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PRODUCTS OF N -CONNECTED GROUPS

P. HAUCK, A. MARTÍNEZ-PASTOR, AND M.D. PÉREZ-RAMOS

Abstract. Two subgroups H and K of a finite group G are said to be

N -connected if the subgroup generated by x and y is a nilpotent group,
for every pair of elements x in H and y in K. This paper is devoted to
the study of pairwise N -connected and permutable products of finitely

many groups, in the framework of formation and Fitting class theory.

1. Introduction

All groups considered in this paper are finite.
The contents of this paper relate to recent investigations on factorized

groups whose factors are linked by some particular connections. The original
starting point is the study of totally permutable supersoluble groups intro-
duced by M. Asaad and A. Shaalan in [2] and extended to the framework of
classes of groups by R. Maier in [16] for the first time. Here two subgroups H
and K of a group G are said to be totally permutable if every subgroup of H
permutes with every subgroup of K. Products of totally permutable groups
have since been the object of thorough study, and much is known about their
structure. We refer to [5], [9] for an account on this development in the frame-
work of formation theory, to [11], [12], [13] in relation with Fitting classes and
to [7] for more general information. In particular, R. Maier proved in [16]
that saturated formations containing U , the class of all supersoluble groups,
are closed under the product of totally permutable groups. In the same paper
he also made the following observation: If H and K are totally permutable
subgroups of a group G, then 〈x, y〉 = 〈x〉〈y〉 = 〈y〉〈x〉 is a supersoluble group,
for every pair of elements x ∈ H and y ∈ K. Then he gave an example show-
ing that his result does not hold if total permutability of the factors H and K
involved is replaced by the weaker connection property ‘〈x, y〉 is supersoluble
for every x ∈ H and y ∈ K’. This led A. Carocca [8] to introduce the con-
cept of L-connected subgroups, defined as follows: Given a non-empty class
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of groups L, two subgroups H and K of a group G are said to be L-connected
if 〈x, y〉 ∈ L, for all x ∈ H and y ∈ K. In [8] Carocca started an investiga-
tion of this property and, in particular, considered products of N -connected
groups, for the class N of all nilpotent groups. More precisely, he proved that
saturated formations (containing N ) are closed under the product of pairwise
permutable and N -connected groups. This study was taken further in [3] in
the soluble universe and for products of two N -connected groups, mainly in
the framework of formation theory. As pointed out in this paper, although
total permutability and N -connection are quite different properties, they are
related in the sense that the first one is to supersolubility as the second one
is to nilpotence. In fact, they have been the object of parallel and similar
developments.

One of the aims of the present paper is to extend this study to the finite
universe and to products of finitely many factors. First, a detailed account
about the structure of N -connected products of groups is provided. Then the
behaviour of residuals and projectors associated to (saturated) formations
in such products is studied. The above-mentioned comments about total
permutability and N -connection are made particularly clear when considering
their relations with the ‘duals’ of formations, namely Fitting classes. In [13]
a study of radicals and injectors associated to Fitting classes containing U in
totally permutable products of groups was carried out. We show now that
analogous results to those obtained can be stated if total permutability is
replaced by N -connection and for Fitting classes containing N .

The notation is standard and mainly taken from [10]. We also refer to this
book for the basic results on classes of groups.

2. Properties

We collect first some elementary properties of a product of pairwise N -
connected and permutable groups.

Proposition 1. Let the group G = G1G2 · · ·Gr be the product of the
pairwise N -connected and permutable subgroups G1, G2, . . . , Gr. Then the
following properties hold:

(1) ([8, Theorem 2], [3, Lemma 2]) [GNi , Gj ] = 1, for all i, j ∈ {1, 2, . . . , r},
i 6= j. In particular, GNi is a normal subgroup of G, for all i ∈
{1, 2, . . . , r}.

(2) Gi is a subnormal subgroup of G, for all i ∈ {1, 2, . . . , r}.
(3) If (Gi)p ∈ Sylp(Gi), for each i ∈ {1, 2, . . . , r} and a prime p, then

(Gi)p(Gj)p = (Gj)p(Gi)p ∈ Sylp(GiGj), for all i, j ∈ {1, 2, . . . , r},
and (G1)p · · · (Gr)p ∈ Sylp(G).

Moreover, if P ∈ Sylp(G), then P ∩ Gi ∈ Sylp(Gi), for all i ∈
{1, 2, . . . , r}, and P = (P ∩G1) · · · (P ∩Gr).
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(4) If Xi is a p-subgroup of Gi, for each i ∈ {1, 2, . . . , r} and a prime p,
then 〈X1, . . . , Xr〉 is a p-subgroup of G.

(5) If Xi is a nilpotent subgroup of Gi, for each i ∈ {1, 2, . . . , r}, then
〈X1, . . . , Xr〉 is nilpotent.

(6) GN = GN1 · · ·GNr .
(7) If I, J ⊆ {1, 2, . . . , r} and I ∩ J = ∅, then the subgroups

∏
i∈I Gi and∏

j∈J Gj are N -connected.
(8) If I, J ⊆ {1, 2, . . . , r} and I ∩ J = ∅, then [

∏
i∈I Gi,

∏
j∈J Gj ] ≤

Z∞(G). In particular, (
∏
i∈I Gi) ∩ (

∏
j∈J Gj) ≤ Z∞(G).

(9) If Xi is a π-subgroup of Gi, for a set of primes π and for each i ∈
{1, 2, . . . , r}, then 〈X1, . . . , Xr〉 is a π-group.

Proof. (2) We argue by induction on |G|. If Gi is nilpotent, for all i ∈
{1, . . . , r}, then G ∈ N , by [8, Theorem 2], and the result follows.

Assume that there exists j ∈ {1, 2, . . . , r} such that Gj is not nilpotent.
Then 1 6= GNj EG. By the inductive hypothesis on the factor group G/GNj ,
we obtain that Gj and GiG

N
j , for all i 6= j, are subnormal subgroups of G.

But Gi is normal in GiG
N
j , for all i 6= j, and so we are done.

(3) Let i, j ∈ {1, 2, . . . , r}, i 6= j. We note that GNi (Gi)p E Gi. Then
Sylp(Gi) = {(Gi) tp : t ∈ GNi }, for every i.

Since GiGj = GjGi, we know by [1, Lemma 1.3.2] that there exist X ∈
Sylp(Gi) and Y ∈ Sylp(Gj) such that XY = Y X ∈ Sylp(GiGj). Then there
exist t ∈ GNi and s ∈ GNj such that (Gi)p(Gj)p = XtY s = XtsY ts =
(XY )ts = (Y X)ts = Y sXt = (Gj)p(Gi)p.

The remainder is now clear from (2).
(4) This follows easily from (3).
(5) This follows from (4), taking into account that [ (Gi)p, (Gj)q] = 1, for

every (Gi)p ∈ Sylp(Gi), (Gj)q ∈ Sylq(Gj), for all prime numbers p 6= q and
i, j ∈ {1, 2, . . . , r}, i 6= j.

(6) This is clear because G/(GN1 · · ·GNr ) ∈ n0(N ) = N from (2).
(7) Let I = {i1, . . . , im} and J = {j1, . . . , jn}. Let a ∈

∏
i∈I Gi and b ∈∏

j∈J Gj . Then a = ai1 · · · aim and b = bj1 · · · bjn , for some ail ∈ Gil and bjt ∈
Gjt , l = 1, . . . ,m , t = 1, . . . , n. So 〈a, b〉 ≤ 〈〈ai1〉, . . . , 〈aim〉, 〈bj1〉, . . . , 〈bjn〉〉,
which is nilpotent, by (5).

(8) By (7) we can assume that the group G = AB is the product of
two N -connected subgroups A,B and it is enough to prove that [A,B] ≤
Z∞(G). Clearly, [AN , 〈BG〉 ] = [BN , 〈AG〉 ] = 1, from (1), and consequently
[GN , [A,B] ] = [ANBN , [A,B] ] ≤ [ANBN , 〈AG〉 ∩ 〈BG〉 ] = 1, by (6).

On the other hand, we consider A = ANX and B = BNY , where X ∈
ProjN (A) and Y ∈ ProjN (B). Then G = ANBN 〈X,Y 〉 and 〈X,Y 〉 ∈ N by
(5). Moreover, [A,B] = [ANX,BNY ] = [X,Y ] ≤ 〈X,Y 〉.
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Therefore, [A,B] ≤ C〈X,Y 〉(GN ) ≤ Z∞(G) by [10, Theorem IV, 6.14].
Finally, (A ∩ B)Z∞(G)/Z∞(G) is contained in Z(G/Z∞(G)) = 1 and we

are done.
(9) By step (7) and arguing by induction on the number of factors, we can

assume that the group G is the product of two N -connected subgroups A and
B, and we will prove that 〈X,Y 〉 is a π-group, whenever X is a π-subgroup
of A and Y is a π-subgroup of B.

We argue by induction on |G|. If [A,B] = 1, then 〈X,Y 〉 = XY and the
result is clear. Otherwise, there exists a minimal normal subgroup N of G
such that 1 6= N ≤ [A,B] ≤ Z∞(G). In particular, N ≤ Z(G) and N is
a q-group, for some prime q. By the inductive hypothesis, 〈X,Y 〉N/N ∼=
〈X,Y 〉/(〈X,Y 〉 ∩ N) is a π-group. If q ∈ π, then 〈X,Y 〉 is a π-group and
we are done. Otherwise, 〈X,Y 〉 ∩ N ≤ [X,Y ], because 〈X,Y 〉 = XY [X,Y ]
and so [X,Y ] contains the Sylow q-subgroups of 〈X,Y 〉. But this implies that
〈X,Y 〉∩N ≤ 〈X,Y 〉′∩Z(〈X,Y 〉) ≤ φ(〈X,Y 〉). Consequently, 〈X,Y 〉∩N = 1
and 〈X,Y 〉 is a π-group. �

Remark. The concept of N -connectedness is related to the concept of
strong cosubnormality, introduced by Knapp [14] and defined as follows:

Definition ([14, Definition 3.1]). Let G be a group and let A,B be sub-
groups of G. A is called strongly cosubnormal with B if for any subgroups
A1 ≤ A and B1 ≤ B we have that A1 and B1 are cosubnormal, that is, both
are subnormal subgroups of their join 〈A1, B1〉.

Strongly cosubnormal subgroups are characterized by the following result:

Theorem ([14, Theorem 3.3]). Let A, B be subgroups of a group G. Then
the following are equivalent:

(a) A is strongly cosubnormal with B.
(b) [A,B] ≤ Z∞(〈A,B〉).

It is clear that two strongly cosubnormal subgroups are N -connected. It
is not difficult to check that the arguments used in the proof of Proposition 1
(8) provide an alternative proof that (a) implies (b) in the preceding theorem.
Note also that for permutable subgroups A and B strong cosubnormality and
N -connectedness are actually equivalent by Proposition 1 (8) and Knapp’s
theorem. This equivalence does not hold in general as the next example
shows.

Example. Let N = 〈n1, n2, n3, n4〉 be an elementary abelian group of
order 34. Define automorphisms x1, . . . , x4, y1, y2 and z of N in the following
way: xi inverts ni and fixes nj for j 6= i, i = 1, . . . , 4, y1 fixes n3, n4 and
interchanges n1 and n2, y2 fixes n1, n2 and interchanges n3 and n4, and
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finally z interchanges n1 and n3 as well as n2 and n4. These automorphisms
generate a subgroup U of Aut(N), U ∼= (Z2 ∼reg Z2) ∼reg Z2. Let H = [N ]U
be the semidirect product of N with U with respect to the given action of U
on N . Consider A = 〈zn1n4〉, B = 〈y1x3, x1x2〉 and G = 〈A,B〉 ≤ H. It is
not difficult to check that

〈zn1n4 , y1x3〉 = 〈z, y1x3〉n1n2n
−1
4 ,

〈zn1n4 , x1x2〉 = 〈z, x1x2〉n
−1
3 n4 ,

〈zn1n4 , y1x1x2x3〉 = 〈z, y1x1x2x3〉n1n
−1
2

and [zn1n4 , y1x3, x1x2] = n−1
2 , which does not centralize 〈A,B〉. This means

that A and B are nilpotent N -connected subgroups of G, but G is not nilpo-
tent, so A and B are not strongly cosubnormal.

Remark. Wielandt ([17, p. 166]; see also [15, p. 238]) asked whether two
subgroups A and B of a finite group are cosubnormal if there exists a positive
integer n such that [b, na] ∈ A and [a, nb] ∈ B for all a ∈ A and b ∈ B. The
groups A and B of the preceding example provide a negative answer (with
n = 3).

3. Projectors

In [8] and [3] the behaviour of products of N -connected permutable sub-
groups with regard to formation theory was studied. In the sequel we will
take this study further.

In particular, the following result was proved in [8, Theorem 2]:

Theorem 1. Let the group G = G1G2 · · ·Gr be the product of the pair-
wise N -connected and permutable subgroups G1, G2, . . . , Gr and let F be a
saturated formation. If Gi ∈ F , for all i ∈ {1, 2, . . . , r}, then G ∈ F .

In fact, in the original statement of this result, the saturated formation F
is assumed to contain N , but the same proof shows that this hypothesis is
really not necessary.

The following lemma was proved in [3] for the soluble universe.

Lemma 1. Let F be a formation containing N . Let the group G = AB be
the product of the N -connected subgroups A and B. If A,B ∈ F , then G ∈ F .

Proof. Assume that 〈H,K〉 is a group generated by the N -connected sub-
groups H and K. Note that, as in the case of a product of N -connected
groups, HN centralizes K and, in particular, HN is a normal subgroup of
〈H,K〉. Assume now that H ∈ F and K ∈ N . Let X be an N -projector of H
and assume that 〈X,K〉 is nilpotent. Arguing as in the proof of [6, Theorem,
Step 2], and replacing the supersoluble residual by the nilpotent residual,
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and the supersoluble projector by the nilpotent projector, we deduce that
〈H,K〉 = 〈KX〉H ∈ F .

Now let G = AB be as in the statement of the lemma. By the previous
paragraph and Proposition 1 (5), if either A or B is nilpotent, then G = AB ∈
F . Otherwise, if X and Y are nilpotent projectors of A and B, respectively,
then 〈X,Y 〉, 〈A, Y 〉 and 〈B, Y 〉 belong to F . Now the result follows by arguing
as in the proof of [6, Theorem, Step 1], with replacements analogous to those
above involving N and U and the join of the nilpotent projectors instead of
the product. �

Now, from Proposition 1 (7), the following result is easily obtained:

Lemma 2. Let F be a formation containing N . Let the group G =
G1G2 · · ·Gr be the product of the pairwise N -connected and permutable sub-
groups G1, G2, . . . , Gr. If Gi ∈ F , for all i ∈ {1, 2, . . . , r}, then G ∈ F .

We notice that, for arbitrary formations, the hypothesis N ⊆ F in the
above lemma is necessary. To see this, we can consider, for instance, the
formation F of all elementary abelian p-groups, for a prime p. Let G =
Zp ∼reg Zp be the regular wreath product of Zp with Zp. Clearly, G is the
product of the N -connected subgroups Z\p, the base group of G, and a suitable
subgroup Zp, and both subgroups belong to F , but G does not.

The behaviour of the F-projectors when F is a saturated formation contain-
ing N , as well as the behaviour of the F-residuals in products of N -connected
groups, were studied in [3] in the soluble universe. In the following we pro-
vide some extensions of these results, in particular, to the universe of all finite
groups.

We recall that if F is a Schunck class (in particular, if F is a saturated
formation), each finite group G has F-projectors [10, Theorem III, 3.10].

Lemma 3. Let the group G = AB be the product of the N -connected
subgroups A and B. If X ∈ ProjN (A) and Y ∈ ProjN (B), then XY = Y X ∈
ProjN (G).

Proof. We argue by induction on |G|. Let C = Z∞(G). We notice that
G/C = (AC/C)(BC/C) is a central product, because [A,B] ≤ Z∞(G). Then
(XY C/C) = (XC/C)(Y C/C) ∈ ProjN (G/C) by [10, Theorem III, 6.3]. If
C = 1, we are done, and in any case we have XY C ∈ ProjN (G), because
XY C ∈ N .

Since GN = ANBN by Proposition 1 (6), we have that

CG(GN ) = CAB(ANBN ) = CAB(AN ) ∩ CAB(BN )

=
(
CA(AN )B

)
∩
(
CB(BN )A

)
= CA(AN )CB(BN )(A ∩B)

= CA(AN )CB(BN ).
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Hence

C ≤ CG(GN ) = CA(AN )CB(BN ) ≤ Z∞(A)Z(AN )Z∞(B)Z(BN )

by [10, Theorem IV, 6.13] and so XY C ≤ XZ(AN )Y Z(BN ), since Z∞(A) ≤
X and Z∞(B) ≤ Y . Let A1 = XZ(AN ) ≤ A, B1 = Y Z(BN ) ≤ B, and
R = A1B1. We note that A1 and B1 are N -connected and that R is a soluble
group because Z(AN )Z(BN ) is abelian and 〈X,Y 〉 is nilpotent.

Assume that R < G. Since X ∈ ProjN (A1) and Y ∈ ProjN (B1), it
follows by the inductive hypothesis that XY = Y X ∈ ProjN (R). But XY ≤
XY C ≤ R and XY C ∈ N , which implies that XY = XY C ∈ ProjN (G), and
the result follows.

Consider now the case G = R. If Z(AN ) = Z(BN ) = 1, then G =
XY ∈ N and we are done. So, we can suppose without loss of generality that
Z(AN ) 6= 1. Since Z(AN ) EG, we can consider a minimal normal subgroup
N of G contained in Z(AN ). By the inductive hypothesis we deduce that
(XN/N)(Y N/N) = (Y N/N)(XN/N) ∈ ProjN (G/N).

Assume that XYN < G. Since XN ≤ A, we have that X ∈ ProjN (AN).
Then XY = Y X ∈ ProjN ((XN)Y ), by the inductive hypothesis. Conse-
quently, since XYN/N ∈ ProjN (G/N), we have that XY ∈ ProjN (G).

Therefore we can assume that G = XYN . Then G/N ∈ N and so GN ≤
N . We can suppose thatGN = N and soGN is abelian. SinceXY ⊆ 〈X,Y 〉 ∈
N and G = N〈X,Y 〉, there exists T ∈ ProjN (G) such that 〈X,Y 〉 ≤ T , by
[10, Lemma III, 3.14]. Moreover, G = XYN = TN and T ∩ N = 1 by [10,
Theorem IV, 5.18]. Then XY ⊆ T and |XY | = |T |, which implies finally that
XY = T ∈ ProjN (G). �

Proposition 2. Let the group G = G1G2 · · ·Gr be the product of pairwise
N -connected and permutable subgroups G1, G2, . . . , Gr. Then

Z∞(G) = Z∞(G1)Z∞(G2) · · ·Z∞(Gr).

Proof. By Proposition 1 (7) and induction it suffices to prove the assertion
for the case of two factors. So let the group G = AB be the product of the
N -connected subgroups A and B. Let X ∈ ProjN (A) and Y ∈ ProjN (B).
By Lemma 3, XY ∈ ProjN (G). Then, by [10, Theorem IV, 6.14]

Z∞(G) = CXY (GN ) = CXY (ANBN ) = CXY (AN ) ∩ CXY (BN )

=
(
CX(AN )Y

)
∩
(
CY (BN )X

)
= CX(AN )CY (BN )(X ∩ Y )

= CX(AN )CY (BN ) = Z∞(A)Z∞(B). �

Theorem 2. Let F be a saturated formation and let the group G =
G1G2 · · ·Gr be the product of pairwise N -connected and permutable subgroups
G1, G2, . . . , Gr. If Xi ∈ ProjF (Gi), for every i ∈ {1, 2, . . . , r}, then X1 · · ·Xr

is a pairwise permutable product of the subgroups X1, . . . , Xr and X1 · · ·Xr ∈
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ProjF (G). Moreover, if G has a unique conjugacy class of F-projectors, then
every F-projector of G has this form.

Proof. By Proposition 1 (7) and induction it suffices to prove the first as-
sertion for the case of two factors. So let the group G = AB be the product of
the N -connected subgroups A and B. Let X ∈ ProjF (A) and Y ∈ ProjF (B).
Let C = Z∞(G) = Z∞(A)Z∞(B), by Proposition 2. Since [A,B] ≤ C,
G/C = (AC/C)(BC/C) is a central product and then (XC/C)(Y C/C) ∈
ProjF (G/C) by [10, Theorem III, 6.3]. Note that this theorem is valid in our
context since D0F = F . But

XY C = XY Z∞(A)Z∞(B) = XY Oπ′(Z∞(G)),

for π = char(F), because Oπ(Z∞(A)) ≤ X and Oπ(Z∞(B)) ≤ Y . Moreover,

〈X,Y 〉 = XY [X,Y ] ≤ XY (Z∞(G) ∩ 〈X,Y 〉) ≤ XY Oπ(Z∞(G))

= XY Oπ(Z∞(A))Oπ(Z∞(B)) = XY,

by Proposition 1 (9), because X,Y are π-groups. Then XY = Y X ∈ F
by Theorem 1, and XY is an F-maximal subgroup of XY C. Consequently,
XY ∈ ProjF (XY C) by [10, III, Lemma 3.14], which implies that XY ∈
ProjF (G).

Now let G = G1G2 · · ·Gr be the product of pairwise N -connected and
permutable subgroups G1, G2, . . . , Gr. Assume that G has a unique conju-
gacy class of F-projectors and let T ∈ ProjF (G). Then T = (X1X2 · · ·Xr)g

for some g = g1g2 · · · gr, with gi ∈ Gi and Xi ∈ ProjF (Gi), for every
i ∈ {1, 2, . . . , r}. Since [Gi,

∏r
j=1
j 6=i

Gj ] ≤ Z∞(G) = C, by Proposition 1 (8),

we have that G/C =
∏r
i=1(GiC/C) is a central product. Therefore TC/C =(∏r

i=1X
gi
i

)
C/C, whence T ×Oπ′(C) = (

∏r
i=1X

gi
i )×Oπ′(C). Consequently,

T =
∏r
i=1X

gi
i , where Xgi

i ∈ ProjF (Gi), for every i ∈ {1, 2, . . . , r}. �

Proposition 3. Let F be a formation and let the group G = G1G2 · · ·Gr
be the product of the pairwise N -connected and permutable subgroups G1, G2,
. . . , Gr. If either F is saturated or N ⊆ F ⊆ S, then GF = G F1 · · ·G Fr . In
particular, if G ∈ F , then Gi ∈ F , for all i ∈ {1, 2, . . . , r}.

Proof. We prove the result for r = 2. The general case follows by a straight-
forward inductive argument on the number of factors and Proposition 1 (7).
So we consider G = G1G2 as above.

Assume first that N ⊆ F ⊆ S. If G ∈ F , then, in particular, G is soluble,
and so G1 and G2 belong to F by [3, Theorem 4]. The remainder is easily
proved by an argument similar to that in [3, Theorem 2].

Assume now that F is saturated. We claim that if G ∈ F , then G1 and G2

belong to F . Let Xi ∈ ProjF (Gi), for every i = 1, 2. Then X1X2 = X2X1 ∈
ProjF (G), by Theorem 2, and so G = X1X2 because G ∈ F . Consequently,



PRODUCTS OF N -CONNECTED GROUPS 1041

Gi = Xi(X3−i ∩ Gi), for i = 1, 2. Now, we have that, for every i = 1, 2,
X3−i ∩Gi ≤ Oπ(G3−i ∩Gi) ∈ Nπ ⊆ F , for π = char(F), Xi ∈ F , and Xi and
X3−i ∩ Gi are N -connected. Then it follows from Theorem 1 that Gi ∈ F ,
for every i = 1, 2.

This implies that GiGF/GF ∈ F , for every i = 1, 2, because G/GF is
an F-group and the product of the N -connected subgroups G1G

F/GF and
G2G

F/GF . In particular, GFi ≤ GF , for i = 1, 2, and so 〈G F1 , G F2 〉 ≤ GF .
If Xi ∈ ProjF (Gi), for i = 1, 2, then X1X2 ∈ ProjF (G) and, in particular,

X1X2 is a π-group, for π = char(F). Since Nπ ⊆ F , we have that

G Fi ≤ G
Nπ
i =

⋂
p∈π

Op(Gi)

=
⋂
p∈π
〈(Gi)q : q a prime, q 6= p, (Gi)q ∈ Sylq(Gi)〉

≤
⋂
p∈π

CG(Op
′
(G3−i)) ≤ CG(X3−i),

for every i = 1, 2. Consequently, 〈G F1 , G F2 〉 is normal in 〈G F1 , G F2 〉X1X2 = G.
Then it follows that GF ≤ 〈G F1 , G F2 〉 and so GF = 〈G F1 , G F2 〉.

We argue now by induction on |G| to prove that GF = G F1 G F2 .
If G F1 and G F2 are π′-groups, then GF = 〈G F1 , G F2 〉 is a π′-group by

Proposition 1 (9). Then we have that G = GFX1X2 = G F1 G F2 X1X2, which
implies that |GF | = |G F1 G F2 | and so GF = G F1 G F2 .

We may assume that there exists a prime p ∈ π such that p divides the
order of G F1 . In particular, Op

′
(G F1 ) 6= 1. We notice that Op

′
(G F1 ) is normal

in G because it is normal in G1 and it is centralized by G2 = G F2 X2 by the
above argument. Let N = Op

′
(G F1 ). By the inductive hypothesis we obtain

that GF/N = (G/N)F = (G1N/N) F (G2N/N) F = (G F1 /N)(G F2 N/N) =
(G F1 G F2 )/N , that is, GF = G F1 G F2 and we are done. �

Remark. In general, for an arbitrary formation F of finite groups the F-
residual does not respect products of N -connected groups, not even for direct
products (see [10, X, 1, Exercise 12]).

Even if F is a formation of soluble groups, the condition N ⊆ F in Propo-
sition 3 is necessary as the example after Lemma 2 shows.

Corollary 1. Let F be a saturated formation and let the group G =
G1G2 · · ·Gr be the product of pairwise N -connected and permutable subgroups
G1, G2, . . . , Gr. Let Xi ∈ ProjF (Gi), for every i ∈ {1, 2, . . . , r}, and let
P = X1 · · ·Xr ∈ ProjF (G). Then Xi = P ∩Gi, for every i ∈ {1, 2, . . . , r}.

If we assume moreover that N ⊆ F , then Gi ∩ (
∏r
j=1
j 6=i

Gj) ≤ P . In

particular, for r = 2, such an F-projector P of G is factorized, that is,
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P = (P ∩ G1)(P ∩ G2) and G1 ∩ G2 ≤ P . If, in addition, G has a unique
conjugacy class of F-projectors, all F-projectors of G are factorized.

Proof. Assume first that r = 2. Then P = X1X2 ⊆ (P ∩ G1)(P ∩ G2).
That is, P = (P ∩G1)(P ∩G2) ∈ F and P is a product of the N -connected
groups P ∩ G1 and P ∩ G2. By Proposition 3, we have that P ∩ G1 and
P ∩ G2 belong to F . Then X1 = P ∩ G1 and X2 = P ∩ G2 because of the
F-maximality of X1 and X2.

Now the general case follows easily taking into account Proposition 1 (7).
The remainder of the proof is clear from Proposition 1 (8), since Z∞(G) ≤

P if N ⊆ F , and Theorem 2. �

4. Fitting classes

Some information about the behaviour of radicals and injectors for a Fit-
ting class containing U , the class of all supersoluble groups, in products of
totally permutable groups was obtained in [13]. We recall that two subgroups
H and K of a group G are totally permutable if every subgroup of H per-
mutes with every subgroup of K. Propositions 4, 5 and 6 below show that
statements analogous to those of Theorem 1, Proposition 6 and Theorem 2
of [13] remain true if we consider products of N -connected groups instead of
products of totally permutable groups and if the Fitting class F under consid-
eration contains N . The properties obtained in Proposition 1 and Proposition
2 allow us to deduce these results arguing as in the proofs given in [13], with
the obvious simplifications both in the statements of the results and in the
arguments. It is worth mentioning the following facts:

(1) Let the group G = G1G2 · · ·Gr be the product of the pairwise N -
connected and permutable subgroupsG1, G2, . . . , Gr. Since, by Propo-
sition 1 (2), Gi is subnormal in G, for all i ∈ {1, 2, . . . , r}, it is obvious
that G ∈ F if and only if Gi ∈ F , for all i ∈ {1, 2, . . . , r}, for any
Fitting class F .

(2) Let F be a Fitting class. By Proposition 1 (7) the following are
equivalent:
(i) If a group G = AB is the product of the N -connected subgroups

A and B, then GF = AFBF .
(ii) If a group G = G1G2 · · ·Gr is the product of the pairwise N -

connected and permutable subgroupsG1, G2, . . . , Gr, thenGF =
(G1)F · · · (Gr)F .

An analogous statement is true if we consider soluble groups and,
in each case, an F-injector I of G instead of the F-radical GF and
I∩X instead of XF , where X stands for any of the totally permutable
subgroups of G under consideration.

(3) If the group G = AB is the product of the N -connected subgroups A
and B, then from Proposition 2 and Proposition 1 (8) it follows that
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G/Z∞(G) = (AZ∞(G)/Z∞(G))(BZ∞(G)/Z∞(G)) is a direct prod-
uct. As a consequence, if X and Y are subgroups of A and B, respec-
tively, such that Z∞(A) ≤ X and Z∞(B) ≤ Y , then 〈X,Y 〉 = XY .

Moreover, if F is a Fitting class containing N , then Z∞(G) ≤ GF .
Using these facts, the arguments used in the proofs of Theorem 1, Propo-

sition 6 and Theorem 2 of [13] yield the following results.

Proposition 4. Let F be a Fischer class containing N . If the group
G = G1G2 · · ·Gr is the product of the pairwise N -connected and permutable
subgroups G1, G2, . . . , Gr, then GF = (G1)F · · · (Gr)F .

Proposition 5. Let F be a Fitting class containing N . Let the soluble
group G = G1G2 · · ·Gr be the product of the pairwise N -connected and per-
mutable subgroups G1, G2, . . . , Gr. Assume that there exists an F-injector I
of G such that I = (I ∩G1) · · · (I ∩Gr). Then the following hold:

(i) GF = (G1)F · · · (Gr)F and (Gi)F = Gi ∩GF , for all i ∈ {1, 2, . . . , r}.
(ii) If J ∈ InjF (G), then J = (J ∩G1) · · · (J ∩Gr) and J ∩Gi ∈ InjF (Gi),

for every i = 1, . . . , r.
(iii) If Ii ∈ InjF (Gi), for every i = 1, . . . , r, then J = I1 · · · Ir ∈ InjF (G)

and Ii = J ∩Gi, for every i = 1, . . . , r.

Proposition 6. For a Fitting class F containing N , the following state-
ments are equivalent:

(i) If a soluble group G = AB is the product of the N -connected subgroups
A and B, then GF = AFBF .

(ii) If a soluble group G = AB is the product of the N -connected subgroups
A and B,and I ∈ InjF (G), then I = (I ∩A)(I ∩B).

Moreover, in this case and for such a soluble group G = AB, if I ∈ InjF (A)
and J ∈ InjF (B), then IJ ∈ InjF (G). Furthermore, the F-radical and the
F-injectors of G are factorized.

Obviously, if F-radicals associated to a Fitting class F are factorized in N -
connected products of groups, as stated in Proposition 4, then F is a Lockett
class, since direct products are N -connected. It is not known if the converse
is also true in general. The following result shows that this holds apart from
Fischer classes also for Lockett classes with other additional closure properties.
Its proof is straightforward, taking into account that if G is a product of N -
connected groups, then G/Z∞(G) is a direct product.

Proposition 7. Let F be a Lockett class satisfying the following proper-
ties:
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(1) Whenever G ∈ F and N ≤ Z(G), then G/N ∈ F .
(2) Whenever G/N ∈ F and N ≤ Z(G), then G ∈ F .

(For instance, F = N♦X = (G : G/F (G) ∈ X ) for a Lockett class X .) If
the group G = G1G2 · · ·Gr is the product of the pairwise N -connected and
permutable subgroups G1, G2, . . . , Gr, then GF = (G1)F · · · (Gr)F .
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