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FURTHER RESULTS ON THE REVERSE ORDER LAW FOR THE

GROUP INVERSE IN RINGS ∗

XIAOJI LIU† , MIAO ZHANG‡ , AND JULIO BENı́TEZ§

Abstract. In this paper, we use the Drazin inverse to derive some new equivalences of the

reverse order law for the group inverse in unitary rings. Moreover, if the ring has an involution, we

present more equivalences when both involved elements are EP.
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1. Introduction. Let R be a unitary ring whose unity is 1. For a, b ∈ R, the

commutator of a, b is defined as [a, b] = ab − ba. Let a ∈ R. It can be easily proved

that the set of x ∈ R satisfying the following conditions

axa = a, xax = x, ax = xa (1.1)

is either empty or a singleton. When there exists such x, then a is said to be group

invertible and x is denoted by a#. A useful fact about group inverses is the following:

If a is a group invertible element of a unitary ring R, then a# double commutes with

a, that is, if z ∈ R satisfies [a, z] = 0, then [a#, z] = 0 (see e.g. [6, Lemma 1.4.5]).

We shall denote by R# the subset of R consisting of group invertible elements and by

R−1 the set of standard invertible elements. If a ∈ R#, the spectral idempotent of a

is defined as aπ = 1− aa#. Also, the following result on group inverses will be used.

For the proof, the interested reader can consult [15, Proposition 8.22].

Theorem 1.1. Let a be an element of a unitary ring R. Then a is group invertible

if and only if exist x, y ∈ R such that a2x = a and ya2 = a. In this case, one has

a# = yax.

With each element a of a unitary ring R we associate two right ideals:

aR = {ax : x ∈ R}, a◦ = {x ∈ R : ax = 0}.
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Let a, b be elements of a unitary ring R. The element b is a Drazin inverse of a if

ab = ba, b = ab2, ak = ak+1b

for some nonnegative integer k. It can be proved (see [7, Theorem 1]) that such b is

unique and it is customarily denoted ad . The least nonnegative integer k for which

these equalities hold is the Drazin index i(a) of a. In [7, Theorem 4] it was proved

that an element a ∈ R is Drazin invertible if and only if there are nonnegative integers

p, q and u, v ∈ R such that ap+1u = ap and vaq+1 = aq. The smallest value of p for

which {u ∈ R : ap+1u = ap} 6= ∅ is called the left index of a, denoted by l(a). In

a similar way the right index of a is defined, and is denoted by r(a). In a remark

following [7, Theorem 4] it was shown that in case that a is Drazin invertible, then

i(a) = l(a) = r(a).

An involution in a ring R is a map a 7→ a∗ such that for any a, b ∈ R,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

If the ring R has an involution, then we can define another class of generalized inverse.

An element a ∈ R is Moore-Penrose invertible if there exists x ∈ R such that

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa. (1.2)

Such x, when exists, is unique and is denoted by a†.

An element a ∈ R, where R is a ring with involution, is said to be self-adjoint

when a = a∗. We say that a is EP when a is Moore-Penrose invertible and aa† = a†a.

Observe that when a is EP, then a is group invertible and a† = a#, and that any

self-adjoint element, Moore-Penrose invertible or group invertible, is EP.

The reverse order law for generalized inverses plays an important role in many

areas including singular matrix problem, ill-posed problems, optimization, and statis-

tics (see e.g. [2, 8, 16, 17, 18, 19, 20]. These problems have attracted considerable

attention since the middle 1960s and many interesting results have been obtained.

T.N.E. Greville [9] proved that (AB)† = B†A† if and only if R(A∗AB) ⊆ R(B) and

R(BB∗A∗) ⊆ R(A∗), for complex matrices A and B, where R(·) denotes the column

space. This result was extended to linear bounded operators on Hilbert spaces in [10].

Another characterization of the reverse order law for the Moore-Penrose inverse is due

to Arghiriade [1]: For complex matrices A, B such that AB exists, (AB)† = B†A†

if and only if A∗ABB∗ is EP. The interested reader can consult [2, Section 4.4] for

the proof of the original results of Greville and Arghiriade. Later, the reverse order

law for the Moore-Penrose inverse was considered in rings with involution (see [11]).

C.Y. Deng [4] presented some equivalent conditions concerning the reverse order law

(AB)# = B#A# for group invertible operators A,B on a Hilbert space. N.Č. Dinčić
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and D.S. Djordjević [5] gave new equivalences of the reverse order law for the Moore-

Penrose inverse for operators on Hilbert spaces. D. Mosić and D.S. Djordjević [13]

investigated some necessary and sufficient conditions for the reverse order law for the

group inverse in rings. The hybrid reverse order law (ab)# = b†a† in rings was studied

in [14].

In this paper, we give new equivalent conditions of the reverse order law for the

group inverse in unitary rings. Later, we state some new results related to the reverse

order law for the group inverse when both involved elements are EP.

The word idempotent will be reserved for an element p of a unitary ring R such

that p2 = p. Also, we will write p = 1 − p. If in addition R has an involution, then

we will say that an element p is a projection when p = p2 = p∗.

2. Preliminary results. If R is a unitary ring and p ∈ R is an idempotent,

then every x ∈ R has the following matrix representation

x =

[
pxp pxp

pxp pxp

]
p

If, in addition, R has an involution and p is a projection, then the above matrix

representation preserves this involution. More precisely, if x ∈ R is represented as

x = [ x1 x2
x3 x4

]p, then x∗ =
[
x∗
1 x

∗
3

x∗
2 x

∗
4

]
p
.

If a is an element of a ring R, then

a ∈ R# ⇐⇒ there is an idempotent p ∈ R such that a+p ∈ R−1 and ap = pa = 0.

(2.1)

Such a p, when it exists, is unique (see [15, Proposition 8.24]). This unique idem-

potent p is the spectral idempotent of a –recall that the spectral idempotent of a

is customarily written by aπ and aπ = 1 − aa# holds. Hence, if a ∈ R#, we can

represent

a =

[
a 0

0 0

]
aa#

, a# =

[
a# 0

0 0

]
aa#

, aπ =

[
0 0

0 aπ

]
aa#

. (2.2)

When (2.1) is applied to a group invertible matrix A ∈ Cn×n, by writing the idempo-

tent Aπ as U(0⊕ Ik)U−1, where U ∈ Cn×n is nonsingular and Ik denotes the identity

matrix of order k (see e.g. [21, Theorem 5.1]), one easily gets the existence of a non-

singular matrix B ∈ C(n−k)×(n−k) such that A = U(B ⊕ 0)U−1. Obviously, we have

also A# = U(B−1 ⊕ 0)U−1.

Lemma 2.1. Let R be a unitary ring and m ∈ R. If p ∈ R is an idempotent,

m =

[
a b

0 c

]
p

, (2.3)
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then

(i) If m is group invertible and c is Drazin invertible, then a, c are group invertible

and aπbcπ = 0.

(ii) If a, c are group invertible and aπbcπ = 0, then m is group invertible and

m# =

[
a# (a#)2bcπ + aπb(c#)2 − a#bc#

0 c#

]
p

.

Proof. (i) Assume that m is group invertible and c is Drazin invertible. Let us

write

m# =

[
u v

w z

]
p

. (2.4)

From m2m# = m we get

c2w = 0 (2.5)

and

c2z = c. (2.6)

Equality (2.6) implies l(c) ≤ 1. Since c is Drazin invertible we get i(c) = l(c) ≤ 1.

Thus, c is group invertible. By premultiplying by c# the equality (2.5) we get

cw = 0. (2.7)

By using m(m#)2 = m# and (2.7) we get czw = w. From (2.6) and c ∈ R# we get

cz = c#c. Hence (2.7) leads to w = czw = c#cw = 0. By looking at the “north-west”

and “south-east” blocks of mm#m = m, m#mm# = m#, and mm# = m#m when

(2.3), (2.4), and w = 0 are used, one gets the group invertibility of a, a# = u, and

c# = z.

From m2m# = m we have

a2v + abc# + bcc# = b, (2.8)

Premultiplication of (2.8) by (a#)2 yields aa#v + a#bc# + (a#)2bcc# = (a#)2b, or

equivalently

aa#v = (a#)2bcπ − a#bc#. (2.9)

From m#m2 = m we get a#ab+a#bc+vc2 = b. Similarly as before, postmultiplication

of this last equality by (c#)2 gives

vcc# = aπb(c#)2 − a#bc#. (2.10)
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Finally, from m#mm# = m#, (2.9), and (2.10) one obtains

v = aa#v + a#bc# + vcc# = (a#)2bcπ + aπb(c#)2 − a#bc#.

Insertion of this expression of v in (2.8) and a further simplification lead to aπbcπ = 0.

(ii) follows by verifying that the expression for m# obeys (1.1), which has a unique

solution, namely the group inverse of m.

Remark 2.2. Evidently, Lemma 2.1 is valid for complex matrices M = [A B
0 C ]

for A ∈ Cn×n and C ∈ Cm×m. This case was obtained in [12]. In this setting,

the assumption of the Drazin invertibility of C can be removed because any square

complex matrix has a unique Drazin inverse (see e.g., [2, Section 4.6]).

Remark 2.3. A special case of Lemma 2.1 is the following: Let R be a unitary

ring and m ∈ R. If p ∈ R is an idempotent, m = [ a b0 0 ]p, then m ∈ R# if and only if

a ∈ R# and b = aa#b. In this case,

m# =

[
a# (a#)2b

0 0

]
p

.

Remark 2.4. The hypothesis “c is Drazin invertible” in item (i) of Lemma 2.1

can be changed by “a is Drazin invertible”. The sketch of the proof is as follows:

From (2.3), (2.4), and m#m2 = m we get ua2 = a and wa2 = 0. Hence r(a) ≤ 1, and

the Drazin invertibility of a leads to i(a) = 1. Thus, a ∈ R# and so, ua = aa# and

wa = 0. From m# = (m#)2m we get w = wua; which in conjunction with ua = aa#

and wa = 0 yields w = 0. The proof finishes now as in Lemma 2.1.

Remark 2.5. There is a version of Lemma 2.1 when the zero element is located

at the “north-east” position. Assume that all the hypothesis of Lemma 2.1 hold

except that m = [ a 0
b c ]p. Since [ a 0

b c ]p = [ c b0 a ]p, we get

m# =

[
c# (c#)2baπ + cπb(a#)2 − c#ba#

0 a#

]
p

=

[
a# 0

(c#)2baπ + cπb(a#)2 − c#ba# c#

]
p

and cπbaπ = 0.

Lemma 2.6. Let R be a unitary ring and m ∈ R. If p ∈ R is an idempotent

and m = [ a 0
0 c ]p, then m ∈ R# if and only if a, c ∈ R#. In this case, one has

m# =
[
a# 0
0 c#

]
p
.
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Proof. Assume that m is group invertible. Let us write m# = [ x yz t ]p. From

m2m# = m and m#m2 = m we get a2x = a = xa2 and c2t = c = tc2. By Theorem

1.1, we obtain that a and c are group invertible. Conversely, if a and c are group

invertible, it is enough to apply Lemma 2.1 to get this Lemma.

Lemma 2.7. Let R be a unitary ring and a, b ∈ R such that a, b are group

invertible. If a is represented as in (2.2) and

b =

[
b1 b2
b3 b4

]
aa#

, (2.11)

then the following conditions are equivalent:

(i) ab is group invertible.

(ii) ab1 is group invertible and ab2 = ab1(ab1)#ab2.

Under this equivalence, one has

(ab)# =

[
(ab1)# ((ab1)#)2ab2

0 0

]
aa#

. (2.12)

Proof. It follows from Remark 2.3.

Let R be a unitary ring and a, b ∈ R. If a is group invertible and b is represented

as in (2.11), then some equalities that will be used many times in the sequel are

b1aa
# = aa#b1 = b1 and aa#b2 = b2, (2.13)

since b1 = pbp and b2 = pbp, where p = aa#. In particular, observe that a is invertible

in the subring pRp, a# is the inverse of a in pRp, and p is the unity in this subring.

But, we will avoid the use of the subring pRp along the paper by utilizing the equalities

(2.13).

Lemma 2.8. Let R be a unitary ring and a, b ∈ R such that a, b, ab are group

invertible. If b is represented as in (2.11), then (ab1)#ab2 = 0 if and only if b2 = 0.

Proof. Let us assume that (ab1)#ab2 = 0 holds. Lemma 2.7 and the group

invertibility of ab yield ab2 = ab1(ab1)#ab2 = 0, which implies b2 = 0 in view of the

second equality of (2.13). The converse is trivial.

Lemma 2.9. Let R be a unitary ring and a, b ∈ R such that a, b, ab are group

invertible. If a is represented as in (2.2),

b =

[
b1 b2
b3 b4

]
aa#

, b# =

[
c1 c2
c3 c4

]
aa#

, (2.14)

and b1 or b4 are Drazin invertible, then the following conditions are equivalent:
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(i) (ab)# = b#a#.

(ii) (ab1)# = c1a
#, ((ab1)#)2ab2 = 0, and c3 = 0.

(iii) b1 is group invertible, b2 = b3 = 0, and (ab1)# = b#1 a
#.

Proof. Let us denote p = aa#.

(i) ⇔ (ii): We apply Lemma 2.7. Combining (2.2), (2.12), and (2.14), it is easy

to conclude that

(ab)# = b#a# ⇔ (ab1)# = c1a
#, ((ab1)#)2ab2 = 0, c3a

# = 0.

From (2.14) we have c3 = pb#p. Thus, c3a
# = pb#pa# = pb#aa#a# = pb#a#. If

c3a
# = 0, then c3 = pb#p = pb#a#a = 0. Trivially, if c3 = 0, then c3a

# = 0.

Therefore, the equivalence between items (i) and (ii) of the theorem has been proved.

(ii) ⇒ (iii): By premultiplying ((ab1)#)2ab2 = 0 by ab1, we get (ab1)#ab2 = 0.

Since ab is group invertible, Lemma 2.8 yields b2 = 0. Thus, b =
[
b1 0
b3 b4

]
p
. Since b

is group invertible and b1 or b4 are Drazin invertible, by using Lemma 2.1 and the

representation of b# given in (2.14), we get c2 = 0. Recall that one hypothesis of

(ii) is c3 = 0. Therefore b# =
[
c1 0
0 c4

]
p
. By Lemma 2.6 applied for m = b#, we get

b = (b#)# =
[
c#1 0

0 c#4

]
p
. So, b3 = 0 and b1 = c#1 , and this proves (iii).

The implication (iii) ⇒ (i) is trivial.

3. Reverse order law for the group inverse in rings. Now, we state the

main result of this paper. Observe that if a, b are elements in a ring such that a is

group invertible and b is represented as in (2.11), then b1 = aa#baa# and b4 = aπbaπ,

which makes the connection between Lemma 2.9 and next result clearer.

Theorem 3.1. Let a, b be elements in a unitary ring R such that a, b are group

invertible. If aa#baa# or aπbaπ are Drazin invertible, then the following statements

are equivalent:

(i) ab ∈ R# and (ab)# = b#a#.

(ii) ab ∈ R#, (ab)# = b#a#abb#a#, aa#baπ = 0, and aπbaa# = 0.

(iii) ab ∈ R#, (ab)# = b#a#abb#a#, and aπbaa# = 0.

(iv) a#ab, abb# ∈ R#, (a#ab)# = b#a#a, and (abb#)# = bb#a#.

(v) ab, a#abb# ∈ R#, (ab)# = b#(a#abb#)#a#, (a#abb#)# = bb#a#a.

(vi) ab, a#ab ∈ R#, (ab)# = (a#ab)#a#, and (a#ab)# = b#a#a.

(vii) ab, abb# ∈ R#, (ab)# = b#(abb#)#, (abb#)# = bb#a#.

(viii) ab ∈ R#, ab(ab)# = abb#a# = b#a#ab, aπbaa# = 0.

(ix) ab ∈ R#, (b#a#)R ⊆ (ab)#R, (b#a#)◦ ⊆ ((ab)#)◦, and abb# = bb#a.
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Proof. If we write a as in (2.2) and we denote p = aa#, then we can represent b

and b# as in (2.14).

(i) ⇒ (ii): Observe that (ab)# = (ab)#ab(ab)# = b#a#abb#a#. Lemma 2.9

yields b2 = b3 = 0, which is equivalent to say aa#baπ = aπbaa# = 0.

(ii) ⇒ (iii) is evident.

(iii)⇒ (i): Notice that b3 = aπbaa# = 0. We can apply Lemma 2.1 to get c3 = 0,

b#1 = c1, and b#4 = c4. By employing b =
[
b1 b2
0 b4

]
p
, b# =

[
b#1 c2

0 b#4

]
p
, (2.13), and the

representation of a given in (2.2), after a straightforward computation we get

b#a#abb#a# =

[
b#1 a

# 0

0 0

]
p

.

From (ab)# = b#a#abb#a#, it follows that (ab1)# = b#1 a
# and ((ab1)#)2ab2 = 0.

By the equivalence (i) ⇔ (ii) of Lemma 2.9 we get (ab)# = b#a#.

(i) ⇒ (iv): Since (ab)# = b#a#, from the equivalence (i) ⇒ (iii) of Lemma 2.9,

we deduce that b =
[
b1 0
0 b4

]
p
, ab1, b1 ∈ R#, and (ab1)# = b#1 a

#. It is evident from

(2.13) that

a#ab =

[
b1 0

0 0

]
p

and b#a#a =

[
b#1 0

0 0

]
p

.

Hence, a#ab is group invertible and (a#ab)# = b#a#a. Now, let us prove that

ab1b
#
1 is group invertible and (ab1b

#
1 )# = b1b

#
1 a

#. To this end, we shall apply the

uniqueness of the group inverse and pb1 = b1p = b1, pb#1 = b#1 p = b#1 . Let x = ab1b
#
1

and y = b1b
#
1 a

#. Now,

xy = ab1b
#
1 a

# = ab1(ab1)# = (ab1)#ab1 = b#1 a
#ab1 = b#1 pb1 = b#1 b1

and

yx = b1b
#
1 pb1b

#
1 = b1b

#
1 b1b

#
1 = b#1 b1

prove that xy = yx. Also we have

xyx = x(yx) = ab1b
#
1 b1b

#
1 = ab1b

#
1 = x

and

yxy = (yx)y = b1b
#
1 b1b

#
1 a

# = b1b
#
1 a

# = y.
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Since

abb# =

[
ab1b

#
1 0

0 0

]
p

and bb#a# =

[
b1b

#
1 a

# 0

0 0

]
p

,

we get that abb# is group invertible and (abb#)# = bb#a#.

(iv) ⇒ (i): We have

a#ab =

[
b1 b2
0 0

]
p

. (3.1)

By Remark 2.3 and since a#ab ∈ R#, we get that b1 ∈ R#, b2 = b1b
#
1 b2, and

(a#ab)# =

[
b#1 (b#1 )2b2
0 0

]
p

. (3.2)

By using (a#ab)# = b#a#a one gets b#1 = c1, (b#1 )2b2 = 0, and 0 = c3. Now we have

b2 = b1b
#
1 b2 = b21(b#1 )2b2 = 0. Since b# is group invertible, c1 is Drazin invertible

(because c1 = b#1 ), and c3 = 0, Lemma 2.1 allows us to get b3 = 0. Thus, b =
[
b1 0
0 b4

]
p
,

and then

(abb#)# =

[
(ab1b

#
1 )# 0

0 0

]
p

and bb#a# =

[
b1b

#
1 a

# 0

0 0

]
p

.

Since (abb#)# = bb#a#, we get (ab1b
#
1 )# = b1b

#
1 a

#. In particular, ab1b
#
1 and b1b

#
1 a

#

commute. Hence ab1b
#
1 b1b

#
1 a

# = b1b
#
1 a

#ab1b
#
1 , which reduces in view of (2.13) to

ab1b
#
1 a

# = b1b
#
1 . Now we prove that ab1 is group invertible and (ab1)# = b#1 a

#. Let

x = ab1 and y = b#1 a
#. From ab1b

#
1 a

# = b1b
#
1 we get xy = yx. Now, xyx = x(yx) =

ab1b1b
#
1 = ab1 = x and yxy = (yx)y = b1b

#
1 b

#
1 a

# = b#1 a
# = y. The equivalence (i)

⇔ (iii) of Lemma 2.9 allows us to prove that ab is group invertible and (ab)# = b#a#.

(i) ⇒ (v): From the hypothesis and Lemma 2.9 we get b2 = b3 = 0, ab1, b1 ∈ R#,

and (ab1)# = b#1 a
#. Let us recall that any idempotent is group invertible and its

group inverse is itself, hence (b1b
#
1 )# = b1b

#
1 . From (2.13) we have

a#abb# =

[
a#ab1b

#
1 0

0 0

]
p

=

[
b1b

#
1 0

0 0

]
p

,

hence a#abb# ∈ R# and (a#abb#)# = b1b
#
1 ; which yields

b#(a#abb#)#a# =

[
b#1 b1b

#
1 a

# 0

0 0

]
p

=

[
b#1 a

# 0

0 0

]
p

=

[
(ab1)# 0

0 0

]
p

= (ab)#.
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Also we have (a#abb#)# = bb#a#a.

(v) ⇒ (i): Obviously, (ab)# = b#(a#abb#)#a# = b#bb#a#aa# = b#a#.

(i) ⇒ (vi): Since we have proved (i) ⇒ (iv), we can use also (iv). Now, (ab)# =

b#a# = b#a#aa# = (a#ab)#a#.

(vi) ⇒ (i): It is easy to see (ab)# = (a#ab)#a# = b#a#aa# = b#a#.

(i) ⇒ (vii): We can use (iv), and therefore, (ab)# = b#a# = b#bb#a# =

b#(abb#)#.

(vii) ⇒ (i): Notice that (ab)# = b#(abb#)# = b#bb#a# = b#a#.

(i) ⇒ (viii): We will use the equivalence (i) ⇒ (iii) of Lemma 2.9. The equality

ab(ab)# = abb#a# is obvious from the hypothesis, and aπbaa# = 0 follows from

b3 = 0. Now, we have ab(ab)# = (ab)#ab = b#a#ab.

(viii) ⇒ (i): Observe that from aπbaa# = 0, we get b3 = 0. Thus, b =
[
b1 b2
0 b4

]
p
.

From (2.12) and ab(ab)# = abb#a#, we get (ab1)#ab2 = 0. Lemma 2.8 leads to

b2 = 0. Further, from abb#a# = b#a#ab, we get ab1b
#
1 a

# = b#1 b1. This implies that

b#1 a
# obeys the equations to be the group inverse of ab1. Hence (ab1)# = b#1 a

#.

Then (i) holds.

(i) ⇒ (ix): Since (ab)# = b#a#, we have abb#a# = b#a#ab, which by using

Lemma 2.9 reduces to ab1b
#
1 a

# = b1b
#
1 . A postmultiplication by a yields ab1b

#
1 =

b1b
#
1 a, which is equivalent to abb# = bb#a.

(ix)⇒ (i): Observe that the expression of (ab)# given in (2.12) can be used. Hence

aπ ∈ (b#a#)◦ ⊆ [(ab)#]◦ implies (ab)#aπ = 0, which leads to ((ab1)#)2ab2 = 0, or

equivalently, (ab1)#ab2 = 0. Lemma 2.8 proves b2 = 0. Hence (2.12) reduces to

(ab)# =
[
(ab1)

# 0
0 0

]
p
. Lemma 2.1 implies that b#1 = c1 and b#4 = c4.

Since b#a# ∈ (b#a#)R ⊆ (ab)#R, there exists u ∈ R such that[
c1 c2
c3 c4

]
p

[
a# 0

0 0

]
p

=

[
(ab1)# 0

0 0

]
p

[
pup pup

pup pup

]
p

.

Therefore, 0 = c3a
#, which in conjunction of c3 = pb#p, implies 0 = c3a

#a = c3p =

c3. Lemma 2.1 yields b3 = 0.

By Lemma 2.9, to prove (ab)# = b#a#, it is enough to prove (ab1)# = b#1 a
#.

From b =
[
b1 0
0 b4

]
p

and abb# = bb#a, we get ab1b
#
1 = b1b

#
1 a, which by (2.13), leads to

ab1b
#
1 a

# = b1b
#
1 aa

# = b1b
#
1 = b1aa

#b#1 . The equalities

(ab1)(b#1 a
#)(ab1) = ab1 and (b#1 a

#)(ab1)(b#1 a
#) = b#1 a

#
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are trivial to prove. Hence, by the uniqueness of the group inverse, (ab1)# = b#1 a
#.

Remark 3.2. Let R be a unitary ring and a, b ∈ R#. The following two equiva-

lences were proved in [13, Theorems 2.4 and 2.5]:

• a#ab ∈ R# and (a#ab)# = b#aa# ⇔ a#ab = ba#a.

• ab#b ∈ R# and (abb#)# = bb#a# ⇔ abb# = b#ba.

The following result was established in [4] when the setting is the Banach algebra

of all bounded linear operators on a Hilbert space. However, we will establish this

result in rings by using only algebraic techniques. Notice that, in particular, involution

and norms will not be used (which were employed in [4]).

Theorem 3.3. Let R be a unitary ring and a, b ∈ R# such that ab ∈ R#.

(i) If aa#b ∈ R#, then (ab)# = (aa#b)#a# ⇔ abaπ = 0 and [a, (aa#b)π] = 0.

(ii) If abb# ∈ R#, then (ab)# = b#(abb#)# ⇔ bπab = 0 and [b, (abb#)π] = 0.

Proof. Assume that (ab)# = (aa#b)#a#. From (2.12) and (3.2) we get (ab1)# =

b#1 a
# and (ab1)#ab2 = 0. By using Lemma 2.8 we get 0 = b2 = pbp, which yields

0 = abaπ. Also, since any group invertible element commutes with its group inverse,

(ab1)# = b#1 a
# implies ab1b

#
1 a

# = b#1 a
#ab1, which reduces in view of (2.13) to

ab1b
#
1 a

# = b#1 b1, which by a postmultiplication by a, simplifies to ab1b
#
1 = b#1 b1a. By

using this last equality, (3.1), (3.2), and b2 = 0 we get that (aa#b)(aa#b)# commutes

with a, which is equivalent to [a, (aa#b)π] = 0.

Let us prove the converse. Observe that b2 = a#abaπ = 0. By using the rep-

resentations (3.1), (3.2), and the hypotheses we get ab1b
#
1 = b1b

#
1 a. By the defi-

nition of the group inverse we easily get (ab1)# = b#1 a
#. Now, it is trivial to get

(ab)# = (aa#b)#a#.

(ii) Let q = bb#. The proof is easy if we proceed as in previous item and use the

following representations:

a =

[
a1 a2
a3 a4

]
q

, b =

[
b 0

0 0

]
q

, b# =

[
b# 0

0 0

]
q

, ab =

[
a1b 0

a3b 0

]
q

,

(ab)# =

[
(a1b)

# 0

a3b((a1b)
#)2 0

]
q

, abb# =

[
a1 0

a3 0

]
q

, (abb#)# =

[
a#1 0

a3(a#1 )2 0

]
q

.

We omit the details.

This last result appeared in [13] (Theorem 2.2 (i),(iii) and Theorem 2.3 (i), (iii))

with another proof.

Corollary 3.4. Let R be a unitary ring and a, b ∈ R be such that a, b ∈ R#
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and aa#baa# or aπbaπ are Drazin invertible. Then the following statements are

equivalent:

(i) ab ∈ R# and (ab)# = b#a#.

(ii) [aπ, b] = 0, [a, bπ] = 0.

(iii) ab, aa#b ∈ R#, abaπ = 0, [a, (a#ab)π] = 0, [aπ, b] = 0.

(iv) ab, abb# ∈ R#, bπab = 0, [b, (abb#)π] = 0, [a, bπ] = 0.

Proof. The equivalence of item (iv) Theorem 3.1 and (ii) of this corollary has

been noticed in Remark 3.2. The equivalence of item (vi) Theorem 3.1 and (iii) of

this corollary has been proved in Theorem 3.3. In the same way, we have that item

(vii) of Theorem 3.1 and (iv) of this corollary are equivalent.

4. Reverse order law for the group inverse in rings with involution. In

this section we will assume that the unitary ring R has an involution. Let us recall

that if the ring R has an involution, then the Moore-Penrose invertibility in R can be

defined.

Taking involution in the definition of the group inverse we immediately have

a ∈ R# ⇔ a∗ ∈ R# and in this case, (a∗)# = (a#)∗.

As we remarked, if an element a of a ring R with involution is EP, then a ∈ R#

and a† = a#. There is a version of (2.1) for this class of elements (see [3, Theorem

2.1]):

a is EP ⇔ there is a projection p ∈ R such that a + p ∈ R−1 and ap = pa = 0.

(4.1)

The representation (2.2) is also valid. But, observe that this representation preserves

the involution since aa† is self-adjoint. When (4.1) is applied to an EP matrix A ∈
Cn×n, by writing the idempotent Aπ as U(0 ⊕ Ik)U∗, where U ∈ Cn×n is unitary

(see e.g. [21, Theorem 5.4]), there exists a nonsingular matrix B ∈ C(n−k)×(n−k) such

that A = U(B ⊕ 0)U∗. Obviously, A† = U(B−1 ⊕ 0)U∗.

For a complex matrix A ∈ Cn×m, the matrix A∗A has been extensively studied

(it appears, for example, when one uses a least squares technique). This matrix,

evidently, is Hermitian (self-adjoint in the nomenclature used in this paper), hence it

is unitarily diagonalizable, i.e. there exist a unitary matrix U ∈ Cm×m and a diagonal

matrix D ∈ Cm×m such that A∗A = UDU∗. Hence A∗A is group invertible. In next

result, under the additional hypothesis “A is EP” we see that the reverse order law

for the group inverse holds for A∗A in rings.

Theorem 4.1. Let R be a unitary ring with involution. If a ∈ R is EP, then a∗a

is EP and (a∗a)# = a#(a∗)#.

Proof. Observe that aa# = a#a is self-adjoint because a is EP. We shall see that

12



a#(a∗)# satisfies the equations to be the group inverse of a∗a. Since

a∗aa#(a∗)# = a∗(aa#)∗(a#)∗ = (a#aa#a)∗ = (a#a)∗ = a#a,

a#(a∗)#a∗a = a#(a#)∗a∗a = a#(aa#)∗a = a#aa#a = a#a,

we get [a∗a][a#(a∗)#] = [a#(a∗)#][a∗a]. Now, we have

a∗aa#(a∗)#a∗a = a#aa∗a = (a#a)∗a∗a = (aa#a)∗a = a∗a.

The equality a#(a∗)#a∗aa#(a∗)# = a#(a∗)# is easy to prove. Since a∗a is self-adjoint

and group invertible, then a∗a is EP.

Lemma 4.2. Let R be a unitary ring with involution. If a ∈ R is EP, then

(aa∗)k[(aa∗)#]k = aa# for any k ∈ N.

Proof. We shall use Theorem 4.1 and (aa#)∗ = aa# because a is EP. The lemma

holds for k = 1 since

(aa∗)(aa∗)# = aa∗(a#)∗a# = a(a#a)∗a# = aa#aa# = aa#.

Now pick any n ∈ N. Now, by the previous computation and the definition of the

group inverse of aa∗ we have (aa∗)n+1[(aa∗)#]n+1 = aa∗(aa∗)# = aa#.

Theorem 4.3. Let R be a unitary ring with involution. If a, b are EP, then the

following statements are equivalent:

(i) ab ∈ R# and (ab)# = b#a#.

(ii) (a#)∗b ∈ R# and ((a#)∗b)# = b#a∗.

(iii) a(b#)∗ ∈ R# and (a(b#)∗)# = b∗a#.

(iv) ab, a∗ab ∈ R# and (ab)# = (a∗ab)#a∗, (a∗ab)# = b#(a∗a)#.

(v) ab, abb∗ ∈ R# and (ab)# = b∗(abb∗)#, (abb∗)# = (bb∗)#a#.

(vi) ab ∈ R# and for any m,n ∈ N ∪ {0}, (a∗a)m+1(bb∗)n+1 ∈ R#,[
(a∗a)m+1(bb∗)n+1

]#
=
[
(bb∗)#

]n+1 [
(a∗a)#

]m+1
, (4.2)

and

b∗(bb∗)n
[
(a∗a)m+1(bb∗)n+1

]#
(a∗a)ma∗ = (ab)#. (4.3)

(vii) ab ∈ R# and exist m,n ∈ N ∪ {0} such that (a∗a)m+1(bb∗)n+1 ∈ R# and

(4.2), (4.3) are satisfied.

Furthermore, under any of the previous conditions, one has that ab is EP.

Proof. Let us represent a, a# as in (2.2) and b, b# as in (2.14). Let p = aa#.

Notice that since a is EP, the idempotent p is a projection and the representations

(2.2) and (2.14) preserve the involution.
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(i) ⇒ (ii): By Lemma 2.9 we have b2 = b3 = 0 and (ab1)# = b#1 a
#. It is obvious

that

(a#)∗b =

[
(a#)∗b1 0

0 0

]
p

and b#a∗ =

[
b#1 a

∗ 0

0 0

]
p

. (4.4)

We will prove that b#1 a
∗ verifies the three conditions to be the group inverse of (a#)∗b1.

Since (ab1)# = b#1 a
#, in particular from (2.13) we have

ab1b
#
1 a

# = b#1 a
#ab1 = b#1 b1. (4.5)

Observe that b is EP and b =
[
b1 0
0 b4

]
p

imply that b1 is also EP. Also, let us remark

that since a and b1 are EP, then aa# and b1b
#
1 are self-adjoint. From (4.5) we have[

(a#)∗b1
] [

b#1 a
∗
]

= (a#)∗(b1b
#
1 )∗a∗ =

[
ab1b

#
1 a

#
]∗

= b1b
#
1

and [
b#1 a

∗
] [

(a#)∗b1
]

= b#1 (a∗(a#)∗)b1 = b#1 (a#a)∗b1 = b#1 a
#ab1 = b#1 b1.

Now it is easy to prove

[(a#)∗b1][b#1 a
∗][(a#)∗b1] = (a#)∗b1 and [b#1 a

∗][(a#)∗b1][b#1 a
∗] = b#1 a

∗,

which yields that ((a#)∗b1)# = b#1 a
∗. Hence (4.4) proves that (a#)∗b is group invert-

ible and ((a#)∗b)# = b#a∗.

(ii) ⇒ (i): Let c = (a#)∗ = (a∗)#. As we have proved (i) ⇒ (ii), we can use this

implication. The hypotheses are cb ∈ R# and (cb)# = b#c#. Thus, (c#)∗b ∈ R# and

((c#)∗b)# = b#c∗. Hence, (i) holds.

(i) ⇔ (iii): Let x = b∗ and y = a∗. By the previously proved equivalence (i) ⇔
(ii) we have

(ab)# = b#a# ⇔ [(ab)#]∗ = [b#a#]∗ ⇔ (xy)# = y#x# ⇔ [(x#)∗y]# = y#x∗

⇔ (y∗x#)# = x(y#)∗ ⇔ (a(b#)∗) = b∗a#.

(i) ⇒ (iv): By Lemma 2.9, we get b =
[
b1 0
0 b4

]
p

and b#1 a
# = (ab1)#. By using the

forms of a and b, we get

a∗ab =

[
a∗ab1 0

0 0

]
p

and b#(a∗a)# =

[
b#1 (a∗a)# 0

0 0

]
p

.

From the equivalence (i) ⇔ (ix) of Theorem 3.1 we get abb# = bb#a, or equiva-

lently, ab1b
#
1 = b#1 b1a. We shall prove that a∗ab1 is group invertible and (a∗ab1)# =
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b#1 (a∗a)#. To this end, we use Theorem 4.1 and (aa#)∗ = aa#, (b1b
#
1 )∗ = b1b

#
1 . We

have from (2.13)

a∗ab1b
#
1 (a∗a)# = a∗(ab1b

#
1 )a#(a∗)# = a∗b#1 b1aa

#(a∗)# = a∗(b#1 b1)∗(a#)∗

= (a#b#1 b1a)∗ = (a#ab#1 b1)∗ = (b#1 b1)∗ = b#1 b1

and

b#1 (a∗a)#a∗ab1 = b#1 a
#(a∗)#a∗ab1

= b#1 a
#(aa#)∗ab1 = b#1 a

#aa#ab1 = b#1 a
#ab1 = b#1 b1, (4.6)

which prove [a∗ab1][b#1 (a∗a)#] = [b#1 (a∗a)#][a∗ab1]. Now by using (4.6) we can easily

check the two remaining equalities for the group inverse of a∗ab1.

Furthermore, we have

(a∗ab1)#a∗ = b#1 (a∗a)#a∗

= b#1 a
#(a#)∗a∗ = b#1 a

#(aa#)∗ = b#1 a
#aa# = b#1 a

# = (ab1)#,

which proves (a∗ab)#a∗ = (ab)#.

(iv) ⇒ (i) follows from

(ab)# = (a∗ab)#a∗

= b#(a∗a)#a∗ = b#a#(a#)∗a∗ = b#a#(aa#)∗ = b#a#aa# = b#a#.

(i) ⇔ (v): It is enough to apply (i) ⇔ (iv) by substituting a↔ b∗ and b↔ a∗.

(i) ⇒ (vi): By Lemma 2.9 we have b2 = b3 = 0. As we have established in the

proof of (i) ⇒ (iv), we can use

ab1b
#
1 = b#1 b1a (4.7)

Taking adjoint of (4.7) and using that b is EP we get

b1b
#
1 a
∗ = a∗b#1 b1. (4.8)

We have for any m,n ∈ N ∪ {0}

(a∗a)m+1(bb∗)n+1 =

[
(a∗a)m+1(b1b

∗
1)n+1 0

0 0

]
p

and

[(bb∗)#]n+1[(a∗a)#]m+1 =

[
[(b1b

∗
1)#]n+1[(a∗a)#]m+1 0

0 0

]
p

.
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Observe that (b1b
∗
1)n+1[(b1b

∗
1)#]n+1 = b1b

∗
1(b1b

∗
1)# and by using Lemma 4.2 (for b1

and k = 1), we have b1b
∗
1(b1b

∗
1)# = b1b

#
1 . From Lemma 4.2 (applied to a), (2.13),

(4.7), and (4.8) we have

(a∗a)m+1(b1b
∗
1)n+1[(b1b

∗
1)#]n+1[(a∗a)#]m+1 = (a∗a)m+1b1b

#
1 [(a∗a)#]m+1

= b1b
#
1 (a∗a)m+1[(a∗a)#]m+1

= b1b
#
1 aa

#

= b1b
#
1 . (4.9)

By using (2.13) and Lemma 4.2 we trivially get

[(b1b
∗
1)#]n+1[(a∗a)#]m+1(a∗a)m+1(b1b

∗
1)n+1 = b1b

#
1 . (4.10)

If we define x = (a∗a)m+1(b1b
∗
1)n+1 and y = [(b1b

∗
1)#]n+1[(a∗a)#]m+1, then equalities

(4.9) and (4.10) prove xy = yx.

Now, the next computation

b1b
#
1 (b1b

∗
1)# = (b1b

#
1 )∗(b#1 )∗b#1 = (b#1 b1b

#
1 )∗b#1 = (b#1 )∗b#1 = (b1b

∗
1)#

proves

b1b
#
1 [(b1b

∗
1)#]n+1 = [(b1b

∗
1)#]n+1. (4.11)

Equalities (4.10) and (4.11) allow to get yxy = y.

From b1b
∗
1b1b

#
1 = b1b

∗
1(b1b

#
1 )∗ = b1(b1b

#
1 b1)∗ = b1b

∗
1, we get

(b1b
∗
1)q+1b1b

#
1 = (b1b

∗
1)n+1. (4.12)

Equalities (4.10) and (4.12) prove xyx = x. Thus, x, y ∈ R# and x# = y. Hence we

have proved [
(a∗a)m+1(bb∗)n+1

]#
=
[
(bb∗)#

]n+1 [
(a∗a)#

]m+1
.

Finally, by Theorem 4.1

b∗(bb∗)n
[
(a∗a)m+1(bb∗)n+1

]#
(a∗a)ma∗ = b∗(bb∗)n

[
(bb∗)#

]n+1 [
(a∗a)#

]m+1
(a∗a)ma∗

= b∗(bb∗)#(a∗a)#a∗

= b∗(b#)∗b#a#(a#)∗a∗

= (b#b)∗b#a#(aa#)∗ = b#bb#a#aa#

= b#a# = (ab)#.

(vi) ⇒ (vii) is evident.
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(vii) ⇒ (i): By the hypotheses we have (ab)# = b∗(bb∗)#(a∗a)#a∗. Furthermore,

by Theorem 4.1 and the EP-ness of b we have b∗(bb∗)# = b∗(b#)∗b# = (b#b)∗b# =

b#bb# = b#. In the same way we can prove (a∗a)#a∗ = a#. Hence (ab)# = b#a#.

To prove that ab is EP, observe that by the used representations of a and b we

have ab =
[
ab1 0
0 0

]
p
. Hence ab is EP if and only if ab1 is EP. From the proof of (i) ⇒

(iii) we get (ab1)#ab1 = b#1 a
#ab1 = b#1 b1 is self-adjoint. Hence (ab1)# = (ab1)†, and

thus, ab1 is EP.
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Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 35 (1963), 244-251.

[2] A. Ben-Israel and T.N.E. Greville. Generalized inverses: Theory and Applications, 2nd Edition.

Springer-Verlag, New York, 2003.
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