
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.biosystemseng.2013.06.007

http://hdl.handle.net/10251/52197

Elsevier

Cubero García, S.; Diago, MP.; Blasco Ivars, J.; Tardáguila Laso, J.; Millán, B.; Aleixos
Borrás, MN. (2014). A new method for pedicel/peduncle detection and size assessment of
grapevine berries and other fruits by image analysis. Biosystems Engineering. 117:62-72.
doi:10.1016/j.biosystemseng.2013.06.007.



 1 

A new method for pedicel/peduncle detection and size assessment of 1 

grapevine berries and other fruits by image analysis 2 

S. Cubero
1,2

, M.P. Diago
2,3

, J. Blasco
1
, J. Tardaguila

2
, B. Millán

2
, N. Aleixos

4*
 3 

 4 

1
Centro de Agroingeniería. Instituto Valenciano de Investigaciones Agrarias (IVIA). Cra. Moncada-5 

Náquera km 5, 46113 Moncada (Valencia), Spain. 6 

2
Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja). 7 

26006 Logroño. Spain. 8 

3
Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italia. 9 

4
Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano. 10 

Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain. Email: 11 

naleixos@dig.upv.es 12 

Abstract 13 

The berry size of wine-grapes has often been considered to influence wine composition and quality, as 14 

it is related to the skin-to-pulp ratio of the berry and the concentration of skin-located compounds that 15 

play a key role in the wine quality. The size and weight of wine-grapes are usually measured by hand, 16 

making it a slow, tedious and inaccurate process. This paper focuses on two main objectives aimed at 17 

automating this process using image analysis: 1) to develop a fast and accurate method for detecting 18 

and removing the pedicel in images of berries, and 2) to accurately determine the size and weight of 19 

the berry. A method to detect the peduncle of fruits is presented based on a novel signature of the 20 

contour. This method has been developed specifically for grapevine berries, and later extended and 21 

tested with an independent set of other fruits with different shapes and sizes such as peppers, pears, 22 

apples or mandarins. Using this approach, the system has been capable of correctly estimating the 23 

berry weight (R2>0.96) and size (R2>0.97) of wine-grapes and of assessing the size of other fruits like 24 

mandarins, apples, pears and red peppers (R2>0.93). The proven performance of the image analysis 25 
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methodology developed may be easily implemented in automated inspection systems to accurately 26 

estimate the weight of a wide range of fruits including wine-grapes. In this case, the implementation of 27 

this system on sorting tables after de-stemming may provide the winemaker with very useful 28 

information about the potential quality of the wine. 29 

 30 

Keywords: Image analysis; Contour function; Pedicel detection; Grape berries, Size and weight 31 

estimation 32 

 33 

1. Introduction 34 

Machine vision systems are being used to automate inspection tasks in agriculture and food 35 

processing. Apart from its use in defect detection or colour estimation, image analysis is also an 36 

objective and reliable tool for examining other features such as shape and size (Cubero et al., 2011; 37 

Lorente et al., 2012). 38 

Berry size and weight are two key parameters in the quality of table and wine-grapes. Berry size and 39 

weight parameters not only have an impact on the cluster architecture and compactness (leading to 40 

looser or tighter clusters), thereby influencing the cluster health status (Tardaguila et al., 2010), but are 41 

also considered indicators of grape and wine quality. In fact, berry weight and size, and their 42 

implications in grape and wine quality, have been extensively studied worldwide (Roby et al., 2004; 43 

Walker et al., 2005) and recently reviewed by Matthews and Nuzzo (2007). Most of the key 44 

compounds for wine quality, such as aromas and phenols, are located in the skin (Kennedy, 2010). 45 

Therefore, it is widely assumed that better wines are made from smaller berries, which have higher 46 

skin-to-pulp ratios (Barbagallo et al., 2011). Berry weight and size are common parameters for 47 

assessing wine-grapes’ ripening from veraison to harvest (Iland et al., 2004) and quality features in 48 

table grapes. Their assessment – usually performed in the laboratory – often requires the removal of 49 

the berry pedicel, which is time and labour consuming.    50 
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Image analysis has recently been used outdoors to characterise several grapevine features, such as leaf 51 

area and yield (Diago et al., 2012). An important step forward would be the capacity to estimate berry 52 

size and weight from the analysis of images taken in the field, i.e. of the clusters hanging on the vines. 53 

This would allow close non-destructive monitoring of berry size throughout the ripening period of the 54 

actual clusters. In this respect, the detection of berry pedicels would be an even more critical step to 55 

avoid confounding effects.  56 

The automatic detection of the pedicel in berries, or peduncle in other fruits (pedicel is normally used 57 

in the case of grain fruits that are joined together in a bunch and peduncle is more common for fruits 58 

joined directly to the branch of the plant), is still a challenge. Kapach et al. (2012) offered an extensive 59 

description of the computer vision techniques that can be used for fruit-harvesting robots, concluding 60 

that the automation of some specific tasks is especially difficult, such as the detection of the peduncle 61 

in the grasping and picking operations carried out by the robot. 62 

In some fruit, like oranges, the presence of large peduncles can damage other fruits during storage but 63 

their absence is considered a loss of quality. Sometimes it is important to detect the peduncle clearly in 64 

order to avoid confounding effects between the presence of the peduncle and external damage in 65 

automated quality inspection systems. If the peduncle is visibly different from the fruit, strategies 66 

based on colour information can be applied to locate it. Laykin et al. (2002) used colour information to 67 

discriminate between the peduncle on tomatoes and bruises with a success rate of 100%. However, in 68 

other cases the difference between the peduncle and other defects is not so apparent. In these 69 

situations, Blasco et al. (2007) used visible images complemented by a multispectral system to 70 

discriminate among the peduncle and various defects in citrus fruits, achieving a peduncle 71 

identification rate of 67%. 72 

Peduncle detection is also needed when information regarding the orientation of the fruit is required. 73 

Bennedsen and Peterson (2005) developed a computer vision system to detect defects in apples that 74 

had previously been oriented towards preventing the peduncles from appearing in the image. For the 75 

orientation process, these authors used a prototype developed by Throop et al. (2003), who oriented 76 

the apples with the peduncle on one side. In another work, Lu and Peng (2006) needed the fruit to be 77 
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oriented with the end of the peduncle horizontal in order to obtain scattering measures in peaches. A 78 

similar idea was used by Blasco et al. (2003), who acquired four images of apples from different views 79 

in order to estimate the size of the fruit in the image based on the equatorial diameter. For this 80 

purpose, the more perpendicular and centred the peduncle was, the better. 81 

Harvesting robotics may also require peduncle detection systems to be implemented in order to collect 82 

the fruit properly. In this regard, Van Henten et al. (2006) presented a robotic system for de-leafing 83 

cucumber plants. To perform its tasks, the robot identified the pedicel of each leaf using two images at 84 

wavelengths of 850 nm and 970 nm, which can potentially be exported for use in actual harvesting 85 

robots. Hayashi et al. (2010 and 2011) used a machine vision unit based on three cameras installed on 86 

a robotic harvesting system to detect the position of strawberries and the orientation of the peduncle, 87 

thereby allowing accurate guidance of the robotic arm. 88 

As can be seen, the detection of fruit peduncles is an important issue to be taken into account in the 89 

design of a computer vision system for estimating the quality features of fruit or vegetables. Several 90 

solutions have been proposed to determine the peduncle position, such as: the use of structured 91 

lighting to detect concavities in apples (Yang, 1993); colour segmentation techniques to differentiate 92 

the calyx and peduncle in citrus fruits (Ruiz et al., 1996); or the study of light reflection in apples 93 

(Penman, 2002). In some of these works, the use of a spectral imaging system to locate the peduncle 94 

and discriminate it from other damage was required. Thus, the peduncles of some fruits present 95 

different reflectance values in the NIR region in relation to the skin of the fruit at certain wavelengths. 96 

Xing et al. (2007) used the texture of multispectral images to discriminate between smooth faces and 97 

those presenting peduncles in apples of different colours. A similar approach was taken by Nanyam et 98 

al. (2012) to detect and discriminate the peduncle and leaves from defects in strawberries.  99 

The main objective of this work was to develop an effective new method using image analysis and 100 

based on contour signatures to detect and remove the pedicel in images of grapevine berries using 101 

machine vision, and thus accurately determine the weight and size (diameter) of grape berries. The 102 

algorithm was also tested with other fruits like mandarins, apples, pears, and so on to validate it. 103 
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This paper is organised as follows. In section 2 we present the materials and methods, including a 104 

description of the plant material, the vision system, the segmentation process and a detailed 105 

description of the peduncle/pedicel location algorithm. In section 3 we present the results obtained for 106 

the size and weight of grape berries, including the results for other fruits to validate the algorithm, as 107 

well as some discussion of the results. Finally, section 4 offers some conclusions from this work. 108 

 109 

2. Materials and methods 110 

The algorithms were developed and tuned using different images of 20 wine-grape berries of several 111 

colours and sizes, and captured with the pedicel at various random orientations. They were validated 112 

using another independent set of 100 single berries of different sizes and colours belonging to two 113 

grapevine (Vitis vinifera L.) cultivars (50 samples of Grenache and 50 of Tempranillo). The berries 114 

were placed on a white background inside a chamber equipped with a still camera (EOS 550D, Canon 115 

Inc, Japan) and four lamps each containing two fluorescent tubes (Osram L 18W/965 BIOLUX) with a 116 

colour temperature of 6500 ºK. The angle between the axis of the lens and the sources of illumination 117 

was approximately 45º, the insides of the inspection chamber were coated with anti-reflective material, 118 

and cross-polarisation was achieved by placing polarising filters in front of the lamps and in the 119 

camera lenses to minimise the impact of specular reflections produced on spherical fruits. The berries 120 

were oriented with the pedicel facing upwards and downwards interchangeably and the images were 121 

obtained with a size of 2592 x 1944 pixels and a resolution of 0.11 mm/pixel. The berries in the 122 

images included the pedicel, which makes it necessary to detect the insertion point between the fruit 123 

and the pedicel in order to obtain accurate measurements of the berry parameters. Two algorithms 124 

based on the radius function (Kunttu and Lepisto, 2007) and arc-length versus the turning angle graph 125 

(Wolfson, 1990) of the contour were developed to detect these points in the contour of the objects 126 

found in the images. In addition, a new algorithm based on a signature derived from these previous 127 

functions is proposed to improve the performance and robustness of a potential automatic system. To 128 

make the algorithm more robust and potentially general, the algorithms were also tested in other fruits 129 
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like mandarins, pears, apples and peppers representing bigger spherical fruits, non-spherical fruits and 130 

irregular fruits with different types of peduncles and with randomly oriented peduncles.  131 

For the manual assessment of grape berry size and weight, all imaged grape berries were individually 132 

labelled and weighed (XR205SM-DR, Precisa Instruments Ltd., Switzerland), and their size was 133 

measured manually using an electronic calliper (Digitcal, TESA SA, Switzerland) to determine the 134 

peduncle/pedicel-calyx (stem-calyx) axis and equatorial diameters. The resolution used for the size 135 

measurements was 0.01 mm. For the rest of the fruits tested to validate the peduncle/pedicel location 136 

algorithm, all the manual measurements for determining the stem-calyx axis and the equatorial 137 

diameters were carried out using the same electronic calliper. 138 

2.1. Segmentation and contour detection processes 139 

Prior to the segmentation of images, an off-line process is carried out. This process consists in 140 

generating a look-up table (LUT) that is later used to segment the images of the fruit. This process is 141 

performed using a computer application specially developed for this purpose that allows an operator to 142 

select different windows in the images representing the background and peel/stem classes. The RGB 143 

values of the training windows selected are used as input in a Bayesian discriminant model (Harrel, 144 

1991), the independent variables of the model thus being the grey levels of the RGB bands. Finally, 145 

the model is stored in an LUT which contains the classes of the model, and thus the segmented image 146 

contains the classes that each pixel belongs to. After image segmentation, a binary image showing the 147 

fruit in white and the background in black was obtained. The next step was to apply an algorithm 148 

which extracted the eight-connected contour by means of the chain code described by Freeman (1961). 149 

2.2. Peduncle/pedicel location algorithm 150 

One of the key points of the methodology presented here was the algorithm proposed to detect the 151 

connecting points between the peduncle and the fruit by analysing the contour of the fruit. Several 152 

approaches to analysing the contour of the objects have already been proposed for different purposes, 153 

like the analysis of the shape. Many of them propose the use of signatures, which are methods that 154 

represent a contour using a one-dimensional function. The best known is probably the radius signature 155 
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(Blasco et al., 2009; ElMasry et al., 2012), which can yield a useful description of the shape of regular 156 

or manufactured objects with a known shape, but could fail when it is applied to biological objects 157 

with irregular or different shapes. Signatures are invariant against size or orientation, which makes 158 

them particularly interesting in cases where the size or the orientation of the object is unknown. 159 

Applied to peduncle detection, the main problem appears in irregular fruits, which present large 160 

variations in their signatures that make them unsuitable to identify the peduncle properly. Even in 161 

regular-shaped fruits this signature is sometimes not robust enough to ensure good results. A different 162 

descriptor of the perimeter is the curvature signature, although it has not been used frequently for food 163 

analysis but is common in other fields (Guliato et al., 2008). Both of them have been tested in this 164 

work. The approach proposed in the present study was to obtain a new signature derived from the 165 

radius signature. This new signature analyses the changes in the direction of the curvature of the radius 166 

function. In regular fruits, these changes are supposed to be very smooth except when peduncle exists. 167 

In the berries, the detection of the pedicel was carried out by an algorithm that consists in the 168 

following steps: 169 

1. The centre of mass of the berry was calculated as the average coordinates of the pixels 170 

belonging to the fruit. A faster method that could be used instead when the processing time is 171 

a constraint would involve using only the information about the boundary to estimate the 172 

centroid of the fruit. But in this case, the centroid could be too biased towards the 173 

pedicel/peduncle location if it is too long, and the performance of the method could decrease.  174 

2. The radius function (Rubine, 1991) of the berry contour was calculated as a one-dimensional 175 

function in which each item of data was the Euclidean distance between the centroid and each 176 

of the points on the contour. This is represented in Figure 1, where Figure 1a shows a sample 177 

of the original image of a berry and the contour extracted with its centroid position. The radius 178 

function is shown in Figure 1b. In this function it is supposed that the farthest point from the 179 

centroid corresponds to the top of the pedicel/peduncle and therefore the two local minima 180 

around this point are selected as the connecting points between the pedicel/peduncle and the 181 
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fruit. The maximum value of the radius signature for the end of the pedicel/peduncle (1) and 182 

the two contact points of the pedicel/peduncle with the berry (2), (3) can also be observed. 183 

3. The second function calculated was based on the arc-length versus the turning angle graph of 184 

the curvature (Kalvin et al., 1986). In essence, the curvature consists in the rate of change of , 185 

the angle between the tangent vector to the curvature, and the horizontal axis for each point in 186 

the contour. The present work made use of the turning angle function (also called direction 187 

function), which consists in the graph showing the difference in  at equally spaced points in 188 

the contour Si (i=1..n), the difference being computed as reflected in equation (1) (Shih, 189 

2010): 190 

 (Si) = (Si+S)-(Si)                                             (1) 191 

In this work S was set to 4, which was enough to capture changes in the direction of the 192 

contour. Therefore, the equation (1) was modified as follows: 193 

 (Si) = (Si-2)-(Si+2)                                                (2) 194 

For regular curves or shapes, the arc-length versus turning angle graph should be a monotonic 195 

decreasing function with values in the interval [-, +] radians. When changes in the contour 196 

are encountered due to irregular shapes or the presence of pedicel/peduncle, these are reflected 197 

on the graph of the function and can therefore be detected and analysed. An example of this 198 

signature is also shown in Figure 1b for a berry with the pedicel oriented downwards. 199 

 200 

FIGURE 1. a) Original image and contour of a grape berry with pedicel; and b) its corresponding 201 

radius function and arc-length versus turning angle function 202 
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 203 

4. Finally, both functions were mixed to obtain a new one derived from the radius function that 204 

was thereafter called the radius direction signature. The new function was then obtained by 205 

applying the arc-length versus turning angle using the radius function as input instead of the 206 

fruit contour, which allows drastic changes in the outline of the fruits to be detected. This new 207 

function took values close to zero when the radius signature presented small changes, and 208 

different from zero otherwise.  209 

Under the premise that the contour moves away from the centroid in the pedicel/peduncle part 210 

(the distance between the contour and the centroid increases), this new signature attempted to 211 

detect the points where these changes in the direction happened. In the case of spherical fruits, 212 

the distance from the contour to the centroid should be very similar for all points on the 213 

contour and therefore the function should present small changes. In a similar way, in the case 214 

of elliptical or other regular-shaped fruits, the changes should be smooth and constant. Figure 215 

2 shows several samples of berries with different orientations of the pedicel (Figure 2a) and 216 

their corresponding signatures (Figure 2b). The local maximums have been centred in the 217 

graphs to make them easier to understand.  218 

 219 
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FIGURE 2. a) Two samples of grape berries; and b) their corresponding radius and arc-length versus 220 

turning angle function and radius direction signature 221 

 222 

2.3. Validation process in grape berries 223 

To estimate berry size, each individual berry was first located in the image and then the pedicel was 224 

detected following the algorithm described above. The two points identified as the connecting points 225 

between the pedicel and the fruit were joined to close the fruit contour while excluding the pedicel. 226 

Then, the centroid was calculated again without the influence of the pedicel and the size was estimated 227 

by means of the peduncle/pedicel axis and the diameter crossing the centroid, which was 228 

perpendicular to the previous peduncle/pedicel axis (equatorial diameter). The area of each berry was 229 

also estimated as the number of pixels belonging to the fruit excluding the pedicel. The information 230 

about the area was used to predict the weight of each individual berry. The flowchart of the features 231 

extraction algorithm can be found in Figure 3 and the pseudo-code of the main algorithm is presented 232 

in Figure 4. 233 
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 234 

FIGURE 3. Flowchart for peduncle/pedicel detection and features extraction 235 
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 236 
FIGURE 4. Pseudo-code of the algorithm for peduncle/pedicel detection 237 
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 238 

In order to assess the performance of the imaging system developed to predict the size (polar diameter) 239 

and weight of the berries in images including the pedicels, a regression model was built on a training 240 

set of 66 of the 100 berries. The remaining 34 berries were later used for validation. 241 

 242 

2.4. Validation process in other fruits 243 

To test the performance and robustness of the algorithm as well as its capability to be generalised to 244 

other fruits, a number of types of fruit with different shapes, sizes and colours were imaged in a 245 

variety of orientations and the images were processed to find the peduncles and size using the 246 

proposed approach. Particularly, a total of 30 pieces of each of these sets of fruits were used: pears cv. 247 

‘Blanquilla’, apples cv. ‘Golden Delicious’ and cv. ‘Royal Gala’, red bell peppers cv. ‘Lamuyo’, and 248 

mandarins cv. ‘Nova’. For each set of different fruits, the peduncle was visible in the image for a total 249 

of 25 out of 30 fruits. The rest of the fruit had no peduncle or it was located inside the projected area 250 

of the fruit. In the case of red peppers, all the samples contained peduncle. The size of this set was 251 

measured manually along the peduncle axis using a digital calliper and the measurements were 252 

recorded. The size of all the fruits was also estimated as the peduncle diameter from the closed contour 253 

of the fruit, excluding the peduncle.  254 

Some of the results of the peduncle location algorithm for the fruits tested in this work are shown in 255 

Figure 5. The points of contact between the peduncle and the fruit are depicted by small yellow and 256 

blue key points (small squares), and the base point of the peduncle is the midpoint in-between (pink 257 

key point). The distance between the base point of the peduncle and its opposite key point represents 258 

the diameter of the peduncle/pedicel, and the other two points on both sides of the centroid determine 259 

the length of the equatorial axis, both of which later correlated with the calliper measurements. 260 
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 261 

FIGURE 5. Results of peduncle detection and size estimation for some fruits tested with a random 262 

position of the peduncle: a) for grape berry and mandarin, b) for apple (‘Golden Delicious’) and red 263 

pepper, and c) for apple (‘Royal Gala’) and pear 264 

 265 

When no peduncle was present, the direction radius signature did not vary from zero since changes in 266 

the direction of the radius signature were very smooth, and both axes of inertia were calculated from 267 

the contour to obtain the size features. Figure 6 shows the differences in the signals calculated in 268 

images with and without peduncle. 269 
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 270 

FIGURE 6. Example of results when (a) no peduncle was present in a ‘Royal Gala’ apple, compared 271 

to (b) a result with peduncle detected in a pear 272 

 273 

3. Results and discussion 274 

3.1. Assessment of grape berry size and weight by image analysis 275 

Table 1 shows the statistical parameters for the regression model for the size estimation in ‘Grenache’ 276 

and ‘Tempranillo’ grape berries. The adjusted R
2
 value obtained for the two grape varieties (0.97) 277 

confirmed the goodness of the linear regression found between the real and the estimated size values, 278 

the two coefficients being statistically significant (Table 1). 279 

 280 

TABLE 1. Regression analyses for the estimation of the size of ‘Grenache’ and ‘Tempranillo’ grape 281 

berries 282 

Grape variety Parameter Estimation Std. error T Statistic P-Value 

Grenache 
Constant 1.0436 0.2735 3.81 <0.001 

Polar Diameter 0.9045 0.0198 45.76 <0.001 

Tempranillo 
Constant 0.8156 0.3350 2.44 <0.019 

Polar Diameter 0.9086 0.0237 38.32 <0.001 

 283 

In order to validate the models properly, the next step was to use the regression models to predict the 284 

berry size values of the validation set. Figure 7 shows the validation results for both grapevine 285 

varieties. The validated R
2
 values remained almost the same (a little bit lower, as expected for very 286 
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high R
2
 values), which finally gave rise to a reliable predictive model. This result indicates that the 287 

vision system developed for the estimation of the size of grape berries with pedicel was completely 288 

reliable and could be used as a useful laboratory tool replacing the very slow and tedious manual 289 

methods that are currently employed. 290 

 291 

FIGURE 7. Adjustment to the linear model for the diameter of the berries from a) ‘Grenache’, and b) 292 

‘Tempranillo’. Statistical significance at p<0.01 is represented by (**) 293 

 294 

Similar analyses were performed to assess the goodness of the system at predicting the weight of 295 

individual berries obtaining a R
2
=0.98 for cv. ‘Grenache’ and R

2
=0.96 for the cv. ‘Tempranillo’ 296 

(Table 2) with P-value<0.01 for both cultivars. To obtain more precise values of the weight, the 297 

pedicel was previously removed from the grape berries. 298 

 299 

TABLE 2. Regression analyses for the estimation of the weight of ‘Grenache’ and ‘Tempranillo’ 300 

berries 301 

Variety Parameter Estimation Std. error T Statistic P-Value 

Grenache 
Constant -0.6737 0.0566 -11.91 <0.001 

Weight-Area 0.0148 0.0004 38.88 <0.001 

Tempranillo 
Constant -0.6593 0.0524 -12.59 <0.001 

Weight-Area 0.0149 0.0004 44.42 <0.001 

 302 
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To validate the models, the regression models were used to predict the weight values of the validation 303 

set. Figure 8 shows the validation results for both varieties. These results indicated that the vision 304 

system developed was also reliable for estimating the weight of grape berries of both cultivars. 305 

 306 

FIGURE 8. Adjustment to the linear model for the estimation of the weight of berries a) ‘Grenache’, 307 

and b) ‘Tempranillo’. Statistical significance at p<0.01 is represented by (**) 308 

 309 

Berry size and weight are common parameters for monitoring grape maturity before harvest in the 310 

wine industry (Iland et al., 2004). Nevertheless, berry weight and size determination is conducted 311 

manually in the winery laboratory, and is therefore a tedious and time-consuming task. Cluster 312 

compactness, berry colour and health grape status are properties that are strongly influenced by berry 313 

weight (Tardaguila et al., 2010) and size. 314 

On the other hand, berry size is also related to the skin-to-pulp ratio, which is widely assumed to be a 315 

grape and wine quality factor. Since the most decisive compounds for berry and wine quality, such as 316 

aromas and phenols, are located in the skin, the larger the skin-to-pulp ratio is, the higher the potential 317 

quality of the final wine will be (Barbagallo et al., 2011). Hence, smaller berries are often considered 318 

to yield better wines and are highly appreciated by winemakers, who usually include a grape berry 319 

separation step based on their size carried out on a sorting table when the intention is to produce high-320 

quality wines.   321 

The methodology developed for berry weight assessment, using image analysis, is a new, fast and 322 

inexpensive tool for the wine industry to monitor berry ripening and to evaluate potential grape and 323 
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wine quality. This method could also be implemented as an inspection module on the sorting belts and 324 

tables of wineries producing high quality ultra-premium wines, thereby replacing the manual 325 

separation based on berry size that is currently performed after the de-stemming process.  326 

 327 

3.2. Detection of peduncle in other fruits 328 

As stated in section 2, the algorithm developed was also tested on other fruits, such as apples, pears, 329 

mandarins and peppers so as to be able to generalise it. The two functions and the signature described 330 

in section 2.3 were used to detect the peduncle, and the best results were obtained for the new radius 331 

direction signature (Table 3), which includes the correct determination of all fruits without peduncle. 332 

The main drawback of using the radius signature was that minimum values did not always match the 333 

contact points of the peduncle with the fruit when this was non-spherical (because there were points 334 

closer to the centroid than the peduncle points). Furthermore, in irregular fruits the arc-length versus 335 

turning angle function showed sudden changes in different parts of the signal, which caused confusion 336 

with the peduncle. 337 

Regarding the estimation of the fruit size, the peduncle/pedicel axis was compared to the manual 338 

calliper measurement, an adjusted R
2
>0.93 being obtained for all types of fruit. This result confirmed 339 

the goodness of the regression, since P-value<0.01 in all cases, thus demonstrating the reliability of 340 

the algorithms that were developed.  341 

 342 

TABLE 3. Percentage of pedicel (grape berries) and peduncle (other fruits) detection using different 343 

signatures. For the coefficient of determination, R
2
 was tested at p<0.01 344 

Fruit Radius 

function 

Arc-length vs. turning 

angle function 

Radius direction 

signature 

Size (R
2
) 

Grape berry 57.0% 72.0% 100% 0.97 

Mandarin 60.0% 76.7% 100% 0.97 

Apple Golden Delicious 50.0% 63.3% 96.7% 0.96 

Apple Royal Gala 40.0% 60.0% 96.7% 0.96 

Pear 16.7% 60.0% 96.7% 0.96 



 19 

Red pepper 20.0% 30.0% 90.0% 0.93 

 345 

The limitations of the method mainly concerned the shape of the object, since the algorithm was able 346 

to determine the presence of the peduncle in regular and more or less rounded or compact fruits very 347 

well, but was not able to determine the presence or absence of the peduncle in fruits that were either 348 

elongated or that had irregular shapes, like the green peppers. This occurred because this method is 349 

based on the radius signature calculated as the distance of the contour points from the centre of mass. 350 

Therefore, although this centre was calculated from the area and not only from the contour, in 351 

elongated objects the centre of mass was biased to the peduncle (and sometimes outside the object 352 

surface), causing the local maximum of the polar signature to not always match the position of the end 353 

of the peduncle. 354 

Another limitation concerns the requirement that the peduncle had to stand out from the contour of the 355 

object, which meant that the fruit or vegetable had to be oriented in order to image its profile, 356 

otherwise the peduncle could be detected, but not the correct size parameters. This can be observed in 357 

Figure 9, where the detection of the peduncle is performed correctly (Figure 9a), but the parameter of 358 

size is not (Figure 9b). In contrast, the method performed well for regular-shaped fruits. This is 359 

important since it could potentially be applied in industrial imaging vision systems. For instance, 360 

Lefcourt et al. (2009) found that under particular loading conditions in industrial systems, rotating 361 

apples generally moved to an orientation where the peduncle/pedicel axis was parallel to the plane of 362 

the track and perpendicular to the direction of travel. This orientation would allow this algorithm to 363 

detect the peduncle location properly and to measure the size of the fruits accurately in real time, since 364 

the processing time needed to analyse one image is less than 40 ms. On the other hand, it could also be 365 

implemented in harvesting robots to orient or guide the robotic hand, but in this case other problems 366 

related with the image segmentation could appear. 367 
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 368 

FIGURE 9. Example of result when the fruit was not well oriented on its profile and its impact on 369 

the size parameters 370 

 371 

4. Conclusions 372 

This work has presented a new, fast and inexpensive method to accurately assess the berry size and 373 

weight of wine-grapes, thus providing the wine industry with a cheap useful tool to monitor berry 374 

ripening and to evaluate potential grape and wine quality. 375 

Moreover, a new effective method was developed to detect and remove the part of the 376 

peduncle/pedicel that protrudes from the fruit in the images taken by computer vision systems. The 377 

algorithm developed here could be applied to locate the peduncle/pedicel in order to have the fruit 378 

oriented or to avoid misclassification between the peduncle and defects, to accurately estimate the size 379 

while avoiding the effect of the peduncle, or also to measure the length of the peduncle. The new 380 

method does not require the segmentation of the peduncle and/or fruit defects in different regions, 381 

thereby allowing faster processing and can be used on standard images taken in the visible region of 382 

the spectrum. These two advantages make the proposed methodology faster and cheaper than other 383 

image vision methods that implement slow complex algorithms or require more expensive spectral 384 
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computer vision equipment. The methodology developed here may be implemented in automated 385 

inspection systems and robots for multiple purposes such as sorting or harvesting tasks. 386 
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