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Abstract: Sleep is a growing area of research interest in medicine and neuroscience.
Actually, one major concern is to find a correlation between several physiologic variables
and sleep stages. There is a scientific agreement on the characteristics of the five stages
of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still
the most widely used approach. This work proposes a new automatic sleep classification
method based on unsupervised feature classification algorithms recently developed, and on
EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain
a feature vector. Then, these features are optimized in terms of relevance using the Q-α
algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain
a final segmentation of the sleep stages. The proposed method reached up to an average of
80% correctly classified stages for each patient separately while keeping the computational
cost low.
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1. Introduction

Humans devote approximately one third of their life to sleep [1]. The biological rationale of this need
remains unknown. However, there have been some attempts to elucidate the role of sleeping in human
beings. It has been related to plasticity [2], and also to the reorganization of memory [3,4].

Unfortunately, sleep disorders and/or deprivation affect a great number of subjects worldwide. This
entails a huge impact on public and individual health, including economic costs, reduced quality of life,
co-morbidities, and even early mortality [5]. These are the main reasons why sleep is a subject of intense
systematic research interest, including sleep stages detection and characterization.

Polysomnography (PSG) is the most commonly used technique in medicine for the diagnosis and
understanding of the sleep phenomena [6]. PSG is a multimodal recording of different bio-signals
during the whole sleep period at night. The Electroencephalogram (EEG) can be used to indirectly
study the dynamics of the neural activity [7], which is time-varying during night-time [8] (pp. 193–208,
Chapter 10).

Sleep is a highly nonstationary and nonlinear process whose statistics are time-varying but remain
constant inside a short period of time known as sleep stage. Sleep analysis considers 5 different stages:
wake (W), drowsiness (N1), light sleep (N2), deep sleep (N3), and rapid eye movement sleep (REM) [9].

The scoring and classification of sleep stages is manually performed by experts who analyze the PSG
records in small time windows or epochs (commonly 30 s duration). This task is difficult, subjective and
is often an exasperating time consuming process, thus leading to a low reliability and differences among
scorers [10,11]. In order to effectively address these issues, automatic classification schemes have been
progressively introduced as an objective way to assist the experts during this process [12,13].

The most commonly used techniques for automatic sleep stage classification are still supervised
however. Namely, they require user intervention or manual data annotation. Among these techniques,
neural networks (NN) [14] yield very good results, with up to 80% classification accuracy [14,15]. Other
approaches have achieved 95% accuracy in more specific applications, such as differentiating alert states
from drowsy and sleep states. All these supervised approaches strongly depend on the predefined scorer’s
labels [16], and therefore they lack of flexibility, adaptability, and reusability.

In this work, a novel unsupervised classification scheme for sleep stage determination based on
EEG records is proposed. This technique computes entropy metrics from the signals to build a
feature vector. This vector is optimized in terms of relevance using the recently developed Q-α based
approach [17] in order to reduce computational cost. The resulting weighted feature vector is processed
by a J-means clustering algorithm to obtain the final stage classification. The segmentation accuracy rate
achieved in the experiments was up to 80% for each patient separately, comparable to that obtained with
supervised methods.
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2. Method

A representative experimental set was processed using the method proposed. A vector of EEG
entropy features was computed for different epochs of 30 s of duration. For comparative purposes, a
number of entropy metrics were utilized. Spare features were removed using the Q-α algorithm, and
the final vectors were clustered according to a J-means scheme. Results were assessed both in terms
of classification accuracy and computational burden. Each step of the method proposed is described in
Sections 2.2–2.4 (see flow chart in Figure 1), including the experimental dataset employed for validation
(Section 2.1).

Figure 1. Flow chart of the method proposed. The EEG records are first processed to extract
features that are then selected to optimize the information density. Finally, a clustering
algorithm creates the partition of records into sleep stages.

2.1. Experimental Dataset

The EEG signals used in the experiments were drawn from the SC Sleep-EDF Database [Expanded] [18].
This database is freely available through Physionet [19].

Specifically, only the Fpz-Cz and Pz-Oz EEG channels were analyzed [20]. These signals correspond
to Caucasian normal males and females aged 25 to 34 years old, taking no medication. In total, 39
records sampled at 100 Hz and filtered from 0.5 to 100 Hz were employed in the experiments. Further
details of the database can be found at [18,21].

Sleep stages were scored manually using Rechtschaffen and Kales (R & K) criteria [22]. Stage labels
were provided together with the database by Physionet [19], using additionally recorded signals, and
according to standard scoring rules [22]. Epochs marked as movement and unscored were rejected for
further analysis (61 epochs). Information about the inter-rater reliability for sleep scoring can be found
in [10,11]. For the specific purposes of the present study, sleep stages 3 and 4 were merged into a single
deep sleep stage (N3).

2.2. Feature Extraction

Given an input discrete time series x = {x1, · · · , xN |xi ∈ R, i ∈ Z > 0} of length N , a vector
V ∈ Rq is formed by q points, being q the number of features ψ = {ψ1, · · · , ψq|ψj ∈ R, j ∈ Z > 0}
used (number of 30 s epochs).
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The aim of the feature extraction stage was to compare the performance of different entropy estimators
when applied to the experimental set, and find out if some metrics are more sensitive to EEG patterns.
The changes in sleep stages cause changes in the EEG, and these changes are also expected to be
reflected in the entropy results, as observed in many other works, see [8] (pp. 193–208, Chapter 10)
and [18,20,23]. The specific features computed in this study using the standard algorithms were: Fractal
Dimension (FD), Detrended Fluctuation Analysis (DFA), Shannon entropy (H), Approximate Entropy
(ApEn), Sample Entropy (SampEn), and Multiscale Entropy (MSE). A total of q = 34 complexity
measures were included in the analysis.

2.2.1. Fractal Dimension

The estimation of the FD was applied in order to account for signal complexity and scale invariance.
FD statistically quantifies how well a fractal matches the input data at different scales.

The method to compute FD was based on the box counting algorithm [24,25]. FD is estimated as the
slope of the straight line fitted to the curve formed by the sequence (ln(L), (S(L)/L)), where L is the
size of the box, and S(L) is the number of boxes. If the sampling interval of the input time series is ∆t

and the box size is L = n∆t, the number of boxes S(L) can be obtained from:

S (n∆t) =

mod (N/n)∑
i=1

|max (∆xi)−min (∆xi)| (1)

where ∆xi = xn(i−1)+1, xn(i−1)+2, · · · , xn(i−1)+n+1. The FD of x is estimated by counting the number of
boxes needed to cover the curve [24]. A fractal dimension index was calculated for both EEG channels
referred as FD.Fpz-Cz and FD.Pz-Oz (features ψ1, ψ2).

2.2.2. Detrended Fluctuation Analysis

It is not a true entropy estimator, but DFA is a measure that allows the detection of long-range
power-law correlations in a time series [26]. The first step to obtain DFA is to compute the integrated
time series as y = {yk =

∑k
i=1 xi}. Then, y is divided into N/L boxes of length L (the parameter L

defines the time-scale). In each box, a line is fitted and its ordinate, denoted by yLk , is taken as the trend
of the time series in that box. The integrated time series is detrended by subtracting yLk and the root mean
square fluctuation is computed according to:

f(L) =

√√√√ 1

N

N∑
i=k

(yi − yLi )
2 (2)

This process is repeated for different scales L. Finally, the scaling exponent that represents the DFA
value is obtained from the slope of a linear fitting between (log10(L), log10(f(L))). Three features
were calculated from the DFA for each channel, the scaling exponents of the whole epoch (DFA-α), and
scaling exponents (DFA-a1 and DFA-a2) before and after the relative estimated error correction (features
ψ3 − ψ8). A detailed description of this algorithm can be found in [27].
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2.2.3. Shannon Entropy

This is a measure of the data spread. It was calculated for each channel according to:

H (x) = −
∑
i

p (xi) log (p (xi)) (3)

where p(xi) is the probability p(x = xi). In this work, we considered p(xi) = x2i . This entropy
measure has already been used in sleep EEG signal processing, yielding high values in wakefulness and
REM sleep stages, and low values in N3 stages [28]. Shannon entropy was calculated for each channel
independently (features ψ9 and ψ10).

2.2.4. Approximate Entropy

ApEn is related to the predictability or regularity of a time series. It was devised as an approximation
of the Kolmogorov entropy of an underlying process [29].

The ApEn algorithm is basically a search for the repetitive patterns of lengthm commencing at sample
i in which the distance induced by the maximum norm differs up to an error threshold r [30]. The ApEn
statistic, given an input value for parameters m and r, is defined as:

ApEn(m, r,N) = Φm(r)− Φm+1(r) (4)

where

Φm(r) = E
{

ln

(
cmi (r)

N −m+ 1

)}
(5)

being cmi (r) the number of vectors xi ∈ Rm such that d(xi,xj) < r,xi = {xi, xi+1, · · · , xi+m−1},
1 ≤ i, j ≤ N −m+ 1. ApEn was computed for both Fpz-Cz and Pz-Oz channels (features ψ11 and ψ12).

2.2.5. Sample Entropy

SampEn was an evolution of ApEn devised to solve the bias of ApEn due to counting self-matches.
SampEn exhibits better statistical properties [30] than ApEn. It is computed in a similar fashion, but the
final step becomes:

SampEn(m, r,N) = − ln

(
Am(r)

Bm(r)

)
(6)

where Bm(r) is defined as the mean of the number of vectors xi ∈ Rm, such that d(xi,xj) < r with
i 6= j, divided by N − m + 1. The value of Am(r) is defined similarly for xi ∈ Rm+1. SampEn was
calculated for two template lengths (m = 0 and m = 1) for each channel (features ψ13 − ψ16).

2.2.6. Multiscale Entropy

MSE is an estimator of the complexity of a time series in which entropy measures are applied at
different time-scales. The calculation is carried out in two steps [31]. First, a coarse grained time series
is constructed for the different scales τ considered (1 < τ ≤ 9 in this work), from the original signal x:
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y
(τ)
j =

1

τ

jτ∑
i=(j−1)τ+1

xi (7)

Second, an auxiliary single-scale entropy measure (we chose SampEn) is computed over the resulting
coarse-grained series. MSE was computed for scales n = 1, 2, · · · , 9 for the two channels (features
ψ17 − ψ34).

2.3. Feature Relevance Analysis

The previous feature extraction stage yields a set of p vectors V ∈ Rq, where the q components
correspond to the features computed as described in Section 2.2. Next, in order to reduce the
computational cost of the classification stage and improve the classification speed, a dimensionality
reduction method, termed feature relevance analysis, takes place. This method provides a reduced subset
q′ < q of the input features in p, but maximizing the preserved relevant discriminatory information.
This optimization is carried out following a matrix projection scheme, similar to that used in Principal
Component Analysis (PCA) methods. The output of this stage is a feature significance quantitative score
that, using a threshold, enables or disables the exclusion of that feature. The value selected for the
threshold was an accumulated variance criterion of 98% [32].

Specifically, this work applies a relevance analysis method based on the Q-α algorithm recently
developed by us, and applied successfully to Electrocardiographic records [17]. This relevance analysis
was applied to each patient separately. Features were retained in the final set if they were found relevant
for at least 20 subjects.

The Q-α algorithm is an optimization procedure. Given a matrix W that contains the p feature vectors
V of length q, W ∈ Rp×q the objective is to find a new matrix Ŵ with q′ < q features, Ŵ ∈ Rp×q′ . To
obtain Ŵ, it is necessary to solve the optimization problem given by the general expression:

max
Q,A

tr
(
QTAAQ

)
(8)

where A is a symmetric, positive, affinity matrix given by A = Wdiag (α)WT , tr is the matrix trace,
α a weight vector α ∈ Rq with ‖α‖ = 1, and Q an orthonormal p × p matrix. The difference between

W and Ŵ can be determined by the Euclidean norm with regard to A , i.e.,
∥∥∥W − Ŵ

∥∥∥2
A

, where

the squared is used to simplify. It can be shown that
∥∥∥W − Ŵ

∥∥∥2
A

= tr(A)
q∑

i=(q−q′)+1

λi, where λi

denotes the i-th eigenvector from WTW. Thereby, the purpose of minimizing this difference is that it
could be represented in terms of the maximization of its complement, such as tr

(
WTAW

)
. Because

A = Wdiag (α)WT , with an initial value of α = 1q, Equation (8) could be introduced as:

tr
(
QTWWTWWTQ

)
=

tr
(
QTAAQ

)
=

r∑
i=1

λ2i
(9)

The Equations (8) and (9) are analogous to the quadratic optimization problem described by [33] and
is solved by the algorithm Q-α. This stage is also unsupervised since the 98% variance criterion fixes
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when the Q-α finishes the search without user intervention or training datasets. This method sorts the
features according to their relevance measured in terms of contribution to whole variance, and when the
threshold is reached, no more features are included in the final feature set. A full description of the
method could be found in [17].

2.4. Sleep Stages Unsupervised Classifier

The automatic classification is based on a J-means approach [34]. The objective of this stage is to
obtain an optimal partition of the feature vectors in Ŵ in such a way that the resulting disjoint clusters
correspond to different sleep stages. Additional clusters can be added in order to collect outliers, namely,
artifacts that can not be classified as any sleep stage because their dissimilarity to any centroid is too large
(noise, movement artifacts, interferences, sensor contact issues).

The algorithm attains a local optimum by heuristic reassignment of neighborhoods using a jumping
paradigm [34], as follows:

(1) Initialization: A standard k-means clustering is used to set an initial partition of the feature vectors
and the centroids. This reduces the temporal cost of the partition calculation.

(2) Search: Given a tolerance threshold (4 standard deviations of the intra-cluster distance), find the
unoccupied points (feature vectors that do not belong to any cluster).

(3) Update: Add a new cluster centroid at some unoccupied location and find the index of the best
centroid to delete. Update the partition according to the new centroids.

(4) Finalize: If a local minimum is found in the previous iteration, stop. For each resulting cluster,
a sleep stage can be assigned as the most frequent class (using a k-Neighbors method), which in
clinical practice could be done by a whole cluster manual scoring. Otherwise return to step 2.

3. Results and Discussion

The experiments were carried out using a standard Windows 8 personal computer and MATLAB R©

environment tools. The most relevant features obtained were (using feature names and EEG channels):
FD.Fpz-Cz, FD.Pz-Oz, H.Fpz-Cz, DFA-α.Fpz-Cz, DFA-α.Pz-Oz, DFA-a1.Pz-Oz, ApEn.Fpz-Cz,
ApEn.Pz-Oz, MSE1.Pz-Oz, SampEn2.Pz-Oz.

Table 1. Recall and precision for sleep stages identification using the set of relevant features.
Results expressed as mean(variance).

Stage
J-means NN

Recall Precision Recall Precision

N1 0.15 (0.28) 0.14 (0.26) 0.35 (0.23) 0.42 (0.24)
N2 0.91 (0.07) 0.84 (0.07) 0.84 (0.09) 0.89 (0.10)
N3 0.59 (0.43) 0.39 (0.29) 0.43 (0.22) 0.46 (0.24)

REM 0.38 (0.44) 0.34 (0.40) 0.75 (0.26) 0.52 (0.31)
W 0.84 (0.16) 0.87 (0.10) 0.93 (0.08) 0.73 (0.18)
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Classification methods were tested for each subject independently (1048 ± 223 epochs per subject).
Mean results are presented in Tables 1 and 2, for each patient in Figure 2, and globally in Figure 3,
including results from standard PCA. Table 1 shows the performance in terms of Recall (Tp/(Tp + Fn))
and Precision (Tp/(Tp + Fp)) related to each sleep stage. The parameters Tp, Fn, and Fp are the normal
values used to quantify the quality of classification results: true positives, false negatives, and false
positives, respectively. For comparative purposes, this table also includes the results obtained using a
supervised classification approach based on Neural Networks (NN).

Table 2. Performance achieved depending on the specific entropy metric employed and other
common features for Sleep stage detection using the method proposed. Time is normalized
(1.00 corresponds to the slowest case).

Feature Accuracy Kappa Time

FD 0.78 (0.06) 0.61 (0.13) 0.62 (0.04)
DFA 0.75 (0.06) 0.56 (0.14) 0.62 (0.05)
H 0.65 (0.09) 0.37 (0.12) 0.81 (0.10)
ApEn 0.74 (0.05) 0.54 (0.12) 0.56 (0.02)
SampEn 0.73 (0.06) 0.51 (0.16) 0.63 (0.04)
MSE 0.69 (0.06) 0.42 (0.13) 0.88 (0.08)
Absolute Power 0.74 (0.06) 0.53 (0.11) 1.00 (0.29)
Asymmetry 0.70 (0.07) 0.46 (0.08) 0.63 (0.03)
Central Power 0.70 (0.07) 0.47 (0.11) 0.69 (0.04)
Coherence 0.70 (0.07) 0.46 (0.12) 0.69 (0.04)
Phase Coherence 0.67 (0.08) 0.38 (0.12) 0.75 (0.04)
Power Ratios 0.80 (0.05) 0.67 (0.08) 0.75 (0.05)
Relative Power 0.77 (0.06) 0.61 (0.11) 0.69 (0.03)

Figure 2. Results obtained for each patient separately.
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The method proposed exhibited comparable results to that of NN, despite being NN a supervised
method (it includes labeled training patterns). The NN method outperforms the method proposed when
detecting N1 and REM stages, but the opposite is found when detecting N2, N3 and REM sleep. These
results support the studies that propose the use of unsupervised clustering techniques in order to address
the sleep stage classification problem [35]. The performance archived by this sleep stage detection
algorithm is similar (or superior) to previous results, for both supervised [23,36] and unsupervised
applications [35]. Clustering methods do not depend on a previous training process, and therefore tend
to be less influenced by signal differences among subjects or specific conditions [37]. The final partition
groups are then scored. As an example, Figure 4 depicts a comparison between manual and automatic
scoring results.

Figure 3. Performance of the NN and the proposed clustering-based classification method
in terms of the set of features used (standard PCA or Q-α) for (a) accuracy and (b) Kappa
coefficient. The results of the method proposed are highlighted (Average accuracy: 0.81).

Figure 4. Example of result comparison using manual and automatic scoring. The
hypnograms represent the class obtained using the method proposed in contrast to manual
labels for a set of epochs from a single subject.

Recall and precision for sleep stages, with both classification methods, indicated better recognition of
wakefulness and N2 stage (Table 1). These results are analogous to previous studies for automatic sleep
stage scoring [38]. Also, results about the poor classification of N1 stage have been observed in previous
inter-scorers agreement studies, specially when using the R&K rules [10,11], maybe due to the similarity
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of the EEG activity described between REM and drowsy states [8], stages to which electromyographic
(EMG) and electrooculographic (EOG) activity are fundamental for manual classification. In further
studies, the inclusion of such signals could improve the performance. In fact, some works highlight
the importance of these signals in automatic classification [39]. Some approaches even used a single
electrode site to discriminate among sleep stages with Kappa values up to 0.74 using a supervised neural
network approach [40], although no information about the signal features was included or specifications
about the classifier.

Inter-scorer agreement for sleep stages has been reported to be around 0.68 Kappa and 76.8
accuracy. Similar results have been achieved using the proposed method (Figure 3). Also, our results
are comparable to those found by novel automatic classification techniques that group epochs into
wakefulness, REM and NREM sleep stages [41]. In this later study the use of six polygraphic channels
(including EEG, EMG and EOG) led to a Kappa value around 0.51± 0.14, compared to manual scoring.

In another study [42], using linear discriminant analysis and entropy measures alone, they reached
sensitivity and Kappa levels up to 76% and 0.65% respectively, which were higher than the ones obtained
with the same measure in this work. Nevertheless, although we use the same SampEn and embedding
dimension for Multiscale Entropy, the r value was set to a fixed value of 0.2 instead of including the
standard deviation, which could account for the result difference.

In Table 2, the results are shown as the accuracy level ((Tp + Tn)/(Tp + Fn + Tn + Fp)), Kappa
statistic [43], and normalized computing time. These results are listed as a function of the specific
entropy metric used for feature extraction: FD, DFA, H, ApEn, SampEn, and MSE. Although the results
are quite similar both in terms of accuracy and computational cost, ApEn seems to reach an optimal
tradeoff between these two issues, and FD yields the most accurate results. On the contrary, H and MSE
offer a poorer performance, and should be discarded in favor of other entropy metrics.

Table 2 also shows the results achieved using the same method proposed in this paper, but computing
classical features employed in most of the similar sleep stages studies instead of entropy metrics: the
absolute power, power asymmetry, central power, coherence, phase coherence, power ratios, and relative
power. Examples of application of these features and more details about them can be found in [36,44,45].
The classification results are similar to those obtained with the entropy metrics. Only the features based
on the Power Ratios seem to outperform the previous results, but at a significantly higher computational
cost. In fact, the main strength of the entropy features seems to be a general lower computational cost,
with equal or even better accuracy.

In addition, the relevance analysis does not significantly appear to harm the classification performance
of the method, as shown in Figure 3. The three cases tested: using all the raw features extracted,
reducing the number of features using a standard feature selection method based on PCA, or the proposed
relevance analysis method, yield a similar performance for Kappa and Accuracy. Furthermore, the NN
method seems to be more sensitive to the feature selection stage, and in most of these experiment variants,
the new method still outperforms NN.

This method has a very important novelty, which is using a non-supervised approach. Usually,
this kind of methods perform worse than supervised ones since they do not have as much carefully
selected input information and user feedback as these last have. The method proposed, not only does
not underperform in comparison to supervised methods, but even exhibits a slightly better performance.
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It improves the classification accuracy, but also exhibits faster calculations when the features selected
were based on entropy estimators. Maybe the improvement is not very big in quantitative terms, but
from the implementation point of view, this method can be more easily introduced in daily clinical
practice since required user feedback is minimized. This method reaches a trade-off between being
accurate enough as supervised methods, but requiring far less user intervention, the main advantage of
unsupervised methods.

The sleeping brain has been described as a complex system with continuous, rather than discrete,
transitions [46]. To study similarity of stages among subjects, the proposed method was applied to the
whole set of subjects merged into a single matrix of 40,826 epochs by 56 relevant features.

With this method, a low similarity between subjects was found, specially in stages N1 and REM
sleep. The low recall and precision values for these stages could be due to intra-subjects variability in
the EEG signals, as described in [47,48]. Furthermore, these results are consistent with previous reports
that suggest a significant EEG similarity between these stages [8], reflected in low discrimination values
for both automatic classification [42,49] or inter-scorer agreement [11].

The global clustering time using PCA (0.30±0.16 s) or the proposed Q-α optimization (0.20±0.11 s)
are lower than that needed for the complete set of features (0.69±0.44 s). Therefore, the method proposed
reduces considerably the computation time needed for an unsupervised sleep stage classification, while
preserving the relevant features, and therefore, the accuracy [17]. Hence, the Q-α relevance analysis can
be recommended as a competitive clustering technique for sleep stage classification, along with an FD,
ApEn, or Power Ratio feature extraction method.

Figure 5. Results using an additional experimental database from subjects aged 18 to 79 and
taking temazepam. The performance decreases but it also applies to other methods such as
that based on NN.
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The performance was further validated using a different experimental database. It is also available
at Physionet from a study of temazepam effects on sleep [19,50]. It contains 22 sleep files of male and
female subjects (aged 18 to 79) sampled at 100 Hz. Half of the records were from subjects that took
temazepam before going to sleep.

These additional results show a reduction of accuracy and Kappa values (Figure 5). This could be due
to the greater subject variability in this dataset. For instance, age range and temazepam have different
effects on sleep EEG dynamics [51]. However, this reduction is higher with the NN approach compared
to the proposed one. The resulting confusion matrix is presented in Table 3.

Table 3. Confusion matrix for the automatic procedure computing the whole set of 40,826
epochs for all the patients together to test inter-subject variability.

Prediction outcome
W N1 N2 N3 REM

A
ct

ua
lv

al
ue

W 3333 2046 1074 21 329
N1 177 1082 624 39 882
N2 884 915 8155 1198 6647
N3 42 69 1539 4255 400
REM 484 1017 1738 25 3851

4. Conclusions

This paper describes a new method to automatically detect sleep stages on EEG records, which is of
great medical and social interest. This method proposes to use entropy metrics as the features of the
EEG epochs to be analyzed, and also introduces a feature selection stage to reduce the algorithm cost.

The core of the method is the so-called Q-α relevance analysis. This method has been successfully
used in similar applications to ECG signals [17], and it is exported in this work to the new field of
EEG relevant feature selection. The reduction of the number of features is confirmed not to damage the
performance of the method, keeping the segmentation capability almost intact, as should be expected.

The study explores the capabilities of a plurality of entropy metrics for comparative purposes. The
results confirm the validity of the approach, from which it can be concluded that almost any metric could
perform satisfactorily, specially ApEn and FD.

The experiments were repeated using more classical methods in this field such as NN. Furthermore,
the feature extraction stage was also replaced by a standard stage based on other signal parameters. In
all cases, the performance of the new method was at least as accurate as the references assessed, or
even more on most cases, but at a low computational cost, and being an unsupervised method (no user
intervention needed).

Most elements of the proposed method are already implemented in a MATLAB R© library called
EEGLAB, an open source tool for assisted sleep staging. This software application was previously
presented in [52].

Current efforts in most entropy-based EEG studies are still mainly focused on the identification of
certain patterns (such as seizure detection [53]). Other works employ entropy as a metric for diagnostic
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purposes, to discriminate among subjects with neural alterations (citeGarn2014 Bachiller2014. Our
results, in addition to proposing a suitable method for automatic sleep stages detection, also suggest a
differential effect of sleep stages on EEG entropy features. These results have been also supported by
studies of anesthesia depth [54]. EEG features are also very important to understand sleep dynamics.
A comparison of the entropy features among sleep stages, along with an analysis of the significance or
meaning of this kind of features, is still object of research work.

In summary, we proposed in this paper a method to classify sleep stages based on computing entropy
metrics of EEG records, optimizing the resulting set using a relevance analysis, and including a clustering
algorithm to obtain the final partition. Such a method exhibits better flexibility and adaptability in
comparison to other supervised methods. It also reduces the computational cost, which is very important,
taking into account the impending electronic health record explosion.
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