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Abstract

In this paper a large family of dominant Fitting classes of finite soluble groups and the description of the
corresponding injectors are obtained. Classical constructions of nilpotent and Lockett injectors as well
as p-nilpotent injectors arise as particular cases.
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1. Introduction

Unless otherwise stated all groups considered in this paper are finite and soluble.
Although theories of formations and Fitting classes are quite independent gener-

alizations of the classical theory of Sylow and Hall, many of their results have been
motivated by the good behaviour of the Fitting formation of nilpotent groups as a
class of groups. In the references [1^4] some extensions of nilpotent groups have
been studied mainly within the framework of formation theory.

In [2], formations of groups which are the direct product of Hall subgroups corres-
ponding to pairwise disjoint sets of primes appear. These formations were also studied
by Lockett [6] as Fitting classes. He proves that they are dominant Fitting classes
by giving a description of the injectors as generalization of the classical construction
of the nilpotent ones. In [4], the formations & whose minimal non-^"-groups are
Schmidt groups (that is, minimal non-nilpotent groups) are described. In [3], we met
formations characterized through the existence of normal 7r(p)-complements in the
groups of the class, for every prime p, where n(p) is a set of primes containing p.

The common property of these formations & considered in the above references
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is that they are saturated formations which are locally defined by yK(P), the class of
all 7r(p)-groups for a set of primes n(p), for every prime p in the characteristic of
& and p e n(p). These different extensions of nilpotent groups arise by requiring
restrictions on the sets of primes n(p). Here we want to draw attention to the fact
that they are also Fitting classes. So viewed, the results of the present paper provide a
characterization for this type of Fitting classes to be dominant. A well-known result
of Lockett [5, 1.7.8] about the permutability of normally embedded subgroups of a
group into which a given Hall system of the group reduces allows us to give the exact
description of the injectors for these classes. Classical constructions of nilpotent
injectors, Lockett's injectors, as well as p-nilpotent injectors (p a prime), appear as
particular cases of our construction.

Again the above characterization rest on the appropriate restrictions for the sets of
primes 7i(p). This leads to a nice relation between dominance as Fitting classes and
the description of the canonical local definition as saturated formations.

2. Preliminary results; notation

The notation is standard and is taken mainly from [5]. We also refer to this book
for details about Fitting classes and formations. For completeness, we gather some
notation and recall some definitions and results.

A Fitting class & is said to be dominant in y', the class of all soluble groups, if
& c y and for every group G e y any two ^"-maximal subgroups of G containing
the ^"-radical, G&, of G are conjugate in G.

The following properties of dominant Fitting classes are used.

LEMMA 2.1 [5, IX.4.2]. Let & be a Fitting class which is dominant in -Y. Then
every group G in S" has a unique conjugacy class of ^-injectors, namely the &-
maximal subgroups ofG containing G&.

We denote by p the set of all prime numbers and, for a prime p, Cp as the
cyclic group of order p. If ffl is a class of groups, the characteristic of jft1 is
char J f = {p e p\Cp e Jf}. For a group G, n(G) denotes the set of all prime
divisors of | G |.

PROPOSITION 2.1 [5, IX.4.3]. Let & be a Fitting class which is dominant in y.
Then either J/ c & or & = yn for some n c p .

The well-known Gaschiitz-Lubeseder-Schmid Theorem states that in the general
finite universe, saturated formations are exactly local formations, that is, formations
& = LF(f) defined by a formation function / : LF(f) = (G e S | if H/K is
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a chief factor of G and p 6 n(H/K), then G/CG(H/K) e f(p)), where S is the
class of all finite groups. In this case, / is said to be a local definition of &. Among
all possible local definitions of a local formation & there exists exactly one, denoted
by F, such that F is integrated (that is, F{p) c & for all pep) and full (that is,
ypF(p) = F(p) for all p e p ) , that is, F is the canonical local definition of &.

PROPOSITION 2.2 [5, IV.3.14]. If f(p) is a subgroup-closed Fitting formation for
all pep, then & = LF(f) is also a subgroup-closed Fitting formation.

We also state some results on /-hypercentral action.

DEFINITION [5, IV.6.2]. Let A e S be a group of operators of the group G e
S. Given a formation function / , we say that A acts f -hypercentrally on G if
A/CA(H/K) e f(p) for all primes p dividing \H/K\ and for every A-composition
factor H/K of G.

LEMMA 2.2 [5, IV.6.4(c)|. Let f be a formation function, let G be an A-group,
and let M and N be A-invahant normal subgroups of G. If A acts f -hypercentrally
on M and N, then it acts similarly on MN.

THEOREM 2.1 [5, IV.6.9]. Let & = LF(f) with f an integrated local definition
of' &'. If A acts f-hypercentrally on a group G, then A/CA(G) e &'.

In the following, all groups considered are finite and soluble. Moreover we say
that a Fitting class J5" is dominant if & is a Fitting class which is dominant in 5?.

3. The results

In this section, & = LF(f) will be a saturated formation which is locally defined
by the formation function / given by f{p) = yw(P), for a set of primes n{p) such
that p e it (p), for every prime p in the characteristic of &. By Proposition 2.2, &
is also a Fitting class. Since our purpose is to characterize when & is dominant, we
will assume by Proposition 2.1 that & is of full characteristic.

PROPOSITION 3.1. Assume that J5" is a dominant Fitting class. Then & has the
following property:

(*) If q is a prime in n(p), then either n{q) = n{p) or n(q) = p orn(p) — p.

PROOF. Assume that q is a prime in n(p) such that n(p) ^ p and n(q) / p. We
prove that jr(q) = n{p).

Suppose, arguing by contradiction, that n{q) is not contained in n(p). Let r be a
prime in n{q)\n{p). We distinguish two cases:
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Case 1: p e n{q). Since p e n(p), it is clear that r =£ p. Let Vp be
an irreducible and faithful C,-module over GF(p). Denote by X = [Vp]Cr the
corresponding semidirect product. Let t be a prime such that t £ n(q). Since t ^ p,
we can take an irreducible and faithful X-module V, over GF(t). Consider Y = [V,]X
to be the corresponding semidirect product. Since t ^ q, there exists an irreducible
and faithful ^-module Vq over GF{q). Let G denote [Vq]Y. It is clear that G&,
the ^-radical of G, is exactly Vq. Therefore VqVp and VqCr are two non-conjugate
^"-maximal subgroups of G containing G&. This contradicts the dominance of &.

Case 2 p £ n(q). We argue as in the above case by constructing the group
G = [Vp]([Vr]([Vq]Cp)).

Consequently, n(q) c n{p).
Now if there exists a prime r e n{p) such that r ^ n{q), then we can construct

the group G = [Vp](\y,]([Vq]Cr)), where t <£ n(p). It is clear that G violates the
dominance of &.

Our goal is to prove that the converse of the above proposition holds. So, in the
sequel, & will always denote a saturated formation of full characteristic which is
locally defined by the formation function / given by f(p) = ^ ( p ) , for a set of
primes n(p) such that p e n{p), for all pep. Moreover we shall assume that #
satisfies the following condition:

(*) If q is a prime in n(p), then either n(q) = n(p) or n{q) = p

or n(p) = p, for every pair of primes p, q e p.

First of all, we need to get information about & and the structure of its groups.
Set7r = {p e p | n(p) ^ p\.

LEMMA 3.1. Consider the following equivalence relation on it:

p~q if and only if n{p)—n(q), p,qen.

If p, q £ n andn{p) =fi 7t(q), then n(p)C)TT(q) c n'. Consequently, the equivalence
class of an element p e n is TT(P)C\7T. In particular, if it is a representative complete
system, it is n = \Jpeii(n(p) fl n).

PROOF. Follows from the above.

LEMMA 3.2. Ifp en, then yir(p) c &. Consequently, f(p) = F'(/?), for eveiy
prime pen, where F is the canonical local definition of &.
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PROOF. Assume the result is not true and let G e yn{p)\& be a group of minimal
order. G has a unique minimal normal subgroup, N say, such that N = CG(N),
G/N e & and A? is a g-group for some prime q e n{p). Since either n(q) = n(p)
or n(q) = p, we have that G/CC(N) e /(<?)• This implies that G e &, a
contradiction.

In fact, the property stated in Lemma 3.2 is equivalent to condition (*). Notice that
this provides a description of the canonical local definition of &. More precisely, we
have the following:

PROPOSITION 3.2. Let J f be a saturated formation which is locally defined by the
formation function h given by h(p) = J^(P), where n(p) is a set of primes with
p € n(p) c char Jf, for all p e char Jff. The following statements are pairwise
equivalent:

(i) If q e n(p), then either n{q) = n{p) or n(q) — p or n(p) = p.
(ii) Ifq en(p) ^ p,thenn(p) c.n(q).
(iii) If 7i{p) ^ p, then ynp) c jg>.
(iv) The canonical local definition of 'Jff is given by

H(p) = h(p) = 5?n(P),for every prime p e char J f such that n(p) ^ p,
H{q) = Jf,for every prime q e char Jf such that n(q) = p.

PROOF. That (i) implies (iii) follows as Lemma 3.2. For (iii) implies (ii), assume
that q € n(p) ^ p and let r € n(p). If r ^ q and Vq is an irreducible and faithful
C-module over GF(q), then [Vq]Cr 6 X ( P ) ^ ^ by hypothesis. Hence C, € h(q)
and r € ^(<?).

We now show (ii) implies (i): Assume that q € n(p), n(p) / p and n(q) ^ p .
By hypothesis, we have n(p) c 7r(̂ r). Since /? € ^ ( / J ) , we also have n(q) c ^(f>).

The equivalence between (iii) and (iv) is clear.

LEMMA 3.3. yr^ = &.

PROOF. This follows directly from the fact that if r e n' then n{r) = p, so
fir) = y.

LEMMA 3.4. & is the smallest saturated formation satisfying yn>HP = & and

y^P) ^ & for every pen.

PROOF. & is a saturated formation satisfying these properties by Lemmas 3.2
and 3.3.

Let <£ be a saturated formation such that yn^ = *$ and yn(p) £ <g for every
pen. We claim that & c «f. Assume this is not true and let G e «^\5f be
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of minimal order. Then G has a unique minimal normal subgroup N which is a
p-group for some prime p, N = CC(N), and G/N e <£. It is clear that pen since
y*& = &. Then G e yMp) £&,a contradiction.

We introduce some more notation.
Let n denote a representative complete system as in Lemma 3.1. For every prime

pen, let

°{p) = U

PROPOSITION 3.3. & = yn. [flpi

PROOF. Define-Sf, = yn. [ D ^ O ^ ) ^ , , ) ) ] and _S?2 = [\p^{yn.ya{p)yn{p)).
We claim that & = ££\. From Lemma 3.4 it is clear that & c jjf,. Suppose that

^ 7̂  jSfi and take G e J*?i \ # of minimal order. Then G has a unique minimal normal
subgroup JV such that G/N e^.lfNe J^.,thenG e y*& = & by Lemma 3.3, a
contradiction. Consequently N e yp, for some prime p e n. Since G € Jf,, we have
that O"(P){G) e ya(p). Moreover, On(p)(G) + 1 because yn(p) c & by Lemma 3.2.
Therefore /V < O"(p)(G) e ya(p). This implies p e o(p) = \Jq^,nip)i:rtWn{q), a
contradiction.

On the other hand, it is clear that S£\ c S£2. The converse follows by a standard
argument.

COROLLARY 3.1. For every group G the ^-radical of G is

G& = [ I On>a(P)n(p)(G).

Next we provide the construction of suitable ^"-injectors for the Fitting formations
in consideration. The goal is to prove that these subgroups constitute a unique
conjugacy class of ^"-maximal subgroups containing G& in every group G.

Notation and construction. For each prime s, consider the following partition
of the set of primes n:

n = { P i \ i e I } \ J { P j \ j e J ]

in such manner that s ^ U/6/ n(p,) but s e f]jeJ n(pj).
For a group G, define

Zs = P | [CG(A/B) I A/B runs over the chief factors of G

between On(G) and Onr(G) for every r 6 (p; | / e / ( ] .
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Use the usual convention that Zs = G if there does not exist such chief factors.
Take E a Hall system of the group G. For every prime s, consider Hs = GSP\ZS,

for Gs € Syl5(G) such that Gs e E. Since Zs is a normal subgroup of G, it is clear
that //, G Sy\s(Zs). Hence //s is a normally embedded subgroup of G into which the
Hall system E reduces. A well-known result of Lockett [5, Th. 1.7.8] tells us that
Hs H, = H, Hs and Hs H, is a normally embedded subgroup of G into which E reduces,
forevery pair of primes?, s. Consequently H% := r ] j o r ( G ) / / ^ is a subgroup of G with
pairwise permutable factors. Notice that for every 5 e n(G), Hs e Sy\s(Hz), H% is
a normally embedded subgroup of G and E reduces into HY.

For a group G, Yc = f ] p E T Onp(G). Notice that Yc is contained in G&. Moreover
Yc/OAG) = F(G/OAG)) and, consequently, CC(YG/OAG)) < Yc.

In the following, we consider a fixed arbitrary group G for which the above notation
is assumed.

REMARK. In order to construct the subgroups H% we can also consider the following
subgroup instead of Zs:

for each prime 5. This is because a standard argument of coprime action allows us
to state that Syls(Z*) = Sylv(Zs), for every prime s. In particular, Hs = Gs D Zs =
Gs n Z*, for every prime .v.

The properties of the subgroups H^ will be developed in the following lemmas:

LEMMA 3.5. Let L be a subgroup ofG such that Yc is contained in L. IfL belongs
to & and E is a Hall system of G reducing into L, then L is contained in HY- In
particular, G& contained in HY-

PROOF. By construction of H^, it is enough to prove that Ls := L D Gs is contained
in Zs for every prime s e n(G).

Let s € n(G) and A/B be a chief factor of G between OAG) and On, (G) for a
prime r € {p, \ i e / } . Notice that B < A < Onr{G) < YG. Consider

1 < • • • < B = BQ < • • < B,• < B,+i < • • • < Bn = A < • • • < YG < • • • < L,

a chief series of L through B and A.
Since L e &, it follows that L/CL(Bi+i/Bi) e ynir), for every 0 < / < n - 1.

The fact s & n{r) implies that Ls < CL(Bi+]/Bj) for all J € { 0 , . . . , n - 1}. This
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means that Ls centralizes A/B by [5, A. 12.3]. Hence Ls is contained in Zs and the
result follows.

LEMMA 3.6. H% acts F-hypercentrally on YG/OAG). Consequently, {H^ is
contained in CHT(YG/OAG)).

PROOF. By Lemma 2.2 and the definition of YG, it is enough to prove that / / E acts

F-hypercentrally on 01Tp(G)/0AG) for every p e n .

For each prime p e n , consider

1 < • • • < OAG) <---<B <A<---< On-P(G) < • • • < G ,

a chief series of G through OAG) and Onp{G). Take A/B to be a chief factor of
this series between OAG) and Onp(G). By construction of H^., if s g n{p), then
Hs is contained in CHz(A/B). Therefore HT/CHE(A/B) e Sfn(p) = f(p) = F(p)
by Lemma 3.2.

Refine the above series to an //E-composition series

• • • < O n ( G ) < • • • < B = B o < • • • < B,- < B i + [ < • • •

< • • • •

Clearly CHz (A/B) is contained in CHz (Bi+l/B,•), for all 0 < / < n - 1. This implies
that Hz/CHz(Bi+i/Bi) e ^ ( p ) = F(p), for all 0 < / < n - 1. Consequently //E

acts F-hypercentrally on Onp{G)/On{G).
Since F is an integrated local definition of &, by Theorem 2.1 it follows

H^/CHz{Yc/0AG)) e &. Hence (Hz)* is contained in CHz(YG/OAG)).

LEMMA 3.7. HY belongs to J5".

PROOF. Notice that OAG) < YG < G& < HY by Lemma 3.5. By Lemma 3.6,
(H-z)^ centralizes YG/OAG). Hence (//E)1^ is contained in YG. Since Hj_ acts
F-hypercentrally on YC/OAG), it follows that HT/0AG) e &. So HT e & by
Lemma 3.3 and the result is proved.

LEMMA 3.8. IfL is an ^-maximal subgroup ofG containing YG, and H* is a Hall
system ofG reducing into L, then //E. = L.

PROOF. By Lemma 3.5, L is contained in / / s . , which belongs to & by the above
lemma. Therefore L = //E. by ^"-maximality of L.
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LEMMA 3.9. For every Hall system E of G, H-E is an ^-maximal subgroup of G
containing G&.

PROOF. Notice firstly that Hv = (H^Y for every g e G. From Lemmas 3.5
and 3.7, we know that / / r is an J^-subgroup of G containing G&. Let L be an
^"-maximal subgroup of G containing Hz and let EL be a Hall system of L reducing
into HY. Take now a Hall system E* of G such that EL = E* D L. By [5,1.4.11],
we can find an element g £ G such that E* = E*. Since the Hall systems E* and E
of G reduce into Hz and H^ is a pronormal subgroup of G, we have that H^ = H%*
by [5,1.6.6]. Therefore L = HT. = H^ by Lemma 3.5. Hence H^ is an ^-maximal
subgroup of G and the result is proved.

Now we can state the following

THEOREM 3.1. The set of ^-maximal subgroups of G containing G& is {//s | E
is a Hall system ofG).

Notice that this is exactly the set of ^"-maximal subgroups of G containing Yc.
Since the group G acts transitively by conjugation on the set of its Hall systems,

we have:

THEOREM 3.2. / / E, and E2 are two Hall systems of G, then Hz, and Hz2 are
conjugate. In particular there exists a unique G-conjugacy class of &-maximal
subgroups of G containing G &.

COROLLARY 3.2. & is a dominant Fitting class. The &-injectors ofG are exactly
the subgroups Hz, for every Hall system E of G.

Now we can state the following theorem which completes Proposition 3.1.

THEOREM 3.3. Let 3tf be a saturated formation of full characteristic which is
locally defined by the formation function h given by h(p) = «^r(P), where n(p) a set
of primes with p e n{p),for all p e p. The following statements are equivalent:

(i) J^ is a dominant Fitting class,
(ii) If q € n{p), then either n(q) = n(p), n(q) = p or n(p) = p.for every

pep.

REMARKS. (1) The construction of nilpotent injectors, Lockett injectors [6] and
p-nilpotent injectors are particular cases of our general construction.

(a) Nilpotent injectors: Notice that jY = LF(f) where f(p) = yn(p) for n(p) =
{p} and all p e p. In this case, for a group G and every prime 5 € ?r(G), we have
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Z ; = CG(OS{F(G))). GivenaHall system E of G, Hs = GSDZ* e Syls(Z*), where
G , e S f l SyL(G), and //E = FLe^G) ^ ls a nilpotent injector of G. Moreover,
Inj^(G) = {Hx | E is a Hall System of G}.
(b) Lockett injectors [6]: Take {jr,},e/ to be a family of pairwise disjoint sets of

primes such that U,£/7r, = p. Let J2" = LF(f) where /(/?) = ^ if p e 717, / € / ,
for every prime pep. In this case n(p) = nh for all p e n, and every / e / .
For a group G and every prime 5 e TV(G), Z* = CC(O.T; (F(G))) if s e nk, k e I.
If E is a Hall system of G, Hs = Gsn Z* e Syls(Z;), where G . e i n SyL(G).
Consequently f L ^ Hs € Hall^CZ;). So / / , = r U ( C l ^ = n*e/(niCTj K) is an
injector of G. Again Inj^(G) = {//j; | E is a Hall System of G}.

(c) p-nilpotentinjectors: ^p^p = LF(f) where f(p) = yp = yn(p) and f(g) =
y for every q e p\ {p}, that is n{q) = p if q € p \ {/?). For a group G, Z* = G
and Z* = CG(Op7,(G)) < Op.p{G), if q ^ p. For a Hall system E of G, //,, =
Gp = Gp n Z; where G , e l n Sy l /G) , and / / , = Gq n Z; < Op7,(G), if ? # p,
where G, e EflSyl^CG). Therefore//E = OPP(G)GP = OP(G)GP is a p-nilpotent
injector of G.

(2) If ^ = ^ the following is true: For a group G and every prime 5 e n(G) and
each Hs € Syl5(Z*), we have f L e ^ o Hs as a nilpotent injector of G. Analogously, if
^ is a Fitting formation as in (b) and with the same notation, for a group G and every
set of primes nh i € / , for each Hlt: e HalU, (Z*), J e 7r,, we have f]/€ / H*. a s a n

^"-injector of G. This is not true in general.
For instance take & = LF(f) where f(p) = S?n{p) for every prime pep,

TT(3) = {2,3}, ^-(5) = {5} and n(q) = p, for every q <? {3,5}. Let V5 be an
irreducible and faithful E3 = fC3]C2-module over GF(5) and V3 an irreducible and
faithful [V5]E3-module over GF(3). Construct G = [V3]([V5]E3). For this group
G, Z* = G, Z* = G and Z* = CG(V3) = V3. We can take G2 € Syl2(G) and
G3 6 Syl3(G) such that G2G3 ^ G3G2. So G2G3 cannot be an ^"-injector of G. In
fact, Inj^(G) = {G2G3 | G2G3 = G3G2, G2 e Syl2(G). G3 e Syl3(G)}.
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