Finally, notice that, like equations (24) and (25), 

equation (28) always holds too, no matter the ro-

tor shape or whether the magnetic circuit be satu-

rated or not. 

6. DECOUPLING A CONSTANT AIR GAP 

MULTIPHASE MACHINE INTO INDE-

PENDENT MACHINES. THEORETICAL 

PROOF AND VALIDATION THROUGH 

SIMULATIONS    

This section refers to the following constant air-

gap MM´s: induction machines (IM), doubly fed 

asynchronous machines (DFAM) and permanent 

magnet synchronous machines (PMSM) with a 

stator winding constituted by m phases symmet-

rically distributed.  

The hard core of the problem of establishing the 

machine equations actually lies on developing 

the relationships between current sheet and flux 

linkage space phasors (in other words, between 

currents and fluxes). 

Contrary to equations (24), (25) and (27), of gen-

eral validity, the relationship between current 

sheet and magnetic vector potential space waves 

(or flux linkage waves, ) changes for every 

machine type and, for some machines, it turns 

out to be very complex, even if the phase leakage 

flux is considered (as will be done here too) pro-

portional to the phase current. However, the so-

lution is simple for those machines in which the 

two classic hypotheses of ideal magnetic circuit 

and constant air gap of negligible width can be 

assumed. In such a case, any sinusoidal current 

sheet wave results in just one flux linkage wave 

(or in just one airgap induction wave) with the 

same pole number (there are no saturation or re-

luctance induction waves). The relationship be-

tween these current sheet and induction waves is 

very simple: their amplitudes are proportional 

and the induction wave always lies 90 degrees 

apart from its exciting current sheet wave in the 

phasorial domain. These space waves relation-

ships are very simple to write down by means of 

space phasors, no matter the machine harmonics 

and phases number, as has been shown in detail 

in [35]. 

 Yet, it is not at all necessary to develop the ma-

chine equations in order to prove in a precise 

and rigorous way that the MM can be decoupled 

into a set of independent machines. This will be 

done in the next paragraphs. 
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Let it be an ideal IM with an arbitrary phase 

number, m, in stator and rotor, and let us apply to 

the stator an arbitrary current DmPhS, Si, of se-

quence g. Assume first that the rotor circuit is 

open. Si produces a current sheet waves family 

with hest = qm ± g (see Appendix B), which in 

turn, as above commented, produces a homolo-

gous family (the same h values) of stator and of 

air gap vector potential space waves. This last 

waves family generates a stator common flux 

linkages DmPhS of sequence g. Therefore, the 

electromotive forces (EMF´s) induced in the sta-

tor phases constitute at any moment a DmPhS of 

sequence g too. And the m-phase winding volt-

ages system, SV (sum of the EMF´s and the 

phase impedance voltage drops systems) also 

constitutes a DmPhS of sequence g. In summary, 

a current DmPhS of sequence g can only pro-

duce flux linkages and voltages DmPhS´s of the 

same sequence. (Of course, if instead Si the input 

is the voltage system SV, the output will be then 

the current system Si).     

Assume the rotor winding be closed now (It 

should be underlined that in the much more sim-

ple case of a PMSM this second step of the anal-

ysis is unnecessary). At the first moment, the air 

gap flux linkage space waves family (due to the 

stator currents) induces in the rotor a EMF 

DmPhS of sequence g, which in turn, as there are 

no external rotor voltages
4
, produces a rotor cur-

                                                 

4
 Of course, the reasoning in the text also applies to a 

doubly fed asyncronous machine provided that the 

rent DmPhS of sequence g too. This happens no 

matter the changes in the amplitude and speed of 

 with respect to the rotor (see comments after 

eq (25)). The rotor current DmPhS produces (see 

again appendix B) a family of rotor current sheet 

waves with hrot = qm ± g (Notice that the general 

rotor family term hrot coincides with the one of 

the stator family, hstr). Each pair of stator and ro-

tor current sheet waves of the same order (or 

their phasors expressed in a common reference 

frame) combine to give at any moment a ma-

chine resultant wave of the same order, so that 

we get a machine resultant waves family with 

hmach = qm ± g. This resultant current sheet 

waves family originates a homologous airgap 

waves family which induces a EMF DmPhS of 

sequence g in stator and another in the rotor. This 

modifies the stator and rotor currents in the next 

moment, but, obviously, they keep on being two 

DmPhS´s of sequence g. Thus, they produce two 

homologous families of current sheet waves with 

h = qm ± g, which combine together, and the 

process repeats again. In summary, in constant 

airgap symmetrical MM´s with equal stator and 

rotor phases number, two arbitrary stator and 

rotor voltage DmPhS´s of same sequence, g, 

produce at any moment only stator and rotor 

current DmPhS´s of sequence g  

On the other hand it is well known that only the 

interaction of stator and rotor space waves with 

the same pole number can produce torque. This 

                                                                                 

external rotor voltages system be an arbitary DmPhS, 

SV,rot of the same sequence, g. 
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means that only stator and rotor voltage 

DmPhS´s of the same sequence can produce 

torque (hest = hrot only in families associated to 

DmPhS´s of the same sequence). 

Therefore, each one of the two arbitrary stator 

and rotor voltage systems of the MM analyzed 

above has to be expanded into (m + 1)/2 inde-

pendent DmPhS´s (m odd), one of which being 

the homopolar system (g = 0). The MM can be 

regarded as a set of (m + 1)/2 mechanically cou-

pled but electrically independent machines with 

the same windings. Stator and rotor of machines 

0, 1, 2 etc. are supplied by the (stator and rotor) 

voltage DmPhS´s of sequence g = 0, 1, 2, etc re-

spectively. The MM torque (or current) equal the 

sum of the torques (or currents) produced by all 

of the independent machines. Notice that this 

statement applies to those IM´s or DFAM´s in 

which mstr = mrot, as well as to the more simple 

case of the PMSM. 

The above conclusions have been confirmed by 

numerous simulations carried out with the space 

phasor model developed in detail in [35]. The 

model applies to machines with any stator and 

rotor phase number, fed by arbitrary voltage 

waveforms and taking into account the space 

harmonics. The author would like to emphasize 

that very much attention was paid to a reliable 

model validation by comparing in [35] torque 

simulations with direct torque measurements, 

that is, with precise measurements of mechanical 

(not electrical) quantities performed in a squirrel 

cage motor. In this sense, the great difficulties of 

measuring with accuracy pulsating electromag-

netic torques of several hundreds of hertz were 

brought into light, the possible measurement 

techniques were critically reviewed and the solu-

tion chosen was extensively discussed. As far as 

the author knows, it is the first time in the litera-

ture that transient torques of hundreds of hertz 

due to winding space harmonics have been di-

rectly measured and compared with model  simu-

lations.  

Figures 4 to 7 show, by way of example, the 

simulations results of a direct on line no load 

starting-up of an induction motor, “a”, with sev-

en phases in stator and rotor. The simulations 

were performed applying the model in [35] first 

to motor “a” fed with the stator voltage system 

S1 defined as 

   

 

( ) 300cos ( 1)2 / 7 200cos 3 3( 1)2 / 7

100cos 5 5( 1)2 / 7 ( ) ( ) ( ) (29)

ax

bx cx dx

u t t x t x

t x u t u t u t

   

 

     

     

 

where uax(t) stands for voltage at phase “x” (x = 

1 to 7) of machine “a”. Thereafter the model was 

applied to three machines (b, c and d) mechani-

cally coupled, all of them equal to machine “a”, 

and fed with the three voltage DmPhS´s ubx(t), 

ucx(t), and udx(t) obtained from S1 in (29). 
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Fig. 4.  Machine “a” no load starting-up torque. Main ma-

chine data Rstr=0,41 Ω; Lstr= 100 mH; Lσ str= 2,5 mH;  Rrot= 

0,28mΩ;  Lrot= 14 µH;    Lσ  rot= 1,12 µH;  J = 0.03 Kgm
2
;  

hmax= 25. Full pitch stator and rotor coils placed in 56 and 

28 slots  
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Fig 5 Torques of machines “b” (blue), “c” (green) and “d” 

(red). Remaining data as in Fig. 4. 

 

The actual data in figures 4 and 5 confirm that Ta 

is exactly equal to Tb+ Tc +Td at any moment. 

Analogous statement holds for the currents in 

figures 6 and 7. These results were observed in 

all simulations, no matter voltage input, load 

value, space harmonics number or machine pa-

rameters, as predicted by the theory.  
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Fig. 6.  Machine “a” stator phase 1 current during no load 

starting-up. Remaining data as in Fig. 4. 
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Fig. 7 Stator phase 1 currents in machines “b” (blue), “c” 

(green) and “d” (red). Remaining data as in Fig. 4. 

 

It should be added that the authors in [37] have 

dealt with the particular case of PMSM follow-

ing a completely different approach. Resorting, 

to different analysis tools (endomorphism, or-

thonormal base of eigenvectors, etc) they arrive 

at decoupling laws for PMSM fully equivalent to 

the results in this paper. 

If mstr and mrot are not equal in the IM or in the 

DFAM, then the exact decoupling of the MM in 

the most general case is not possible, as also con-

firmed, e. g., by direct on line starting up simula-

tions (Physical explanation: the field harmonics 

belonging to one only stator waves family have 

their rotor counterparts distributed among several 

rotor families; and conversely).Yet, even in these 

machines, if they are fed through a converter, the 

decoupling above referred to keep on being valid 

with small or negligible error, as shown in the 

next section. 

7. FAST TORQUE CONTROL OF MULTI-

PHASE MACHINES 

The general strategy (GAFTOC principle) to get 

a very fast machine torque control is based on 
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keeping the pulsational EMF´s of all of its phases 

null during transients and achieving the torque 

changes by exclusively enhancing the rotational 

EMF´s [28]. Three phase stator or rotor windings 

without homopolar currents produce only one set 

of flux linkages space waves of general order     

h = 3q±1 (that is, only one str and one rot. 

phasors). Therefore, keeping the pulsational 

EMF´s null in all stator or rotor phases is 

achieved in a three phase machine by simply 

keeping constant the magnitude of its str or rot 

phasor (See Fig 2 in [28]). Field orientation con-

trol (FOC) and direct torque control are simply 

two particular methods of implementing the 

GAFTOC principle. 

It has also been shown in the previous section 

that a constant airgap MM with m stator and ro-

tor phases can be split up into a machine with 

homopolar voltages (always to be avoided for 

well known reasons) plus (m-1)/2 independent 

machines. Each of these independent machines 

has only one str and one rot, space phasor 

which fully define the flux linkages of any phase, 

just as happens in three phase machines without 

homopolar components. Thus, the MM (more 

concretely: PMSM, IM and DFAM) has been de-

coupled into a set of equivalent and electrically 

independent three phase machines which are me-

chanically coupled. 

Moreover, in converter-fed machines it is not 

necessary to take into account all the members of 

each waves family. Indeed, it has been theoreti-

cally justified as well as confirmed by numerous 

simulations in [35] that the field harmonics effect 

on the transient torque of three phase induction 

motors is always negligible at low slips. Obvi-

ously this conclusion can be extended to the dif-

ferent and independent waves families of con-

verter fed MM´s (small slips, even in transients). 

This means that in these MM´s only the space 

harmonics which are head members of their 

groups (that is, the harmonics with the lowest 

pole number) need to be considered as to the 

torque, since they alone are able to provide a non 

negligible torque contribution [35]. 

Certainly, if mstr  mrot in the IM or the DFAM, 

the exact decoupling of the MM is not possible. 

However, as to the torque control, this fact is 

scarcely relevant, since only the head members 

of the families should be considered. In fact, alt-

hough often ignored, this simplified assumption 

underlies all the control schemes in the literature 

on converter-fed three phase induction machines, 

where only the fundamental stator and rotor 

waves are considered as to the torque production. 

(Notice that the three phase stator winding pro-

duces just one family of, e. g., Ψ waves. Howev-

er, the multiphase squirrel cage produces several 

families. Yet, only the head members of the sta-

tor family and of the rotor main family are taken 

into account in the torque equation). In other 

words, if only the head members of each waves 

family are to be considered (converter fed 

MM´s) then the effective decoupling of the MM 

still holds, no matter mstr and mrot be equal or not. 
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Thus, establishing the scheme for a very fast 

torque control of the MM´s of type IM, DFAM 

and PMSM boils down to applying the GAFTOC 

principle to each one of the independent ma-

chines into which the MM can be split up. In 

other words, any of the schemes in [28] for three 

phase machines can be extended directly to their 

homologous MM´s. By way of example, Fig. 8 

(a mere extension of Fig. 3 in [28]) shows the ro-

tor FOC of a five phase induction motor.  

The scheme in Fig.8 is associated to two ficti-

tious independent machines each of them with 

one only rot phasor. Stator current and voltages 

of both machines are known (ISC of the actual 

five phase machine), as well as their electric pa-

rameters and rotor positions (equal to the ones of 

the actual machine). On the other hand, obtaining 

in a three phase machine its rot phasor (actually 

only its angle φΨ with respect to the stator is 

needed) from rotor position, stator currents and 

machine parameters is a classical problem solved 

a long time ago. In this sense, the block in Fig. 8 

“rot phasors calculation” represents the set of 

operations to get the rot phasor of each one of 

the two fictitious machines (its counterpart in 

Fig. 3 of [28] must calculate only one rot phas-

or, of course). The block “Torque references dis-

tribution” simply specifies the constant percent-

ages of the total torque which must be provided 

by the fundamental and the third space harmon-

ics of the actual machine (These harmonics are 

the head members of the two space waves 

groups). An analogous statement holds for the 

block “Flux linkages references distribution”.   

It is useful to make some additional comments 

on how the system in Fig. 8 actually works. The 

machine space waves are characterized by space 

phasors in cartesian or polar coordinates (e.g., i 

phasors represent current sheet waves).The main 

waves, by far, are the  waves, which are forced 

by the control structure to keep their amplitudes 
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constant (this way, only rotational EMF´s are in-

duced in the windings. GAFTOC principle).This 

task is particularly simple if operating with the 

phasors in reference frames tied to the  waves. 

Naturally, the changes in the space waves result 

in changes in their associated phase time waves 

(phase quantities). The values of these phase 

quantities u(t), Ψ(t) etc. are obtained by simply 

projecting (in their phasorial domains) the set of 

u,  etc space phasors onto the phase axis and 

summing up the projections, as proven in chapter 

4. This is just what is done by the operations in 

block (a1 b1 a3 b3)  (A B C D E) which are pre-

sented in the literature as abstract matrix trans-

formations. Actually they simply represent the 

way in which the machine internal quantities are 

correlated with its external ones. The drawback 

in the MCCA of lacking tools to perform this 

correlation in a precise and simple way was un-

derlined at the beginning of the introduction sec-

tion. This correlation is no problem in the SPhTh 

(sum of phasors projections) so that one can go 

from space to time quantities and conversely at 

any time. 

Finally, notice that, as already said, Fig. 8 (an ex-

tension of the first control scheme in [28]) is just 

one example. All the other three phase control 

schemes in [28] for PMSM, IM and DFAM can 

be extended in a similar manner to MM´s. 

8. Conclusions 

Kapp´s time phasors refer to sinusoidal time 

waves and are only valid for steady states. For 

transient states analysis Dreyfus already pro-

posed in [3] to use m.m.f. space waves. Yet, his 

method could hardly compete with Park´s one. 

The later SVTh by Kovacs and Racz [6], pro-

fusely used in Central Europe in the second half 

of the past century, can be regarded as a second 

and more vigorous attempt to place the machine 

space waves at the central point of the study. Un-

fortunately, the SVTh in [6] is restricted to three 

phase machines without field harmonics and has 

no physical interpretation for the essential u, and 

 phasors.  

This paper is fully pervaded by the following 

driving idea: for analysing transients in electrical 

machines and developing their control schemes it 

is highly advantageous to connect again with the 

old “wave approach”; that is, to connect with the 

way of thinking and the mental stream of analy-

sis that flowing through the SVTh goes back to 

Dreyfuss´s work (and even to Kapp´s phasor 

concept); a mental stream (developed specially in 

Central Europe)  that, as to transient studies, has 

been almost completely blocked in the last 30 

years by the undeniable power and success of the 

MCCA. Yet, to overcome this block, a starting 

point and procedure clearly different from the 

ones in [6] are necessary, namely one has to go 

resolutely and directly to the physical roots of the 

machine behaviour. And, as in any electric sys-

tem, these roots, ultimately, always are Max-

well´s field theory quantities (see the, in author’s 

opinion, excellent book [26]). To put it concrete-

ly: by contrast to the MCCA (machine as a net-
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work), the SPhTh in this paper states that a ma-

chine can also be regarded as an electromechani-

cal device which produces electromagnetic 

waves inside its air gap. These space waves, es-

pecially the fundamental u,  and i waves, can 

be characterized very easily by space phasors 

which are to be taken as essential tools of the 

theory. Moreover, they also can be correlated 

easily with the phase time quantities. 

 With regard to this second point, since a space 

wave, no matter the changes in its speed and am-

plitude, always produces a DmPhS of a fixed se-

quence, it follows that also DmPhSs should be-

come key elements of the SPhTh. To operate 

with them a new tool called “dynamic time phas-

or of a DmPhS of sequence g” has been intro-

duced in this paper. It can be regarded as a pow-

erful extension of Kapp´s phasor. Dynamic time 

and space phasors, just as Kapp´s phasors, can be 

dealt with mathematically (complex time varying 

quantities) and graphically (vectorial addition) 

and also enable drawing dynamic time and space 

diagrams. This way the SPhTh extends to transi-

ents problems a method of analysis and graphical 

representation very familiar to any electrical en-

gineer. In this sense, space phasors are much 

more intuitive than abstract matrix transfor-

mations. And, conceptually, more suitable. For 

instance, the statements often found that time 

quantities like currents, flux linkages, etc. are 

subjected to transformations of the coordinates 

axes can hardly be accepted from a correct phys-

ical viewpoint (only space quantities can be sub-

jected to space transformations). It is dubious 

that such statements can lead to a clear insight 

into the machine dynamics and control. Yet, in 

view of the increasing use of converter-fed 

MM´s, an accurate, physical and graphical de-

scription of these processes becomes a must. 

Each one of the different u and  dynamic space 

phasors existing in the MM is related to one spe-

cific and independent group of space harmonics. 

Likewise, a current DmPhS of sequence g (char-

acterized by its dynamic time phasor) produces 

only current sheet space waves of relative order  

h = qm ± g. These facts have been extensively 

discussed in the paper, since they constitute the 

hard core of the MM decoupling. 

Thereafter, making use of these two analysis 

tools (dynamic space phasor in the hp-phasorial 

domain; dynamic time phasor of a a DmPhS of 

sequence “g”) it is theoretically proven that con-

stant airgap MM´s (either PMSM or IM and 

DFAM with mstr = mrot) can always be decoupled 

(m odd) into one machine with homopolar com-

ponents plus a set of (m-1)/2 independent and 

equivalent three phase machines without homo-

polar components (This MM decoupling had 

been previously proven only for the particular 

case of PMSM). The theoretical conclusions 

above have been also confirmed by numerous 

simulations with the model in [35] (Notice that 

whereas the u and  formulae and physical in-

terpretation for the general case are given in this 

paper, the whole set of machine equations for the 

particular case of constant airgap machines has 
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been deduced in detail in [35]). For converter fed 

MM´s the decoupling holds too, with small or 

negligible error, even if mstr ≠ mrot. This enables 

establishing directly the schemes for a very fast 

torque control of the MM´s, since they boil down 

to a mere extension of those already known for 

their homologous three phase counterparts. 

Moreover, it is shown that the GAFTOC princi-

ple is the truly driving idea behind all of these 

schemes. This fact, combined with the space 

wave approach, allows explaining in a rigorous, 

and at the same time very physical and didactic 

manner, how the whole MM control system ac-

tually works. 

Finally, this paper gives for the first time the in-

terpretation of the u and  space phasors from a 

space wave perspective. It also gives the double 

and deep physical meaning of the u and  in-

stantaneous symmetrical components in poly-

phase machines and windings.  

 Appendix 

A. Deduction of eq (21) 

   Let it be a phase A with ZaA conductors placed 

at (the straight line defined by) αa, ZbA conduc-

tors placed at αb, etc. According to eq (20) the 

sum of the projections of phasor uhp onto all of 

the series-connected conductors of phase A 

translated into the hp–phasorial domain be-

comes: 
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plex constant (the complex winding factor of rel-

ative order h). More details in [35]. 

 

B. Space waves produced by a current 

DmPhS. 

Let it be a current DmPhS of sequence g as de-

fined in (12). The current sheet space waves pro-

duced by this system are obtained by replacing in 

(28) the values of (12). Making use of Euler´s 

formula ( 2cos j je e    ) it follows, after sim-

ple mathematical manipulations: 
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Inside the bracket in the above equation there is a 

first sum of m unitary vectors which are symmet-

rically distributed with an angle (h – g) * 2π/m 

between two consecutive vectors, and another 

analogous sum, but with an angle which is equal 

to (h + g)* 2π/m. Each one of these sums is dif-

ferent from zero only if the angle between two 

consecutive vectors is zero or a 2π multiple. 

Therefore a current DmPhS of sequence g can 

only produce current sheet space waves of rela-

tive order h = qm ± g 
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C. Comparison between SPhTh and MCCA 

MCCA and SPhTh are two very different ap-

proaches (electric network with variable induct-

ances; electromagnetic device with airgap field 

waves) which nevertheless describe the same 

process. Yet, when two approaches with  same 

simplifying hypotheses are used for analyzing a 

process, they produce two equation sets which 

must be either equal or formally equivalent. The 

MCCA has been successfully used all over the 

world for the last fifty years. Thus, it would be 

sheer madness to present the SPhTh in this paper 

as a new method that, relying on the same hypot-

heses as the ones of the MCCA, brings new and 

improved equations which no one could have 

been able to obtain previously or for which there 

are no equivalent ones in the MCCA. In other 

words, in the end, the equations of both theories 

must be mathematically equivalent. But this does 

not mean that both theories are equally suitable. 

In the author’s opinion, the following aspects are 

to be considered in favour of the SPhTh: 

 

 

Use of analytical tools with a clear physical con-

tent and meaning 

Space phasors are much more intuitive than ma-

trix transformations. They characterize the dy-

namic space distribution of a well defined inter-

nal or space quantity. 

 

Relating space waves to external phas quantities. 

Space phasors show in a precise and easy way 

how the evolution of the machine internal quanti-

ties results in changes of its external ones. (Pro-

jections of the space phasors into the phase axis 

in their corresponding phasorial domains). 

 

 Simplicity of the model and of the methodologi-

cal procedure. 

The MCCA regards the machine as a system of 

magnetically coupled coils. A chain of abstract 

mathematical transformations (almost always 

lacking any underlying physical explanation) is 

applied in order to decouple the variables and to 

simplify the machine structure. In the SPhTh no 

abstract phase reduction or transformation ma-

trices are required, and the dynamic equations 

are formulated in an easy way. 

 

Excellent suitability for electronic control studies 

First: space phasors provide a very good physical 

insight into the machine behaviour. This way, 

they enable to “untangle” (with little mathemat-

ics) the machine structure, and to decouple the 

MM (and to understand its underlying physical 

base!) into a set of equivalent and independent 

three phase machines (machines with one only  

space phasor in stator and rotor).  

 

Second: electromechanical energy conversion is 

concerned with motional emfs. Thus, pulsational 

emfs should be considered a waste of resources 

(increasing in machine and converter sizes) and 

time (slower dynamic answer) and are always to 

be avoided. This simple idea constitutes the 

GAFTOC principle [28], from which all the oth-
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er control methods can be deduced. Yet, imple-

menting the GAFTOC becomes very simple in 

the SPhTh: it boils down to keep constant the 

magnitude of every  space phasor and to 

change only its rotational speed. 

 

Graphical representation of transients. 

A sinusoidal space wave can always be graph-

ically represented by a space phasor, no matter 

the changes in its amplitude and speed. Dynamic 

diagrams provide en excellent insight into transi-

ent processes. 

 

Torque formula very simple and intuitive 

The torque formula is quite simple and has a di-

rect and very physical interpretation: tendency to 

the alignment of two magnets. 

 

Removing the abrupt gap between steady and 

transient state studies. 

Space phasors make use of equations and dia-

grams formally analogous to the ones in steady 

state. Thus, they enable extending to transient 

problems a mathematical and graphical analysis 

technique very familiar to any electrical engineer 

from his steady state studies. 

D. Torque expression with space phasors. 

For the analytical description of the machine 

with space harmonics, the MCCA [21] and the 

SPhTh assume the hypothesis of  μFe = ∞. In lin-

ear systems the torque can be obtained from the 

stored magnetic energy trough the general ex-

pression (e.g. [38], chapter 2) 

 
mag

i1,i2... cte
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T
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
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 (1.1) 

In the case of IM´s and DFAM´s with three 

phase windings on stator and rotor (PMSM is a 

more simple case) the torque due to the interac-

tion of the main waves produced by stator and 

rotor (fundamental machine torque) can also be 

expressed by means of space phasors as 
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mut p rot p strT t p L i e i  (1.2) 

That is, the torque is proportional (in a formal 

language) to the vectorial product of the two 

fundamental current space phasors of stator and 

rotor. Thus, the torque can be understood as the 

tendency to alignment of two magnets or of their 

associated current sheet waves. (For deduction of  

(1.2), see, e. g. [14]). Only space waves with the 

same pole pair number, hp, produce torque. 

Therefore, in the general case of a constant air-

gap MM with space harmonics, applying exactly 

the same procedure as in [14] to each pair (same 

hp) of stator and rotor harmonic current space 

phasors, given by eq. (28), and summing up all 

of the harmonic torques, if follows (λ: rotor-

stator angle. Lh,mut = stator–rotor phases maximal 

mutual inductance for the induction wave or or-

der h. More details in [35]): 
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(1.3)coincides with (1.1) for constant airgap MM 
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