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Abstract

Wall-flow particulate filters are in the present days a standard aftertreatment system widely used in diesel engines

to reduce particle emissions and meet emission regulations. This paper deals with the analysis of the macro- and

meso-geometry definition of the DPF monoliths from a fluid-dynamic modelling approach. Focus is driven to the

analysis of the influence on pressure drop and hence on engine fuel economy.

The influence of the DPF volume on the engine performance is analysed with a gas dynamic software including

both post-turbo and pre-turbo placement under clean and soot loading conditions. A swept in cell density is also

considered for different thermal integrity factors. This approach allows analysing the trends in pressure drop and

cell unit geometric parameters defining the monolith thermal and mechanical performance. A discussion considering

constant specific filtration area and constant filtration area is performed providing a comprehensive understanding of

the DPF and engine response as volume and cellular geometry are changed. Results are leading to rigorously justify

known but usually empirical guidelines for DPF design in post-turbo applications. A discussion on the potential for

monolith volume reduction in pre-turbo applications with respect to the post-turbo baseline is addressed. This is based

on the very low sensitivity of fuel consumption and pressure drop both to volume reduction and soot and ash loading

with pre-turbo DPF configuration.

Keywords: Diesel engine, DPF sizing, pressure-drop, fuel consumption, pre-turbo aftertreatment

1. Introduction1

Diesel engines have gained in recent years in growth acceptance with respect to other internal combustion en-2

gine alternatives and have found its way in numerous applications [1]. The reason explaining the increasing market3

penetration of diesel engines in ground transport applications, both for passenger and heavy duty use, is found in its4

improved performance and higher efficiency leading to lower CO 2 emissions [2]. Increasingly restrictive emission5

standards have also played an important role in the development of more environmentally friendly engines.6
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Besides the improvement of different engine aspects such as turbocharging [3], novel combustion concepts [4],7

use of fuel blends [5] or new EGR route solutions [6], the compliance of current and incoming emission standards is9

requiring the use of aftertreatment systems [7]. Between these systems, diesel particulate filter (DPF), and in particular10

wall-flow type DPF, is the most effective solution for controlling particulate matter emissions in diesel engines.11

Wall-flow DPFs are honeycomb monolithic structures with alternatively plugged channels at each end. The gas12

flow entering the inlet channels is forced to pass through the porous substrate walls, where the soot particulates are13

deposited and accumulated until the regeneration takes place. These systems have been traditionally placed down-14

stream of the turbine at the tail end of the exhaust line. However, higher temperature upstream of the turbine and15

the lower fuel penalty are boosting interest for the pre-turbo DPF configuration in heavy-duty [8] and passenger car16

engines [9]. The required condition is the use of two-stage turbocharging systems or combined mechanical and turbo17

charging systems. These boosting architectures are required to avoid the detrimental effect of ceramics thermal inertia18

on the engine dynamic response [10].19

One of the additional latent advantages of pre-turbo DPF placement is the potential for volume reduction because20

of the lower pressure drop that a given DPF provides with respect to the traditional post-turbo location [11]. It can21

become a source of cost savings due to the fact that more than 50% of control emission technologies are coming from22

aftertreatment systems in standard passenger car engines [12]. Aftertreatment cost is distributed in DOC (10%), DPF23

(40%) and SCR (50%) [12]. Other studies, such as the reports from EPA/NHTS [13] and NAS [14], provide even24

higher cost of the aftertreatment systems. From these data, and assuming that the whole aftertreatment system to fulfil25

Euro 6 is estimated to reach circa 30% of the engine cost, the DPF is representing around 12% of it.26

DPF volume in post-turbo placement is usually ranging between 1.5 and 2.5 times the engine displacement [12].27

The final volume is selected as compromise between packaging restrictions and capability for soot and ash accumula-28

tion. Besides the volume, the cellular geometry is also key to define the DPF performance. Several studies have been29

conducted to analyse the most efficient cellular geometry to minimise the DPF pressure drop in clean [15] and soot30

loaded monoliths [16]. However, these studies are based on honeycomb cell-size optimisation keeping constant porous31

wall thickness. Despite the monolith channel pressure drop cell size and geometry optimisation [17], the performance32

of the DPF concerning thermal response [18] or mechanical resistance must be also considered. These characteristics33

are usually assessed by means of a series of cell unit geometric parameters [19] that can be defined for several cell34

cross-section geometries [20]. These parameters are widely applied to the pre-design of through-flow monolith for35

catalytic applications [21]. In this paper the main cell unit geometric parameters are adapted to the specific wall-flow36

monolithic structure with square channels. The objective is to analyse with a gas dynamics code the influence of the37

DPF volume and the cellular geometry on the pressure drop and engine fuel consumption accounting for the DPF38

placement with respect to the turbine. The cellular geometry is modified sweeping a cell density range as a function39

of the monolith volume keeping constant the thermal integrity factor (TIF), which is additionally parameterized. This40
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strategy gives as a result a wide set of data allowing a comprehensive discussion to define and justify guidelines for41

DPF pre-design in post-turbo and pre-turbo placement.42

2. Methodology43

The results shown in this work have been obtained from a modelling approach based on the use of the open-source44

gas dynamic software OpenWAMTM[22, 23] for internal combustion engines and components computation. Focus is45

driven to analyse the influence on the engine performance of the DPF pressure drop change as a function of the DPF46

macro-and meso-geometry. The DPF model assumes one-dimensional unsteady compressible and non-homentropic47

flow [24] to manage the pulsating flow characteristics taking place in pre-turbo placement. The fluid-dynamic mod-48

elling is completed accounting for heat transfer phenomena [25] and porous media properties as a function of the DPF49

soot loading [26].50

The baseline engine is a turbocharged diesel engine for passenger car application. The main characteristics of51

the engine are shown in Table 1. The engine was tested with post-turbo and pre-turbo aftertreatment configuration52

in order to provide a reference for the subsequent engine and DPF modelling study. The aftertreatment system in53

post-turbo placement is composed of a close-coupled DOC next to the VGT, an underfloor DOC and a DPF. The pre-54

turbo aftertreatment architecture is simplified by removing the close-coupled DOC and keeping only the underfloor55

aftertreatment directly placed upstream of the turbine. The architecture for this study was pre-turbo DPF followed56

by the DOC. The relative DPF and DOC placement in pre-turbo configuration has not relevance on sizing since the57

change in DPF pressure drop is small [11]. The selection of this kind of pre-turbo aftertreatment architecture is58

justified by the need to improve the aftertreatment warm-up [27] and as a solution to protect the VGT from ceramic59

debris coming from an eventual DPF fault by making use of a metallic DOC [28].60

Figure 1 shows the comparison between experimental data and modelled results for the variables of interest in this61

study. The engine was tested at medium high load ranging from 1500 rpm to 3000 rpm in engine speed; the engine62

load is decreasing with engine speed being 90% at 1500 rpm, 80% at 2000 rpm and 2500 rpm, and 70% at 3000 rpm.63

The model shows good accuracy and sensitivity to predict the engine performance and the DPF pressure drop any of64

the aftertreatment placement and operating point.65

The modelling work performed from the engine model setup has been carried out in the operating point at66

2500 rpm and 80% in engine load. For all the simulations, the ambient conditions have been set to 1.025 bar and67

27oC both for pre-turbo and post-turbo aftertreatment configurations. The injected fuel mass flow and the equivalence68

ratio are also kept constant in the study and equal to the experimental values obtained with pre-turbo aftertreatment69

configuration. The VGT position is changed as the DPF geometry is modified (different DPF pressure drop) in order70

to kept constant the air mass flow and hence the equivalence ratio.71
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2.1. DPF geometry study definition72

The proposed parametric study affecting the geometry of the DPF covers the change in volume and cell density.73

The DPF installed in the engine during the testing phase is taken as reference. The main characteristics of this DPF74

are summarised in Table 2.75

A series of cell unit geometric parameters, whose value can be considered as state of the art, is given in Table 276

to be used as baseline for following discussions. The filtration area of the DPF is defined as a function of the specific77

filtration area (SFA) and the effective monolith volume, which in turn is a function of the monolith diameter (D) and78

the channel length (Le):79

A f = S FA
πD2

4
Le (1)

Being the channel length80

Le = L − Lplug, (2)

and taking into account the square geometry of the cells, the specific filtration area is defined as:81

S FA =
2α

(α + ww)2
(3)

The filtration area provides information about the capability for soot and ash accumulation and the resulting82

pressure drop. The higher the filtration area the lower the porous medium contribution to the pressure drop because83

of the influence on filtration velocity and particulate layer thickness. It also influences the regeneration rate since is84

directly affecting the catalyst surface and loading, the gas to solid contact surface and the dwell time across the wall.85

The SFA, which is half the SGA, is related to the filtration area accounting for the required volume to get it. Therefore,86

the higher the SFA for a given volume the better regeneration dynamics and the lower the pressure drop in soot loaded87

DPFs. However, the change in SFA is not dependent on macro-geometry, as filtration area is, but on meso-monolith88

or cellular geometry through the honeycomb cell size (α) and the porous wall thickness (w w). Therefore, other cell89

unit parameters are related to the specific filtration area. It is the case of the cell density (σ), which is defined as:90

σ =
1

(α + ww)2
=

S FA
2α

(4)

The open frontal area (OFA) is also accounting for the effect of the pressure drop, in this case inertial contributions91

due to local flow contraction and expansion at inlet and outlet DPF monolith respectively [24]. For a wall-flow92

monolith, OFA is defined according to:93

OFA =
α2

2 (α + ww)2
=
αS FA

4
(5)
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Other parameters of interest are those related to the thermal and mechanical response of the monolith. Concerning94

thermal behaviour, the light-off factor (LOF) is considered in Table 2 for a wall-flow honeycomb structure:95

LOF =
1
4

( S FA
OFA

− 2S FA
)

(6)

The LOF is accounting for the light-off performance of the monolith [19]. In DPF application, it is representative96

of the substrate thermal response under transient operation. During steady-state conditions, the heat transfer is related97

to the bulk heat transfer parameter (HTP). Taking into account SFA and OFA definitions in wall-flow monoliths HTP98

is given by:99

HT P =
1
2

Nu
S FA2

OFA
(7)

These parameters indicate that the higher the SFA the faster wall temperature increase under transient operation100

but the higher the gas heat losses for the same OFA.101

Finally, Table 2 includes mechanical parameters such as the thermal integrity factor (TIF), the mechanical integrity102

factor (MIF) and the strain tolerance parameter (STP):103

T IF =
α + ww

ww
(8)

MIF =
w2

w

(α + ww)α
(9)

S T P = T IF (1 − 2OFA) (10)

The TIF is proportional to the maximum temperature gradient that the monolith can withstand when is subjected to104

thermal cycles [19]. MIF and STP are parameters representing the geometric contribution to the mechanical resistance105

of the substrate. The MIF is defining the load carrying limit of a cell unit, which is given by the diagonal of the cell106

[19]. From its value it is possible to obtain the load carrying capability accounting for the tensile strength of the wall107

(σw), which is constant if the porosity wall is not modified [21], as assumed in this study:108

F =
2
3
σwMIF (11)

The STP is an indicator of the thermal durability that considers the cellular geometry influence on the strain109

tolerance (ST) [29], which is defined as:110

S T =
MORz

Ez
=

=

3
5σw (1 − 2OFA)

2Eo
T IF

(
1−ε
1+4ε

) ∼ T IF (1 − 2OFA) = S T P (12)
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According to the definition of these parameters, the parametric study comprises the DPF placement in pre-turbo111

and post-turbo location and the change in monolith volume, cell density, TIF and soot mass loading. Variations in112

monolith geometry and soot loading are performed according to the following considerations:113

• The monolith volume has been reduced by 60% of its nominal value accounting for a discretization into 5114

volumes. The reduction has been performed by modifying the monolith diameter in steps of 10% from its115

nominal value, with the only exception of the minimum diameter. This has a reduction of 33.5% from the116

nominal value to provide the 40% of volume reduction. Moreover, steps in diameter provide more resolution in117

the region of low volume because of computed points are closer. The monolith length has been kept constant.118

It is due to the fact that the DPF pressure drop is sensitive to volume through diameter change being the length119

effect almost negligible [30].120

• The cell density has been swept from 100 to 500 cpsi with steps of 50 cpsi. It leads to compute 9 cell densities121

that combined with the volume discretization provide 45 geometries to be modelled. Higher values of cell122

density have been avoided because of soot plugging issues [31]. As pointed out by eq. 4, the change in cell123

density has two degrees of freedom, i.e. α and ww. To prevent from an arbitrary change in the cellular geometry,124

the cell density variation has been performed imposing constant TIF, which involves that the α to w w ratio must125

be kept constant when changing the cell density:126

T IF =
α + ww

ww
→ α

ww
= T IF − 1 (13)

The study comprises three TIF values in order to account for the effect of the TIF change on the engine response.127

• Every DPF geometry (volume, cell density and TIF definition) has been computed for clean DPF (soot and ash128

free substrate) and 5 g of soot mass loading. Such a soot mass loading seems to be a low value but its choice is129

based on test results. After the steady-state tests of operating points shown in Figure 1, the maximum soot mass130

loading in the post-turbo location was 5 g (less than 0.5 g in pre-turbo location). Additionally, as previously131

indicated, the study is performed at constant injected fuel mass and equivalence ratio, obtaining the last by132

controlling the VGT position. In post-turbo placement, a high DPF soot mass loading in small DPF volumes133

can avoid to get the desired equivalence ratio in the medium-high engine load range even fully closing the134

VGT operating. It is because of the increasing engine back-pressure as it will be shown forward in Section 3.135

Therefore, any other scenario for DPF soot mass loading has not been considered in order not to affect the136

boundaries of this study.137
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3. Results of the parametric study138

3.1. Clean DPF conditions139

According to the described parametric study in Section 2.1, Figure 2 represents the DPF pressure drop variation140

as a function of monolith volume and cell density for the reference TIF under clean DPF conditions. Plots (a) and141

(b) are referred to pre-turbo and post-turbo DPF placement respectively. The coordinates of the computed cases are142

pointed out by black circles in both plots. White colour lines on the pressure drop contour are identifying filtration143

area iso-lines.144

The pressure drop trend shows that this is mainly dependent on the monolith volume with lower dependence on the145

cell density. The comparison between both DPF placements confirms the pressure drop reduction with pre-turbo DPF146

configuration. It is due to the higher gas density and lower velocity for the same geometry what reduces the pressure147

drop [10]. It can be noted how the difference in pressure drop with respect to the post-turbo DPF configuration148

increases as volume reduces, both in absolute and percentage terms. A volume reduction from 2.4 l to 1 l gives149

as a result that the pressure drop is multiplied approximately by 3.5 in pre-turbo placement but by 5 in the case of150

post-turbo placement.151

An analysis at constant volume reveals that there is an optimum cell density for either DPF placement. Such152

an optimum cell density is located between 225 and 250 under clean DPF conditions and TIF=5.59 (reference value)153

independently of the monolith volume. Nevertheless, the cell density influence on the pressure drop is negligible inside154

the range from 200 to 300. To extent the analysis of the optimum cell density under the constraint of constant TIF, the155

pressure drop of a canned DPF device can be estimated applying a lumped parameter model based on incompressible156

flow approach [32]:157

ΔpDPF =
μQ
2Ve

(α + ww)2

[
ww

αkw
+

1
2kpl

ln

(
α

α − 2wpl

)

+
4FwL2

e

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1(
α − 2wpl

)4
+

1
α4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
2ρQ2

V2
eα

2
(α + ww)4 (ςmon + ςie + ςoc)

(Le

α

)2

(14)

Combining eq. 14 and eq. 8, the DPF pressure drop can be expressed as a function of TIF. Firstly, the term158

depending on the particulate layer thickness is expressed as a function of this parameter:159

wpl =

α −
√
α2 − mpl

NinLeρpl

2
(15)
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α − 2wpl =

√
α2 − mpl

NinLeρpl
=

√
α2 − 2mpl

A f rσLeρpl

= α

√
1 − 2mplT IF2

A f r (T IF − 1)2 Leρpl

= αΥ (16)

Considering the variable Υ independent of α the pressure drop can be finally written as:160

ΔpDPF =
μQ
2Ve

T IF2

(T IF − 1)3

α2

kw
+
μQ
2Ve

( T IF
T IF − 1

)2

α2 1
2kpl

ln

(
1
Υ

)

+
μQ
2Ve

( T IF
T IF − 1

)2 4FwL2
e

3
1
α2

(
1 +

1
Υ4

)

+
2ρQ2

V2
eα

2

( T IF
T IF − 1

)4

α4 (ςmon + ςie + ςoc)
(Le

α

)2

(17)

Imposing constant TIF and deriving eq. 17 with respect to α, it is possible to obtain the optimum value of the161

honeycomb cell size162

αopt =
4

√√√√ 8Fw L2
e

3

(
1
a + 1

)
2
kw

1
T IF−1 +

1
kpl

ln
(

1
Υ

) , (18)

and hence the optimum porous wall thickness and cell density:163

wwopt = (T IF − 1)αopt (19)

σopt =
1(

αopt + wwopt

)2
(20)

Figure 3 shows the optimum value of the cell density as a function of TIF, porous wall permeability (plot (a)) and164

channel length (plot (b)) for a clean DPF. For the reference TIF, porous wall permeability and effective length, the165

application of the lumped parameter model provides an optimum cell density equal to 227, i.e. similar to the results166

shown in Figure 2 and obtained applying the one-dimensional compressible unsteady flow DPF model. Nevertheless,167

the analysis of the results in Figure 3(a) reveals that the optimum cell density is very sensitive to the porous wall168

permeability. As the porous wall permeability increases there is a reduction in the optimum cell density. This means169

not only advantages in lower pressure drop but also a significant reduction in the risk of plugging issues. Concerning170

TIF and channel length, the increase of these two parameters provides lower values for optimum cell density but its171

influence is lower than that of the porous wall permeability.172

The pressure drop behaviour around the optimum cell density range shown in Figure 2 is also manifested in173

specific fuel consumption, which is represented in Figure 4. Plot (a) refers to the pre-turbo DPF configuration and174

plot (b) shows the results corresponding to the post-turbo DPF configuration. Although keeping the same trend than175
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the DPF pressure drop, the bsfc magnitude scarcely varies with pre-turbo DPF placement. However, it shows high176

sensitivity to macro-geometry variation in post-turbo DPF configuration.177

The use of pre-turbo DPF configuration is bringing almost absolute independence of the DPF sizing on fuel178

economy what is added to the already known effect of soot loading [33]. A volume reduction from 2.4 l to 1 l (−58%)179

produces a bsfc change of less than 0.5%.180

However, the bsfc suffers an important increase as the monolith volume decreases in the case of the post-turbo181

DPF placement. From the higher bsfc than pre-turbo DPF configuration given by the reference geometry, a volume182

reduction up to 1.6 l (−33%) involves a bsfc increase of 0.8%. This raises up to 2.1% when the volume gets 1 l (−58%).183

Given that these results are obtained in the most favourable conditions, i.e. clean DPF, the trend in bsfc precludes any184

possibility for volume reduction in post-turbo location and confirms the empirical rule imposing a DPF volume higher185

than the engine displacement [12].186

The reason justifying the low sensitivity of the pre-turbo aftertreatment configuration to the DPF pressure drop187

change, in this study due to volume, is found in the interaction with the turbine [11]. Such an interaction is setting the188

engine back-pressure. In a post-turbo aftertreatment configuration, the engine back-pressure is given by the turbine189

pressure ratio times the sum of the ambient pressure and the aftertreatment pressure drop. However when a pre-turbo190

aftertreatment configuration is used, the engine back-pressure is given by the sum of the aftertreatment pressure drop191

and the product of the turbine pressure ratio and the ambient pressure. Besides the lower aftertreatment pressure drop,192

this means that the pre-turbo aftertreatment placement prevents from the DPF pressure drop multiplication by the193

turbine pressure ratio. Consequently the damage on pumping work of the aftertreatment elements is highly reduced.194

One of the consequences of this behaviour is also related to the control of the VGT. Figure 5(a) shows that the VGT195

position remains constant with pre-turbo DPF placement under clean DPF conditions. However, the VGT must close196

as the DPF pressure drop increases in post-turbo aftertreatment placement in order to recover the required expansion197

ratio. It leads to further pumping work and bsfc penalty. Figure 5(b) shows how the VGT position is completely198

governed by the DPF pressure drop as concluded from comparing with Figure 2(b).199

3.2. DPF soot loading conditions200

Figure 6 represents the pressure drop when the DPF is loaded with 5 g of soot as a function of monolith volume201

and cell density. Despite the increase in pressure drop due to the soot loading the trend is the same as under clean202

DPF conditions. The only difference is the optimum cell density increase for every volume, which is falling out of the203

analysed range. It is due to the reduction of the permeability as inferred from eq. 18.204

The importance of the porous substrate contribution to pressure drop demands an increase in SFA (increase of cell205

density at constant TIF). At constant volume, it would produce the decrease of the filtration velocity because of the206

filtration area increase. The result would be the pressure drop reduction across the porous media compensating the207

friction losses increase.208
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Since too high cell densities may lead to plugging issues this result emphasises the selection of high permeability209

substrates. It could further boost the interest for heterogeneous porous walls providing high filtration efficiency with210

low equivalent permeability [34] overcoming the passive regeneration issues of these substrates with pre-turbo place-211

ment. Longer monoliths keeping volume would be also positive to get lower optimum cell density. In this case, the212

diameter reduction has been shown not to be dramatically detrimental for pressure drop keeping constant OFA (con-213

stant TIF) or increasing it (increasing TIF) since under soot loading conditions the macro-geometrical dependence is214

mainly in the volume [30]. Other solutions concern asymmetrical cell designs increasing filtration area and providing215

higher ash loading capability [35].216

The absolute pressure drop difference between post-turbo and pre-turbo DPF placement increases under soot217

loading conditions but the percentage difference decreases. It is due to the fact that the increase is only linearly218

dependent on the Darcy’s law being the inertial contribution scarcely affected (only small inlet cross-section reduction219

due to particulate layer).220

Despite the pressure drop difference increase, Figure 7 shows that the increase in bsfc penalty with post-turbo221

DPF placement is significantly higher. The pre-turbo DPF placement is insensitive to DPF soot loading [26] and the222

VGT can remain practically in the same position as shown in Figure 8(a). Only clear fuel damage is observed in bsfc223

results at very low volumes and cell densities. According to the results represented in Figure 7(a), a reduction of 42%224

in volume of the reference DPF (1.4 l) would provide only an increase of 1.2% in bsfc. This volume reduction in225

pre-turbo location provides lower bsfc than the reference geometry in post-turbo location with the same soot loading.226

If the comparison is performed against the reference DPF in post-turbo placement and clean, the bsfc is the same227

despite the volume reduction and the soot loading condition in pre-turbo location.228

In comparison with the pre-turbo DPF placement, the increase of the engine back-pressure in post-turbo DPF229

placement as the DPF gets loaded forces the VGT closing with respect to clean conditions. Such an effect is more230

evident as the volume decreases. Figure 8(b) clearly evidences this trend for the analysed operating point. The231

consequence is a high penalty in fuel economy. In this case the volume reduction up to 1.4 l (−42%) gives as a result232

a bsfc increase of 3.6% with respect to the reference DPF geometry.233

4. Approach to volume reduction analysis234

The trend shown in bsfc response suggests different approaches for DPF volume reduction as a function of its235

placement. While being very restrictive in post-turbo placement because of the fast increase in fuel consumption, the236

pre-turbo placement is more prone to discussion because of the low sensitivity of fuel consumption to pressure drop237

increase and hence to volume reduction. Additionally, lower soot loading levels are expected because of the higher238

temperature across the DPF [11].239

According to the sample of computed DPF macro-and meso-geometries, the range for the analysis of the DPF and240

engine performance is very broad. Therefore, given the reference geometry, which is within the state of the art DPFs,241
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the analysis of the potential for volume reduction can be approached considering the response of the DPF under two242

boundaries: constant specific filtration area and constant filtration area. A comprehensive analysis of the monolith243

volume reduction can be performed considering these constraints.244

4.1. Constant specific filtration area245

Within the monolith volume and cell density swept imposing constant TIF, the comparison at constant specific246

filtration area between two DPF geometries provides:247

S FA1 = S FA2 → 2α1

(α1 + ww1)2
=

2α2

(α2 + ww2)2
(21)

Since TIF is constant, rearranging eq. 21 is obtained that248

2 (T IF1 − 1)

ww1T IF2
1

=
2 (T IF2 − 1)

ww2T IF2
2

→ ww1 = ww2, (22)

so that the analysis at constant specific filtration area means that the honeycomb cell size and the porous wall thickness249

remain constant:250

ww1 = ww2

α
ww
=T IF−1−−−−−−−−→ α1 = α2 (23)

Consequently, the cell unit geometric parameters (σ, OFA, LOF, HTP (without Nu influence), MIF and STP) are251

also kept constant under these analysis conditions. Therefore, the DPF performance is only affected by the macro-252

geometry change in volume and filtration area.253

Constant specific filtration area means moving at constant cell density as volume reduces in the contour plots254

shown in Section 3. Figure 9 shows the effect of volume reduction on DPF pressure drop as a function of volume,255

TIF, DPF location and soot loading in the case of constant SFA, which has been chosen to be the same as that of256

the reference DPF for every TIF. Despite that the selected cell density is pretty similar to the optimum value in clean257

conditions, the soot loading increase leads to an increasing pressure drop as volume reduces because of the fact that258

the filtration area is also decreased. It means the increase of the filtration velocity and the particulate layer thickness,259

which is shown in Figure 12(b). Consequently the Darcy’s law contribution to pressure drop increases.260

As discussed in Section 3, for every geometry the lower DPF pressure drop in pre-turbo placement is explained261

by the lower velocity across the DPF due to the higher gas density with respect to the post-turbo DPF location. This262

result is obtained even with the negative effect of the higher gas pressure on the permeability of the porous medium. It263

is caused by the slip flow correction, which is smaller as the pressure increases, like happens when changing the DPF264

placement from post- to pre-turbo. The slip flow effect is computed through the Stokes-Cunninham factor (SCF) [24],265

which multiplies the specific permeability to set the permeability of the porous medium at every operating condition.266

Figure 10 shows the porous wall permeability in pre-turbo (plot (a)) and post-turbo (plot (b)) placement as a function267

of volume, TIF and soot loading. In this case, the post-turbo permeability is only slightly higher than in pre-turbo268
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placement because of the great difference between the mean free path of the gas molecules and the mean pore diameter.269

It provides very low Knudsen number and then SCF values very close to 1.270

However, the analysis of the particulate layer permeability, which is shown in Figure 11(a), reveals an important271

reduction of its value with respect to post-turbo DPF placement when the DPF is placed upstream of the turbine. The272

SCF in the particulate layer is higher than inside the porous wall. It is due to the fact that the mean pore diameter in273

this porous medium, which is related to the mode diameter of the soot aggregates [36], is lower than the gas mean free274

path and consequently the SCF gets over 1, as shown in Figure 11(b). Consequently the particulate layer permeability275

becomes very dependent on the SCF. The higher gas density in pre-turbo location leads to a reduction of the molecules276

mean free path. It makes the Knudsen number to decrease and in turns reduces the SCF and the particulate layer277

permeability with respect of the post-turbo DPF configuration. Nevertheless, its contribution to pressure drop is not278

able to offset the pre-turbo pressure drop improvement due to other mechanisms.279

Both of the DPF placements suffer the same decreasing trend in SCF and permeability in the porous media as a280

function of the volume. This phenomenon is an additional contribution to damage the DPF pressure drop as volume281

reduces.282

Concerning the influence of TIF on pressure drop, it is limited in comparison to the soot loading effect. Neverthe-283

less its increase can offset part of the volume reduction damage. Higher TIF means higher α to w w ratio. In order to284

keep the same cell density, the porous wall thickness must decrease and the cell size increase. Therefore an increase285

of SFA and filtration area is also obtained when TIF increases for the same volume and cell density. TIF increase is286

also involving higher OFA and STP but lower MIF and LOF.287

Figure 12(a) shows the trend of ww with TIF. It is independent of the monolith volume because the SFA is kept288

for each TIF (eq. 23). Similarly, Figure 12(b) shows that the particulate layer would be thicker with TIF and volume289

reduction because of the lower filtration area at constant SFA. Therefore, TIF increase provides lower filtration velocity290

and smaller porous media thickness leading to lower pressure drop.291

The increment in pressure drop as volume decreases is reflected in the bsfc increase, as shown in Figure 13.292

However, the incidence is clearly different between pre-turbo and post-turbo placement. Figure 13(a) shows that293

the monolith volume can be reduced up to 1.4 l (−42.5%) in pre-turbo placement. Under clean conditions, the bsfc294

would be kept almost unaffected and under soot loading conditions would be similar to that obtained with post-turbo295

placement but with clean DPF, whose fuel consumption is shown in Figure 13(b).296

The low sensitivity of pre-turbo DPF placement to pressure drop increase underlines its potential for volume re-297

duction and cost savings in aftertreatment even keeping the meso-structure. This result would be also useful regarding298

ash loading. Evidently, the DPF volume reduction affects negatively the ash loading capability. Nevertheless, the299

engine sensitivity to DPF loading in pre-turbo location is very low. It can be also understood as the capability to300

increase the quantity of the maximum ash mass able to be accumulated per unit of volume without negative effects301

on pressure drop and fuel penalty. Therefore, a margin for important DPF volume reduction can be still attainable302

preserving engine and DPF performance.303
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However, post-turbo DPF placement is not allowing volume reduction keeping state of the art meso-structure.304

The increase of pressure drop due to the filtration area reduction, which is fed back by the increasing VGT closing305

and pressure ratio, leads to unacceptable fuel penalty even with low soot loading. Moreover, in this configuration the306

volume reduction results in loss of ash loading capability and higher pressure drop due to ash.307

4.2. Constant filtration area308

Results in Section 3 have shown how low permeability substrates (i.e. low porous wall permeability or increasing309

soot & ash loading) find in high cell density a way to increase the filtration area and hence to reduce the damage on310

pressure drop and fuel consumption of monolith volume reduction.311

Figure 14 shows the brake specific fuel consumption as a function of volume, TIF, placement and soot loading312

when the filtration area is kept constant. Its value has been chosen equal to that of the reference DPF for every TIF.313

Since the maximum cell density in the study has been fixed to 500 cpsi, the minimum monolith volume that can be314

reached is 1.54 l(−36.6%). The bsfc with pre-turbo DPF placement, which is represented in Figure 14(a), becomes315

nearly constant. In the case of the post-turbo DPF configuration, which is shown Figure 14(b), an increasing penalty316

is found as volume reduces although it is lower than in the case of constant specific filtration area.317

This strategy concerning filtration area has as disadvantage issues related to channel plugging, mainly in post-turbo318

DPF placement. Hence the extended use of low cell density meso-structures in DPFs. Nevertheless, pre-turbo DPF319

placement can manage better cell density increase due to the higher temperature providing better passive regeneration320

performance and lower engine sensitivity to pressure drop increase.321

Figure 15 shows the pressure drop as a function of volume, TIF, placement and soot loading when the filtration area322

is kept constant. Both pre-turbo and post-turbo DPF architectures are clearly benefitted in DPF pressure drop when323

the filtration area is kept despite of the volume reduction (comparison with Figure 9). Although the pressure drop is324

lower in pre-turbo DPF placement, the volume reduction is only additionally damaging it below 1.8 l independently325

of the DPF placement and soot loading.326

Although in this analysis the filtration area is the main parameter controlling the pressure drop change, these327

results come from a balance of different phenomena. Comparing against constant specific filtration area, to ensure a328

target filtration area as volume reduces leads to the following behaviour:329

• Lower porous media pressure drop. According to the Darcy’s law, it is produced by a reduction of filtration330

velocity and the porous media thickness. Figure 16(a) shows that the porous wall thickness decreases as volume331

does. In the case of the particulate layer thickness, which is shown in Figure 16(b), it keeps constant according332

to the filtration area value.333

Concerning the porous wall permeability, when the porous wall is loaded it decreases with the DPF volume in334

the case of constant filtration area, as shown in Figure 17. However, this parameter remains almost constant335

when the specific filtration area is not modified (Figure 10). The reason lies in the balance between the fraction336
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of porous wall with soot penetration and the fraction that is still kept clean. Assuming that the porous wall337

porosity and the mean pore diameter are not modified and that the soot properties are the same, the porous338

wall permeability is only dependent on the fraction of porous wall thickness affected by soot penetration [36].339

Considering as hypothesis that the soot penetration thickness does not change with the DPF geometry, the340

fraction of loaded porous wall thickness with soot penetration increases in the case of constant filtration area. It341

is due to the fact that the porous wall thickness is reduced as volume does. As a consequence, the porous wall342

permeability decreases for this design condition.343

Despite the trend in porous wall permeability, the particulate layer permeability is scarcely modified as volume344

reduces with constant filtration area, as Figure 18(a) shows, in contrast with constant specific filtration area345

case (Figure 11(a)). It brings very important benefits to pressure drop reduction. The reason explaining this346

response lies in the lower sensitivity of the Stokes-Cunningham factor to volume reduction, which is represented347

in Figure 18(b). This result is the consequence of all contributions lowering the pressure drop. Hence lower348

change in gas density and in turn almost constant SCF favouring lower pressure drop (snowball effect).349

• Similar inertial pressure drop. Like constant specific filtration area case, the OFA is also constant with constant350

filtration area as volume reduces. Within the analysis boundaries (monolith volume and cell density swept at351

constant TIF), the comparison at constant filtration area between two DPF geometries involves that the specific352

filtration area increases linearly as volume decreases:353

A f = cst ⇒ S FA1V1 = S FA2V2 (24)

Expressing the specific filtration area as a function of TIF, it is obtained that354

2V1 (T IF1 − 1)

ww1T IF2
1

=
2V2 (T IF2 − 1)

ww2T IF2
2

(25)

and being TIF constant, then355

V1

ww1
=

V2

ww2
(26)

Consequently, the analysis under constant filtration area fulfils the following conditions:356

ww2 =
V2

V1
ww1

α
ww
=T IF−1−−−−−−−−→ α2 =

V2

V1
α1 (27)

Applying these results to the definition of the OFA, it is found that this parameter remains constant:357
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OFA2 =
α2

2

2 (α2 + ww2)2
=

=

(
V2
V1
α1

)2

2
(

V2
V1
α1 +

V2
V1

ww1

)2
= OFA1 (28)

Under soot loading conditions, the case of constant filtration area provides higher inlet cross-section than the358

constant specific filtration area case for the same monolith diameter because of the lower particulate layer359

thickness. Therefore, a slight reduction of inertial pressure drop is expected at the monolith inlet.360

• Pressure drop increase due to friction phenomena. The specific filtration area increases as volume reduces361

according to eq. 24. This determines a square increase of the friction factor with volume reduction for the362

constant filtration area case [19].363

Considering the trend of the different mechanisms causing the pressure drop, the porous media contribution is364

controlling the overall response. The reduction in pressure drop given by the filtration area control strategy boosts its365

interest in sizing DPFs for pre-turbo use while preventing excessive cell density leading to channel plugging issues.366

From the results given in eq. 27, the cell density varies squarely with volume ratio:367

σ2 =
1

(α2 + ww2)2
=

1(
V2
V1
α1 +

V2
V1

ww1

)2
=

=
V2

1

V2
2 (α1 + ww1)2

=
V2

1

V2
2

σ1 (29)

Furthermore, it can be demonstrated that the mechanical parameters MIF and STP are also kept constant:368

MIF2 =
w2

w2

(α2 + ww2)α2
=

=

(
V2
V1

ww1

)2

(
V2
V1
α1 +

V2
V1

ww1

)
V2
V1
α1

= MIF1 (30)

S T P2 = T IF2 (1 − 2OFA2) =

= T IF1 (1 − 2OFA1) = S T P1 (31)

On the negative side, heat transfer parameters such as HPT and LOF suffer a square and linear increase respectively369

as volume reduces:370
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HT P2 =
1
2

Nu
S FA2

2

OFA2
=

=
1
2

Nu
V2

1

V2
2

S FA2
1

OFA1
=

V2
1

V2
2

HT P1 (32)

LOF2 =
1
4

(
S FA2

OFA2
− 2S FA2

)
=

=
1
4

V1

V2

(
S FA1

OFA1
− 2S FA1

)
=

=
V1

V2
LOF1 (33)

On one hand it means an increase of the heat losses that should be avoided by a proper packaging and insulation.371

However, the main problem comes from the effect of the higher heat transfer during transient operation. Although372

it is very positive for the substrate it also means the reduction of energy available at the turbine inlet with pre-turbo373

aftertreatment placement during transient accelerations. The trends in different parameters emphasise the need of a374

right balance for filtration area selection as volume reduces in order to find the best solution for the trade-off between375

pressure drop and thermal response.376

5. Summary and conclusions377

This study has presented the results and the analysis of the DPF sizing influence on engine fuel consumption for378

post-turbo and pre-turbo DPF applications. The scope of the discussion is focused on the pressure drop effect and379

is based on a computational approach. The calculations have comprised volume and cellular geometry variations380

keeping constant the substrate micro-structure. For every volume the cell density is modified imposing a cell size381

and porous wall thickness dependence given by constant TIF. This approach has allowed covering the influence of382

additional cell unit geometric parameters related to fluid-dynamic, thermal and mechanical performance.383

The post-turbo DPF placement has shown a worse behaviour than the pre-turbo DPF location concerning engine384

fuel consumption penalty. This penalty is increasing as the monolith volume decreases being specially damaging385

under soot loading conditions. Results confirm theoretically that the general rule of DPF volume being at least equal386

to the engine displacement works right.387

The analysis has revealed that as volume reduces the pressure drop performance can be recovered increasing388

the cell density, i.e. the filtration area. However, the lower capability for ash accumulation can become a critical389

constraint. Since in post-turbo DPF placement the average soot loading is expected to be high, problems regarding390

inlet channel plugging may also arise as the cell density is increased. Results on optimum cell density have shown that391

the value resulting in minimum pressure drop reduces as permeability and monolith length increase. Other approaches392

to reduce the optimum cell density could be devoted to increase the filtration area, for example through TIF increase.393

16



It also improves the strain tolerance but may damage MIF. These solutions are also available for pre-turbo DPF394

placement.395

The results obtained with pre-turbo DPF placement have confirmed the lower pressure drop caused by the DPF396

in this location and how the differences positively growth as the DPF gets loaded. The fuel consumption is scarcely397

sensitive to volume and soot loading changes because of the pressure drop location with respect to the turbine. Con-398

sequently the VGT control calibration becomes less sensitive to these variables.399

From a fluid-dynamic point of view, it has been shown that the DPF volume may be reduced more than 40% in400

pre-turbo placement. This reduction would not have effect on fuel economy under clean DPF conditions. Under soot401

loading operation the fuel consumption would be even lower than that in post-turbo placement with clean DPF. As in402

post-turbo DPF placement, if the cell geometry is modified to keep constant the filtration area the benefits in pressure403

drop reduction lead to almost constant fuel consumption independently of the monolith volume. This solution has as404

limit channel plugging issues due to high cell density. Nevertheless, soot loading in pre-turbo DPF configuration is405

expected to be low because of the high temperature. Therefore, a balance solution between constant specific filtration406

area and increasing its value as volume reduces should exist. It should provide safe DPF operation and lower pressure407

drop with minimum fuel consumption penalty. It is also important to consider that the increase of filtration area can408

be obtained keeping the mechanical performance of the monolith but increasing heat transfer. This last item must be409

considered in pre-turbo aftertreatment applications because of the effect on the turbocharger lag under cold operating410

conditions.411

Pre-turbo DPF configuration insensitivity to soot loading is also applicable to ash loading. The DPF volume412

reduction is also directly reducing the volume for ash accumulation. However, the lack of DPF loading influence413

on engine performance may result in the increase of critical ash mass able to be accumulated per unit of volume.414

The advantages in pressure drop also highlight the interest by asymmetrical cell designs because of the additional415

ash loading capability benefits. Consequently, volume reduction and a suitable design of the cellular geometry may416

provide improved fluid-dynamic response with good thermal, mechanical and ash loading performance. Therefore, a417

margin for important DPF volume reduction can be still attainable preserving engine and DPF performance.418
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[9] Bermúdez V, Luján JM, Piqueras P, Campos D. Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel441

engine, Energy, In press, DOI:10.1016/j.energy.2014.02.004, 2014.442
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Af filtration area

Af r monolith cross-section

bs f c brake specific fuel consumption

D diameter

DOC diesel oxidation catalyst

DPF diesel particulate filter

E0 modulus of elasticity

Ez bulk modulus of elasticity

F minimum load carrying capacity
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Fw momentum transfer coefficient for square channel

HTP bulk heat transfer parameter

kpl particulate layer permeability

kw porous wall permeability

kw0 clean porous wall permeability

L monolith length

Le channel length

Lplug plug length

LOF light-off factor

mpl particulate layer soot mass

MIF mechanical integrity factor

MORz modulus of rupture

N number of channels

Nin number of inlet channels

Nu Nusselt number

OFA open frontal area

Q volumetric flow rate

SCF Stokes-Cunningham factor

SCR selective catalytic reduction

SFA specific filtration area

SGA specific geometric area

ST strain tolerance

STP strain tolerance parameter

TIF thermal integrity factor

Ve effective monolith volume

VGT variable geometry turbine

wpl particulate layer thickness

ww porous wall thickness

Greek letters

α honeycomb cell size

ΔpDPF DPF pressure drop

ε porous wall porosity

μ dynamic viscosity
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ρ gas density

ρpl particulate layer density

σ cell density

σw tensile strength of porous cell wall

ς pressure drop coefficient

Subscripts

ie expansion at inlet cone

in inlet

mon monolith

oc contraction at outlet cone

opt optimum value

pl particulate layer

w porous wall
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Table 1: Main engine characteristics.

Type HSDI E4 diesel engine

Displacement 1997 cm3

Diameter 85 mm

Stroke 88 mm

Number of cylinders 4 in line

Valves 4 per cylinder

Compression ratio 18:1

Maximun power 100 kW at 4000 rpm

Maximun torque 320 Nm at 1750 rpm

Turbocharger Single-stage VGT
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Table 2: Reference DPF characteristics.

Diameter [mm] 135

Length [mm] 170

Plug length [mm] 5

Monolith volume [l] 2.43

Porosity [-] 0.46

Mean pore diameter [μm] 14.4

Porous wall permeability [m2] 3.85x10−13

Cellular geometry Square

Honeycomb cell size [mm] 1.47

Wall thickness [mm] 0.32

Noof channels [−] 4470

Filtration area [m2] 2.17

SFA [1/m] 917.6

SGA [1/m] 1835.2

Cell density (σ) [cpsi] 200

OFA [−] 0.34

TIF [−] 5.59

LOF [1/m] 215.9

MIF [−] 0.0389

STP [−] 1.82
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Figure 1: Comparison between experimental data and modelled results for post-turbo and pre-turbo aftertreatment configurations.
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a) Pre-turbo DPF pressure drop [Pa]

b) Post-turbo DPF pressure drop [Pa]
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Figure 2: DPF pressure drop as a function of monolith volume and cell density for TIF=5.59 and clean DPF conditions: a) Pre-turbo b) Post-turbo.
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Figure 3: Optimum cell density dependence on TIF, clean porous wall permeability and channel length.
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Figure 4: Brake specific fuel consumption as a function of monolith volume and cell density for TIF=5.59 and clean DPF conditions: a) Pre-turbo

b) Post-turbo.
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a) Pre-turbo VGT position [%]

b) Post-turbo VGT position [%]
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Figure 5: VGT position as a function of monolith volume and cell density for TIF=5.59 and clean DPF conditions: a) Pre-turbo b) Post-turbo.
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Figure 6: DPF pressure drop as a function of monolith volume and cell density for TIF=5.59 and 5 g of soot loading: a) Pre-turbo b) Post-turbo.
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Figure 7: Brake specific fuel consumption as a function of monolith volume and cell density for TIF=5.59 and 5 g of soot loading: a) Pre-turbo b)

Post-turbo.
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Figure 8: VGT position as a function of monolith volume and cell density for TIF=5.59 and 5 g of soot loading: a) Pre-turbo b) Post-turbo.
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Figure 9: Effect of volume, TIF, placement and soot loading on DPF pressure drop with constant SFA.
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Figure 10: Effect of volume, TIF, placement and soot loading on porous wall permeability with constant SFA.
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Figure 11: Effect of volume, TIF, placement and soot loading on particulate layer permeability and SCF with constant SFA.
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Figure 12: Effect of volume, TIF, placement and soot loading on porous media thickness with constant SFA.
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Figure 13: Effect of volume, TIF, placement and soot loading on brake specific fuel consumption with constant SFA.
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Figure 14: Effect of volume, TIF, placement and soot loading on brake specific fuel consumption with constant filtration area.
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Figure 15: Effect of volume, TIF, placement and soot loading on DPF pressure drop with constant filtration area.
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Figure 16: Effect of volume, TIF, placement and soot loading on porous media thickness with constant filtration area.
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Figure 17: Effect of volume, TIF, placement and soot loading on porous wall permeability with constant filtration area.
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Figure 18: Effect of volume, TIF, placement and soot loading on particulate layer permeability with constant filtration area.
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