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Abstract: Entropy estimation metrics have become a widely used method to identify

subtle changes or hidden features in biomedical records. These methods have been more

effective than conventional linear techniques in a number of signal classification applications,

specially the healthy–pathological segmentation dichotomy. Nevertheless, a thorough

characterization of these measures, namely, how to match metric and signal features, is still

lacking. This paper studies a specific characterization problem: the influence of missing

samples in biomedical records. The assessment is conducted using four of the most popular

entropy metrics: Approximate Entropy, Sample Entropy, Fuzzy Entropy, and Detrended

Fluctuation Analysis. The rationale of this study is that missing samples are a signal

disturbance that can arise in many cases: signal compression, non-uniform sampling, or

data transmission stages. It is of great interest to determine if these real situations can

impair the capability of segmenting signal classes using such metrics. The experiments

employed several biosignals: electroencephalograms, gait records, and RR time series.

Samples of these signals were systematically removed, and the entropy computed for each

case. The results showed that these metrics are robust against missing samples: With a data

loss percentage of 50% or even higher, the methods were still able to distinguish among

signal classes.
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1. Introduction

A number of types of entropy estimation measures and their possible applications have been reported

in the scientific literature in recent years. These nonlinear metrics have been employed in multiple scientific

fields for the analysis of time series, yielding better results than other conventional methods [1–3] .

There is a myriad of such applications in the specific biomedical signal framework because biological

systems are great entropy generators [4]. In this context, entropy estimates have been successfully used

in cardiology [5–9], neurology [10–15], neonatology [16–20], and pneumology [21,22], among others.

An ongoing characterization effort has been lately undertaken to gain a better understanding of signal

entropy measures and their properties [4]. Works such as [23,24] have studied the influence of parameters

like signal length or thresholds. The studies reported in [25–27] analyzed their essential features in terms

of bandwidth and signal complexity. Garcia-Gonzalez [28] and Molina-Pico [29], assessed robustness

against signal outliers.

Nevertheless, some issues related to entropy measures characterization have not been addressed yet.

We describe in this paper a characterization scheme aimed at assessing the influence of missing data

on entropy estimates. Missing data are not unusual in biomedical signals. Time series are vulnerable

to uncontrolled factors such as noise [30] or outliers, but other technical processes may cause missing

points such as wireless or network data transmission [31,32], signal compression [33,34], non-uniform

sampling, trace segmentation [35], or resampling.

This study is focused on four of the most used regularity metrics in the context of biomedical signal

processing: Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy Entropy (FuzzyEn), and

Detrended Fluctuation Analysis (DFA). Other metrics have been evaluated in previous studies [36].

Our work assesses the robustness of the entropy measures enumerated above against missing data in

terms of signal discrimination potential. In particular, we aimed to assess the possible deterioration

of the pathology detection capability of these measures. This characterization study is illustrated

by considering detection of signal classes from a diverse biosignal population: electroencephalogram

signals (EEG), gait dynamics records, and RR interval time series.

The remainder of this article is structured as follows. In Section 2, we introduce the four entropy

metrics to be characterized in terms of robustness against data loss. We describe in Section 3 the

experiments and the dataset employed. In Section 4, the statistical results are presented, as a function of

the data loss ratio. In Section 5, we interpret our findings. Finally, the conclusion section summarizes

the main results of the study.

2. Method

The experimental dataset was processed using ApEn, SampEn, FuzzyEn and DFA. Each metric

was computed for each record, and for different data loss levels, within a signal classification scheme.
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The signal segmentation probability was computed. The objective of the method was to assess whether

these measures were stable as a function of the data loss ratio.

Specifically, the measures of ApEn, SampEn, FuzzyEn and DFA were computed for every record in

the experimental set for data loss percentages of 0% (baseline), 10%, 30%, 50%, 70%, and 90%. There

were 100 realizations for each signal. Each sample could only be deleted once. The spare samples were

removed using two approaches:

• Uniform sample removal. This scheme accounts for data loss that might occur during wireless or

network data transmission, or acquisition saturation. The number of samples to remove (X) was

set as a function of a percentage proportional to the total data series length. The removal started

at a sample chosen randomly. Therefore, an epoch of X consecutive samples commencing at a

random time was removed in this case. The step X was defined in accordance with the specified

sample loss percentage.

• Random sample removal. This scheme accounts for data loss that might occur during non-uniform

sampling, trace segmentation, or lossy compression. The X samples to be removed were selected

according to a random distribution.

The resulting entropy values were used in a statistical comparative analysis to find out if the

downsampled signals could still be segmented as they were for the baseline case. Data Gaussianity

was tested before applying the parametric t-test. The p-value threshold was set to 0.05.

Two populations were compared with this test, corresponding to the control and the epileptic classes in

EEG signals, the Pre-Treatment (PT) and the On-Treatment (OT) records in RR series, and the pathologic

versus the control groups in gait signals. A hypothesis testing with this p-value indicates that the two

classes are found different by the entropy metrics.

Given an input time series u(n) of length N , with n = 0, 1, . . . , N − 1, the algorithms to calculate

ApEn, SampEn, FuzzyEn, and DFA metrics can be described as follows.

2.1. ApEn

ApEn is a family of statistics first proposed in [9]. Despite its well-known weaknesses, such as

counting self-matches and being very dependent on signal length [8,37,38], ApEn is still able to unveil

significant clinical information from biomedical records [25,39]. It is probably the entropy estimator

most used in the context of biosignal classification.

The mathematical definition of ApEn is as follows: Let x(i) be an epoch of m consecutive values of

u(n) taken at the ith point [9], subject to N ≥ 10m: x(i) = [u(i), u(i+ 1), ..., u(i+m− 1)]. The input

parameter m is usually recommended to be 2 or 3 in order to obtain a good statistical validity [9,38].

We used m = 2. Let d(i, j) be a dissimilarity measure between two runs, namely:

d(i, j) = d(x(i), x(j)) = max
k

{|x(i+ k − 1)− x(j + k − 1)|} k = 1, . . . , m

The input parameter r represents a filter threshold in terms of signal variance σu. In practice, r is

chosen to be between 0.1σu and 0.25σu. Smaller values would yield numerically unstable conditional

probabilities and larger values could result in too much detail information lost due to filter coarseness [9].

We used r = 0.15σu.
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Defining a dissimilarity thresholding function y(i) as:

y(j) =

{

1 d(i, j) ≤ r

0 d(i, j) > r
(1)

and a counting function Cm
i (r) as:

Cm
i (r) =

1

N −m+ 1

N−m+1
∑

j=1

y(j) (2)

ApEn(m, r,N) can then be estimated as the likelihood ratio:

ApEn(m, r,N) = Φm(r)− Φm+1(r) (3)

where Φm(r) is computed as follows:

Φm(r) =
1

N −m+ 1

N−m+1
∑

i=1

ln {Cm
i (r)} (4)

2.2. SampEn

SampEn was first proposed by Richman and Moorman in 2002 [8]. It was devised as a solution to

reduce the ApEn bias due to counting self-matches and therefore it is supposed to yield a more robust

statistic. SampEn is a measure that estimates the regularity of a time series by computing the negative

logarithm of the conditional probability that two sequences, which are similar for m points, remain

similar for m+ 1 points [8,40].

SampEn is largely independent of the record length and exhibits relative consistency under

circumstances where ApEn does not. SampEn agrees much better than ApEn statistics with theory

for random numbers over a broad range of operating conditions [6–8].

The algorithm to compute SampEn is simpler than that of ApEn. The first steps are the same, but

Equation (2) becomes:

Cm
i (r) =

1

N −m− 1

N−m
∑

j=1

j 6=i

y(j)

being m and r the same parameters introduced for ApEn. The value for y(j) is computed as defined in

Equation (1), and Equation (4) turns into:

Φm(r) =
1

N −m

N−m
∑

i=1

Cm
i (r) (5)

Finally, SampEn(m, r,N) is obtained as:

SampEn(m, r,N) = ln(Φm(r))− ln(Φm+1(r)) (6)
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2.3. FuzzyEn

FuzzyEn was first proposed in [41] in order to characterize surface electromyograms time series

regularity and overcome the poor statistical stability in ApEn and SampEn [41,42]. FuzzyEn imported

the idea of “fuzzy sets” proposed by Zadeh [43]. FuzzyEn introduces a membership function, µZ(x) that

evaluates the degree in which a pattern belongs to a class Z. The closer the value to 1, the higher the

membership grade of pattern x belonging to that class.

The membership function proposed by Chen [41] is an exponential function. Any such function must

be continuous and convex, so that the similarity does not change abruptly [41,42].

The FuzzyEn algorithm is similar to that of SampEn [8]. The main differences include the

membership function used to compute the matches to be found and the way the runs are defined. For the

input sequence u(n) introduced in Section 2.1, the runs of m points now become:

x(i) = [u(i)u(i+ 1) . . . u(i+m− 1)]− u0(i) (7)

where u0(i) represents the baseline of x(i) and is estimated as follows:

u0(i) =
1

m

m−1
∑

j=0

u(i+ j) (8)

The distance between two runs d(i, j) is computed as described for ApEn and SampEn. Next, given q

and r, the similarity Dm
ij between x(i) and x(j) is calculated according to:

Dm
ij (q, r) = µ(dmij , q, r) (9)

where µ(dmij , q, r) is the membership function given by:

µ(dmij , p, r) = exp(−(dmij )
n/r) (10)

The similarity degree Dm
ij computed for FuzzyEn is like the value y(n) computed for ApEn and

SampEn. The following step is to obtain Cm
i (r) as defined for SampEn where y(n) is replaced by Dm

ij ,

and calculate the conditional probabilities in the same way as for SampEn according to Equation (5).

φm(q, r) =
1

N −m

N−m
∑

i=1

Cm
i (r, n) (11)

Cm
i (q, r) =

1

N −m− 1

N−m
∑

j=1,j 6=i

Dm
ij (12)

Finally, FuzzyEn is computed as defined in Equation (6) from the previous values obtained. The

parameters m and r are defined as in ApEn or SampEn [41], but q has to be defined. The parameter q

accounts for the width of the exponential function and it is usually set to a small integer value greater than

1 in order to avoid the information loss due to wider exponential functions. Typically q = 2 [41,42,44].
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2.4. Detrended Fluctuation Analysis (DFA)

DFA quantifies the regularity of a time series by detecting long range correlations embedded in a

nonstationary time series [5]. As it only considers the fluctuations from local trends, DFA is capable

of avoiding the spurious detection of apparent long range correlations that are nonstationary artifacts.

However, it is also sensitive to series length N . When time series are short, DFA can exhibit a fluctuating

behavior [5,13,45].

DFA is computed as a modified root mean square of a random walk. The first step of the algorithm is

to generate the random walk [13] by integrating the input sequence:

U(k) =

k
∑

i=0

u(i)− ū,with k = 0, 1, . . . , N − 1 (13)

where ū = 1

N

N−1
∑

j=0

u(j).

The input sequence u(n) is divided into non-overlapping runs of length L. A linear fit is used

to approximate this sequence in each window Wj, j = 1, . . . ,M . The local trend at window Wj is

denoted UWj
(k). This local trend is subtracted from the integrated series U(k)−UWj

(k). A mean square

fluctuation of the integrated and detrended time series can then be computed as described in [5]:

F (L) =

√

√

√

√

1

N

N−1
∑

k=0

(U(k)− UWi
(k))2 (14)

These calculations are repeated for a set of window lengths. Let L = {L1, L2...Li...Ln} be a

windowing length sequence. The minimum Li value corresponds to the order of the DFA plus two

samples. The maximum value depends on the approach used. In [5], the maximum value is the length

of the signal (N). Others such as [45] take it as N /4 and [10] uses the value of N /10. Typically, FL

increases with the window length.

If a time series is self-similar, a relationship indicates the presence of a power law scaling FL ∝ Lα.

The value of α accounts for the correlation properties of the data. The DFA coefficient α can be obtained

as the slope of the line fit on the log–log plot of FL as a function of L [5]. Large values of α denote

smooth time series. An example is depicted in Figure 1.

The coefficient α usually ranges from 0 to 2 [10]. Three major intervals may be defined:

• For 0 ≤ α ≤ 0.5: The time series contains power law correlations but of different type.

• For 0.5 < α ≤ 1.0: The time series contains persistent long range power law correlations.

• For α > 1.0: There are correlations in the time series but nothing is known about their nature.

The windowing sequence L in this work has been chosen to include 50 equispaced values in the

logarithmic scale between Li minimum and N/4. Those logarithmic lengths that yield the same integer

values have been removed.
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Figure 1. Graphical example of the process involved in the computation of α. The horizontal

axis corresponds to the log scale of length values. The vertical axis corresponds to log values

calculated for fluctuation F for different lengths. The dotted line represents the least squares

fitted line.
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3. Experimental Dataset

3.1. EEG Dataset

The EEG records were drawn from the public database of the Clinic of Epileptology, Bonn University,

Department of Neurophysics [14]. The records of this database were obtained from continuous

multichannel EEGs, cut out to remove artifacts. Five EEG classes, denoted from A to E, were available.

Class A corresponds to surface EEG recordings acquired on five healthy volunteers relaxed in an awake

state with eyes open. The electrodes were placed using standard locations. In class B, the same

conditions apply except that in this case eyes were closed. Sets C, D and E correspond to EEGs of

presurgical diagnosis of five epileptic patients after resection of one of the hippocampal formations.

Records in D were drawn from the epileptogenic zone, while those in set C were recorded from the

hippocampal formation. Both classes D and C contain only activity during seizure free intervals, whereas

records in set E contain only seizure activity.

The signal sampling rate was 173.61 Hz, using a 12 bit analog-to-digital converter. The duration of

each record was 23.6 s (4096 samples). Each class contains in total 100 single channel EEG segments.

Figure 2 shows the EEG and the power spectral density (PSD) for one representative signal for each data

group of the database.

Two new signal groups were considered for the experiments: control (original types A and B), and

pathologic (original types C, D, and E). The objective was to assess the capability of these measures to

segment between signals that conceptually correspond to healthy and pathologic subjects, as would be

the case in a clinical analysis.
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Figure 2. EEG and PSD for one signal of each group. (a) Data A, control subject with open

eyes; (b) Data B, control subject with closed eyes; (c) Data C, epileptical subject, between

seizures (interictal); (d) Data D, epileptical subject, between seizures (interictal); (e) Data E,

epileptical subjet, during seizure (ictal).
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3.2. RR Interval Time Series Dataset

The RR records were drawn from the public Cardiac Arrhythmia Suppression Trial (CAST)

database [46]. This database consists of 1725 post-acute myocardial infarction patients that were

randomized to have three times daily either a placebo, encainide, flecainide, or moricizine [47–49].

Only encainide signals were used in this work.

For completeness, only 734 recordings of length 1000 samples constitute the experimental RR record

database [50]. There are three groups of records in this set for the three medications given to the subjects.

The name of each record includes a prefix to account for the type of medication: e, f, and m, respectively,

and a suffix to indicate if medication was given, b (on-therapy OT records), or not, a (pre-therapy PT

records). The groups to be segmented in the experiments were precisely the PT and the OT records

within signal types e, f, and m.

3.3. Gait Dynamics Records Dataset

The gait dynamics records were drawn from the neuro-degenerative disease database [46]. It consists

of 64 signals from which 16 are healthy control subjects, 15 suffer from Parkinson’s Disease (PD),

20 from Huntington’s Disease (HD), and 13 from Amyotrophic Lateral Sclerosis (ALS).

Initially, data were obtained using force transducers, where the values were proportional to the

pressure under the foot. From these series, footfall times could be estimated [51,52].

Each record is named after the subject class (hunt, park, als, or control), followed by a number.

Each record has four associated files: header, left foot signal, right foot signal, and derived time series.

This last time series includes a number of subrecords, but for simplicity in this work we only analyzed

right stance intervals measured as a stride percentage. The objective of the segmentation was to assess if

the entropy metrics were able to distinguish pathologic signals hunt, park and als, from control.

4. Results

All the experimental records in the dataset underwent different ratios and types of sample loss

as described in Section 2, and their entropy metrics were computed in each case. These metrics were

then used in a statistical test to assess the differences among groups. In case of significance, the

metric was considered able to segment signals even on undersampled data. Otherwise, the metric was

considered not robust enough for the application. The specific quantitative results are described next for

each experiment.

4.1. Random Sample Removal Results

The results obtained for random sample removal using EEG, RR interval time series, and gait

dynamics (percentage of Right Stance Interval in Double Support Interval for ALS, PD, HD) records,

are shown in Tables 1–5 respectively.
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Table 1. Results obtained for EEG signals rearranged in control and epileptic classes, using

a random sample removal approach. Values in bold characters correspond to cases where the

associated entropy measure was not able to distinguish between the two groups.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.001 p = 0.001 p = 0.074 p = 0.004 p = 0.006

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

Table 2. Results obtained for PT and OT records treated with encainide, using a random

sample removal approach. Values in bold characters correspond to cases where the associated

entropy measure was not able to distinguish between the two groups.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.003 p = 0.002

SampEn p = 0.293 p = 0.439 p = 0.568 p = 0.574 p = 0.929 p = 0.586

DFA p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.002 p = 0.001 p = 0.002

Table 3. Results obtained for pathologic ALS gait records versus control records, using

a random sample removal approach. Values in bold characters correspond to cases where

the associated entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.003 p = 0.001

DFA p = 0.001 p = 0.004 NA NA NA NA

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.002

Table 4. Results obtained for pathologic PD gait records versus control records, using a

random sample removal approach. Values in bold characters correspond to cases where

the associated entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.160

DFA p = 0.001 p = 0.001 NA NA NA NA

FuzzyEn p = 0.088 p = 0.098 p = 0.005 p = 0.004 p = 0.001 p = 0.001
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Table 5. Results obtained for pathologic HD gait records versus control records, using a

random sample removal approach. Values in bold characters correspond to cases where

the associated entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 45% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.842 NA NA NA NA

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

4.2. Uniform Sample Removal Results

The results obtained for uniform sample removal using EEG, RR interval time series, and gait

dynamics records (ALS, PD, HD), are shown in Tables 6–10 respectively.

Table 6. Results obtained for EEG signals rearranged in control and epileptic classes, using

a uniform sample removal approach. Values in bold characters correspond to cases where

the corresponding entropy measure was not able to distinguish between the two groups.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.002 p = 0.001 p = 0.002

Table 7. Results obtained for PT and OT records treated with encainide, using a uniform

sample removal approach. Values in bold characters correspond to cases where the

corresponding entropy measure was not able to distinguish between the two groups.

Metric 0% 10% 30% 50% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.051 p = 0.251 p = 0.365 p = 0.270 p = 0.237 p = 0.055

DFA p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.002 p = 0.001 p = 0.002
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Table 8. Results obtained for pathologic gait records from ALS patients versus control

records (percentage of right stance interval measures in double support interval), using a

uniform sample removal approach. Values in bold characters correspond to cases where the

corresponding entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 45% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.002 NA NA NA NA

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.101 p = 0.389

Table 9. Results obtained for pathologic gait records from PD patients versus control

records (percentage of right stance interval measures in double support interval), using a

uniform sample removal approach. Values in bold characters correspond to cases where the

corresponding entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 45% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.003 p = 0.041

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.001 NA NA NA NA

FuzzyEn p = 0.088 p = 0.151 p = 0.799 p = 0.935 p = 0.001 p = 0.001

Table 10. Results obtained for pathological gait records from HD patients versus control

records (percentage of right stance interval measures in double support interval), using a

uniform sample removal approach. Values in bold characters correspond to cases where the

corresponding entropy measure was not able to distinguish between the two groups. NA

corresponds to cases where not enough samples were available for the calculations.

Metric 0% 10% 30% 45% 70% 90%

ApEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 0.056

SampEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001

DFA p = 0.001 p = 0.064 NA NA NA NA

FuzzyEn p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.209

5. Discussion

When samples are removed from biomedical records, the entropy metrics results change, as could be

expected since the input data are modified. Nevertheless, the absolute value of these measures is not

usually the goal of the calculations, but their relative value in comparison among classes.

In this regard, our study was devised to find out if the relative differences among such classes were

kept even with some degree of data loss. This would enable the utilization of entropy estimators even
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under harsh conditions in normal procedures such as record compression, signal resampling, or data

transmission applications.

From the results, in most cases, the measures were still able to distinguish between the two groups

under test, since the test probability was p < 0.05. However, there are a few cases where the

segmentation power was lost that have to be taken into account.

The negative cases are mainly in the experiments using SampEn and RR time series records, and

FuzzyEn and gait records, whereas for the rest of the experiments, with some exceptions, the results

were positive. This is due to, on one hand, the nature of the input series, and, on the other hand, the

properties of the metric employed.

For narrowband signals, such as the RR records, removing samples could imply removing a fairly

high amount of signal information. On the contrary, broadband signals such as EEGs can keep most of

the information even with the removal of some samples (Gaussian noise-like). In addition, some records

include spikes very different to the underlying data (RR series, gait records). These spikes, as studied

in [29], also may have a great influence on the entropy metrics.

Regarding the performance of SampEn, it is very sensitive to the number of matches. Thus, its

strength of omitting self-matches may turn into a weakness when only a limited number of matches are

found, as happens in RR records. This is why SampEn does not find differences for RR records even

in the baseline case. The use of random or uniform removal adds minor differences in terms of worse

performance for random removal, as could be expected since the uniform approach is more regular.

FuzzyEn is another recent entropy estimator whose performance is expected to be superior to that of

ApEn and SampEn. Nevertheless, it requires a third parameter q, the width of the exponential function,

and therefore it is more difficult to customize for a specific purpose or signal. We had a similar experience

with the improved versions of the same metrics, fApEn and qSampEn [53]. Such metrics perform very

well, but in some cases they fail because the optimal parameter configuration is very difficult to find.

That is what seems to happen with some gait records and FuzzyEn.

6. Conclusions

This work described a comparative study of the influence of signal sample loss in the segmentation

capability of four of the most used entropy metrics in the biomedical framework: ApEn, SampEn,

FuzzyEn and DFA. The performance of such metrics was illustrated using various records, including

EEGs, RR interval time series, and gait dynamics records.

The performance of the methods suffices to be applied under conditions of significant data loss, if the

objective is to segment among signal types. The relative differences are kept although the absolute

entropy values change. This holds particularly true for broadband signals, such as the EEG. This

conclusion enables the use of lossy data compression techniques or resampling methods for records

that will later be processed using entropy estimators.

Of the four entropy measures studied, ApEn seems to be the most robust one, using a standard

parameter configuration. Although SampEn is derived from the improvement of ApEn, there are a

few cases where ApEn still outperforms SampEn, like the case introduced herein. If no differences are

found in the baseline case, it is highly unlikely differences are found for higher ratios, although the
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relationship is not completely linear. DFA needs longer records and therefore it is not suitable for the

epochs employed in this study. It also appears more sensitive to data loss than ApEn and SampEn.

In practical terms, with relatively low data loss ratios, it can be reasonably safe to employ ApEn,

SampEn, or FuzzyEn, for classification tasks using biomedical records such as the ones tested, or with

similar features. However, generalization is not possible because each metric and each biosignal may

exhibit different behavior. Researchers should be advised to perform similar tests as the ones described

in the present study if they suspect missing data is damaging their results, and choose entropy metrics

and parameters carefully. With a proper configuration, it is very likely that most of the entropy estimators

perform well even with severe data loss ratios.

Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation, research project

TEC2009-14222.

Author Contributions

Eva Cirugeda-Roldan studied and selected several entropy metrics, prepared the experiments,

developing the necessary software tools, and obtained the results. She wrote the initial version of the

paper. David Cuesta-Frau led the research activities linked to this paper, and the project devoted to

characterize entropy measures; introduced the topic of missing data influence on entropy metrics, and

some of the experimental records used. He wrote the final version of the paper, the revision, and the

response to reviewers. Pau Miro-Martinez and Sandra Oltra-Crespo conducted the statistical analysis

and its interpretation.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Garret, D.; Peterson, D.A.; Anderson, C.W.; Thaut, M.H. Comparison of linear, nonlinear, and

feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng.

2003, 11, 141–144.

2. Alcaraz, R.; Rieta, J.J. Review: Application of non-linear methods in the study of atrial fibrillation

organization. J. Med. Biol. Eng. 2013, 33, 239–252.

3. Muller, R.M.; Anderson, C.W.; Birch, G.E. Linear and nonlinear methods for brain-computer

interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 165–169

4. Gao, J.; Hu, J.; Tung, W. Entropy measures for biological signal analyses. Nonlinear Dyn. 2012,

68, 431–444.

5. Peng, D.; Havlin, S.; Stanley, H.; Goldberger, A.L. Quantification of scaling exponents and

crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87.



Entropy 2014, 16 5915

6. Alcaraz, R.; Rieta, J.J. A novel application of Sample Entropy to the electrocardiogram of atrial

fibrillation. Nonlinear Anal. Real World Appl. 2010, 11, 1026–1035.

7. Lake, D.; Richman, J.; Griffin, M.; Moorman, J. Sample Entropy analysis of neonatal heart rate

variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797.

8. Richman, J.; Moorman, J.R. Physiological time-series analysis using Approximate Entropy and

Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049.

9. Pincus, S.; Gladstone, I.; Ehrenkranz, R. A regularity statistic for medical data analysis. J. Clin.

Monit. Comput. 1991, 7, 335–345.

10. Abasolo, D.; Hornero, R.; Escudero, J.; Espino, P. A study on the possible usefulness of Detrended

Fluctuation Analysis of the Electroencephalogram background activity in Alzheimer’s disease.

IEEE Trans. Biomed. Eng. 2008, 55, 2171–2179.

11. Hwa, R.; Ferree, T. Scaling properties of fluctuations in the human Electroencephalogram.

Phys. Rev. E 2002, 66, 021901.

12. Lee, J.M.; Kim, D.J.; Kim, I.Y.; Park, K.S.; Kim, S.I. Detrended fluctuation analysis of EEG in

sleep apnea using MIT/BIH polysomnography data. Comput. Biol. Med. 2002, 32, 37–47.

13. Jospin, M.; Caminal, P.; Jensen, E.; Litvan, H.; Vallverdu, M.; Struys, M.; Vereecke, H.; Kaplan, D.

Detrended Fluctuation Analysis of EEG as a measure of depth of anesthesia. IEEE Trans.

Biomed. Eng. 2007, 54, 840–846.

14. Andrzejak, R.; Lehnertz, K.; Rieke, C.; Mormann, F.; David, P.; Elger, C. Indications of

nonlinear deterministic and finite dimensional structures in time series of brain electrical activity:

Dependence on recording region and brain state. Phys. Rev. E. 2001, 64, 061907.

15. Radhakrishnan, N.; Gangadhar, B. Estimating regularity in epileptic seizure time-series data.

IEEE Eng. Med. Biol. Mag. 1998, 17, 89–94.

16. Burnsed, J.; Quigg, M.; Zanelli, S.; Goodkin, H.P. Clinical severity, rather than body temperature,

during the rewarming phase of therapeutic hypothermia affect quantitative EEG in neonates with

hypoxic ischemic encephalopathy. J. Clin. Neurophysiol. 2011, 28, 10–14.

17. Deffeyes, J. E.; Harbourne, R.T.; Dejong, S.L.; Kyvelidou, A.; Stuberg, W.A.; Stergiou, N. Use of

information entropy measures of sitting postural sway to quantify developmental delay in infants.

J. NeuroEng. Rehabil. 2009, 6, doi:10.1186/1743-0003-6-34.

18. Moorman, J.R.; Delos, J.B.; Flower, A.A.; Cao, H.; Kovatchev, B.P.; Richman, J.S.; Lake, D.E.

Cardiovascular oscillations at the bedside: Early diagnosis of neonatal sepsis using heart rate

characteristics monitoring. Physiol. Meas. 2011. 32, 1821–1832.

19. Zhang, D.; Ding, H.; Liu, Y.; Zhou, C.; Ding, H.; Ye, D. Neurodevelopment in newborns: A Sample

Entropy analysis of Electroencephalogram. Physiol. Meas. 2009, 30, 491–504.

20. Deffeyes, J.E.; Kochi, N.; Harbourne, R.T.; Kyvelidou, A.; Stuberg, W.A.; Stergiou, N. Nonlinear

Detrended Fluctuation Analysis of sitting Center-of-Pressure data as an early measure of motor

development pathology in infants. Nonlinear Dyn. Psychol. Life Sci. 2009, 13, 351–368.

21. Veiga, J.; Lopes, A.; Jansen, J.; Melo, P. Airflow pattern complexity and airway obstruction in

asthma. J. Appl. Physiol. 2011, 111, 412–419.



Entropy 2014, 16 5916

22. Charleston-Villalobos, S.; Albuerne-Sanchez, L.; Gonzalez-Camarena, R.; Mejia-Avila, M.;

Carrillo-Rodriguez, G.; Aljama-Corrales, T. Linear and nonlinear analysis of base lung sound in

extrinsic allergic alveolitis patients in comparison to healthy subjects. Methods Inf. Med. 2013, 52,

266–276.

23. Hu, J.; Gao, J.; Principe, J.C. Analysis of biomedical signals by the Lempel–Ziv complexity: The

effect of finite data size. IEEE Trans. Biomed. Eng. 2006, 53, 2606–2609.

24. Maestri, R.; Pinna, G.D.; Porta, A.; Balocchi, R.; Sassi, R.; Signorini, M.G.; Dudziak, M.;

Raczak, G. Assessing nonlinear properties of heart rate variability from short-term recordings: Are

these measurements reliable? Physiol. Meas. 2007, 28, 1067–1077.

25. Hornero, R.; Aboy, M.; Abasolo, D.; McNames, J.; Goldstein, B. Interpretation of Approximate

Entropy: Analysis of intracranial pressure Approximate Entropy during acute intracranial hypertension.

IEEE Trans. Biomed. Eng. 2005, 52, 1671–1680.

26. Escudero, J.; Hornero, R.; Abasolo, D. Interpretation of the auto-mutual information rate of

decrease in the context of biomedical signal analysis. Application to electroencephalogram

recordings. Physiol. Meas. 2009, 30, 187–199.

27. Aboy, M.; Hornero, R.; Abasolo, D.; Alvarez, D. Interpretation of the Lempel–Ziv complexity

measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 2006, 53,

2282–2288.

28. Garcia-Gonzalez, M.; Fernandez-Chimeno, M.; Ramos-Castro, J. Errors in the estimation of

Approximate Entropy and other recurrence-plot-derived indices due to the finite resolution of RR

time series. IEEE Trans. Biomed. Eng. 2009, 56, 345–351.

29. Molina-Pico, A.; Cuesta-Frau, D.; Aboy, M.; Crespo, C.; Miro-Martinez, P.; Oltra-Crespo, S.

Comparative study of Approximate Entropy and Sample Entropy robustness to spikes. Artif. Intell. Med.

2011, 53, 97–106.

30. Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy analysis of neonatal heart

rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, 789–797.

31. Xu, Y.; Lee, W.C.; Xu, J. Analysis of a loss-resilient proactive data transmission protocol in wireless

sensor networks. In Proceedings of the IEEE 26th IEEE International Conference on Computer

Communications (INFOCOM 2007), Anchorage, AK, USA, 6–12 May 2007; pp. 1712–1720.

32. Bao, Y.; Li, H.; Sun, X.; Yu, Y.; Ou, J. Compressive sampling–based data loss recovery for wireless

sensor networks used in civil structural health monitoring. Struct. Health Monit. 2013, 12, 78–95.

33. Ciocoiu, I.B. ECG signal compression using 2D Wavelet foveation. In Proceedings of the 2009

International Conference on Hybrid Information Technology (ICHIT 2009), Seoul, Korea, 24–26

November 2009; ACM: New York, NY, USA, 2009; pp. 576–580.

34. Higgins, G.; Faul, S.; McEvoy, R.P.; McGinley, B.; Glavin, M.; Marnane, W.P.; Jones, E.

EEG compression using jpeg2000: How much loss is too much? In Proceedings of the 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010),

Buenos Aires, Argentina, 31 August–4 September 2010; pp. 614–617.

35. Cuesta-Frau, D.; Perez-Cortes, J.C.; Andreu-Garcia, G. Clustering of electrocardiograph signals in

computer-aided holter analysis. Comput. Methods Prog. Biomed. 2003, 72, 179–196.



Entropy 2014, 16 5917

36. Cirugeda-Roldan, E.; Molina-Pico, A.; Cuesta-Frau, D.; Miro-Martinez, P.; Oltra-Crespo, S.

Characterization of entropy measures against data loss: Application to EEG records. In Proceedings

of the IEEE Engineering in Medicine and Biology Society Conference (EMBS 2011), Boston, MA,

USA, 30 August–3 September 2011; pp. 6110–6113.

37. Chon, K.; Scully, C.; Lu, S. Approximate Entropy for all signals. Eng. Med. Biol. Mag. 2009, 28,

18–23.

38. Pincus, S.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify?

Am. J. Physiol. 1994, 266, H1643–H1656.

39. Hu, X.; Miller, C.; Vespa, P.; Bergsneider, M. Adaptive computation of Approximate Entropy and

its application in integrative analysis of irregularity of heart rate variability and intracranial pressure

signals. Med. Eng. Phys. 2008, 30, 631–639.

40. Richman, J. Sample Entropy statistics and testing for order in complex physiological signals.

Commun. Stat. Theory Methods 2007, 36, 1005–1019.

41. Chen, W.; Wang, Z.; Xie, H.; Yu, H. Characterization of surface EMG signal based on Fuzzy

Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272.

42. Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn.

Med. Eng. Phys. 2009, 31, 61–68.

43. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353.

44. Xie, H.B.; Chen, W.T.; He, W.X.; Liu, H. Complexity analysis of the biomedical signal using fuzzy

entropy measurement. Appl. Soft Comput. 2011, 11, 2871–2879.

45. Govindan, R.; Wilson, J.; Preissl, H.; Eswaran, H.; Campbell, J.; Lowery, C. Detrended Fluctuation

Analysis of short datasets: An application to fetal cardiac data. Physica D 2007, 226, 23–31.

46. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.;

Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a new research resource for complex physiologic signals. Circulation 2000, 101,

215–220.

47. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Effect of antiarrhythmic agent

moricizine on survival after myocardial infarction: The cardiac arrhythmia suppression trial-II.

N. Engl. J. Med. 1992, 327, 227–233.

48. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: Effect of

encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after

myocardial infarction. N. Engl. J. Med. 1989, 321, 406–412.

49. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. The cardiac arrhythmia pilot study.

Am. J. Cardiol. 1986, 57, 91–95.

50. Molina-Picó, A.; Cuesta-Frau, D.; Miró-Martínez, P.; Oltra-Crespo, S.; Aboy, M. Influence of QRS

complex detection errors on entropy algorithms. Application to heart rate variability discrimination.

Comput. Methods Prog. Biomed. 2013, 110, 2–11.

51. Hausdorff, J.M.; Mitchell, S.L.; Firtion, R.; Peng, C.K.; Cudkowicz, M.E.; Wei, J.Y.;

Goldberger, A.L. Altered fractal dynamics of gait: Reduced stride-interval correlations with aging

and Huntington disease. J. Appl. Physiol. 1997, 82, 262–269.



Entropy 2014, 16 5918

52. Hausdorff, J.; Lertratanakul, A.; Cudkowicz, M.; Peterson, A.; Kaliton, D.; Goldberger, A.

Dynamic markers of altered gait rhythm in Amyotrophic Lateral Sclerosis. J. Appl. Physiol. 2000,

88, 2045–2053.

53. Cirugeda-Roldan, E.M.; Cuesta-Frau, D.; Miro-Martinez, P.; Oltra-Crespo, S.; Vigil-Medina, L.;

Varela-Entrecanales, M. A new algorithm for quadratic Sample Entropy optimization for very short

biomedical signals: Application to blood pressure records. Comput. Methods Prog. Biomed. 2014,

114, 231–239.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Method
	ApEn
	SampEn
	FuzzyEn
	Detrended Fluctuation Analysis (DFA)

	Experimental Dataset
	EEG Dataset
	RR Interval Time Series Dataset
	Gait Dynamics Records Dataset

	Results
	Random Sample Removal Results
	Uniform Sample Removal Results

	Discussion
	Conclusions
	Author Contributions

