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Abstract 
 
The creation of a quality DTM is essential for representing and analyzing the Earth in 
a digital form. The continuous improvements in the acquisition and the potential of 
airborne LiDAR data is increasing the range of applications of this technique to the 
study of the Earth surface. The aim of this study was to determine the optimal 
parameters for calculating a DTM by using an iterative algorithm to select minimum 
elevations from LiDAR data in a steep mountain area with shrub vegetation. The 
parameters were: input data type, analysis window size, and height thresholds. The 
effects of slope, point density, and vegetation on DTM accuracy were also analyzed. 
The results showed that the lowest root mean square error (RMSE) was obtained with 
an analysis window size of 10 m, 5 m, and 2.5 m, rasterized data as input data, and 
height thresholds equal to or greater than 1.5 m. These parameters showed a RMSE of 
0.19 m. When terrain slope varied from 0-10% to 50-60%, the RMSE increased by 
0.11 m. The RMSE decreased by 0.06 m when point density was increased from 4 to 8 
points/m2, and increased by 0.05 m in dense vegetation areas.  
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1. Introduction 

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing system 

which has been widely used in the last decade to measure information in 2 and 3 

dimensions. It works by measuring the time delay from when a pulse is emitted by an 

airborne sensor to when it bounces back from the terrestrial surface. LiDAR systems 

can register the return signal of an emitted pulse in different echoes, and can be used 

in conjunction with a differential GPS and an inertial system to calculate the 

coordinates of the point where the reflection takes place. This information can then be 



used to determine ground elevations, the elevation of objects above the terrestrial 

surface level, and the height of vegetation canopy. The three categories of information 

obtained are known as Digital Terrain Model (DTM), Digital Surface Model (DSM), 

and Canopy Height Model (CHM), respectively. The data have been widely applied in 

different fields: river flood modeling (Cobby et al., 2001); changes in beach sand 

(Shrestha et al., 2005); building extraction (Sohn and Dowman, 2007), and mainly in 

forest science (Lefsky et al., 1999; Næsset 2002; Maltamo et al., 2004; Popescu et al., 

2007). Although good results were obtained in the detection of forest cover when only 

satellite images were used (Zhang and Guindon, 2009), an improvement was found 

when LiDAR data and spectral information were combined (Mutlu et al., 2008). Since 

digital Earth studies are based on the integration of multiple sources of geographical 

data with different resolutions (Goodchild, 2008), LiDAR data is becoming key to the 

analysis of the terrain surface due to the speed of acquisition and processing, which is 

continually improving. In this sense, LiDAR data can play a relevant role in obtaining 

DTMs which represent terrain relief with high accuracy. Furthermore, the DSM 

allows us to obtain several layers of geographic data which can be added to a digital 

representation of the Earth.  

 

DTM accuracy depends on several factors: both vertical and horizontal errors related 

to the system (GPS, INS, laser scanner); methodology and algorithms; complexity of 

the target; and data characteristics (Hyyppä et al., 2008). Data characteristics such as 

flight height, point density, number of echoes, and scan angle are related to the 

accuracy of a DTM. The greater the flight height and scan angle, the greater the error 

(Akokas et al., 2003). Point density and distribution of the points also play an 

important role in the accuracy of a DTM (Baltsavias, 1999). Hyyppa et al., (2005) 



analyzed the variation of flight height and point density in the accuracy of a DTM. 

When the flight height and the point density varied from 400 m and 8 points/m2 to 

1500 m and 1-2 points/m2, error increased 6 cm. Another factor related to the data 

characteristics affecting the accuracy of a DTM is the scan angle. In dense vegetation 

areas a relationship between the pulses reaching the ground and the scan angle has 

been found (Davenport et al., 2000). The likelihood of obtaining laser pulse returns 

from the ground can increase with narrow scan angles (Hopkinson et al., 2005). 

Finally, factors such as the presence of dense vegetation and high slopes that 

characterize the complexity of the target produced a decrease in the accuracy of a 

DTM (Kraus and Pfeifer; 1998; Raber et al., 2002; Clark et al.; 2004; Hollaus et al., 

2006).  

 

Filtering algorithms are applied to identify points that do not belong to the ground. A 

review of methods can be found in Sithole and Vosselman (2004). An important 

group of algorithms uses morphological filters. This involves selecting minimum and 

maximum values for a specific location (Zhang et al., 2003). The algorithm which 

uses the iterative process to select minimum elevations can be included in this group. 

This methodology was applied by Popescu et al., (2002), Wack and Wimmer (2002), 

and Clark et al. (2004). They selected points of minimum elevation in a series of 

progressively smaller windows. First, they calculated an initial DTM using the points 

selected. Then, they selected new minimum elevations by using smaller windows. 

They then compared these points to the initial DTM. When they introduced a height 

threshold, it was possible to remove points corresponding to vegetation, and so 

increase the accuracy of the DTM. Thus, when this filtering methodology is applied, 



DTM accuracy is influenced by window size, number of iterations, and height 

thresholds (Patenaude et al.; 2004; Suárez et al., 2005; Yu et al., 2004).  

 

Little research has been conducted on computing a DTM in areas with presence of 

shrub vegetation. Rango et al., (2000) combined a progressive detrending of a DTM 

derived from LiDAR data and optical multispectral image to study morphological 

characteristics of shrub coppice dunes. Riaño et al., (2007) also used a color infrared 

orthoimage to reject the pulses came from the shrub canopy and improve the accuracy 

of a DTM computed by LiDAR data. Su and Bork (2006) interpolated the 

discontinuous last return ground LiDAR to compute a DTM and found that the 

accuracy decreased in shrub areas. An improvement in accuracy was achieved when 

the shrub vegetation was grouped into two classes. It was also found that the RMSE 

increased when slope varied over 10 degrees. Wang et al., (2009) selected the lowest 

LiDAR data determining the optimal filter window size in salt-marsh environments. 

 

In spite of the above research, there is still a need to explore parameters, such as 

window size and height threshold, that minimize the DTM error in steep mountain 

areas with a predominance of shrub vegetation, such as Mediterranean ecosystems. 

Forest stand characteristics can be estimated from statistics derived from LiDAR data 

(Næsset, 2004; Popescu et al., 2007). In order to obtain the relative height of the forest 

stand, each LiDAR point must be referred to the terrain surface. Accuracy of DTM is 

more relevant in shrub areas due to the small difference in height between the 

vegetation and the terrain. Previous research has pointed out the importance of an 

accurate DTM in the height and volume estimation (Velázquez et al., 2010; Estornell 

et al., 2010). The small difference in height between the vegetation and the terrain 



require the selection of appropriate parameters to obtain an accurate DTM and to 

minimize errors. These errors affect the accuracy of the shrub height estimation, 

which is normally underestimated when LiDAR data are employed (Streutker and 

Glenn, 2006; Riaño et al., 2007).   

 

The aim of our study was to determine the optimal range of the parameters analysis 

window size and height thresholds to calculate accurate DTMs when using iterative 

algorithms. Some other parameters affecting the accuracy of the DTMs were also 

analyzed, such as the input data type and the effect of point density, slope of the 

terrain, and presence of shrub vegetation. 

 

2. Materials and methods 

2.1 Study area 

The study area chosen was a 10 km2 area, located in Chiva (Valencia, Spain). The 

UTM coordinates Xmaximum, Ymaximum, Xminimum, and Yminimum, for the zone are 689800, 

4376028, 683800, and 4373000, respectively (Figure 1). The zone number is 30, and 

the reference system, European Datum 1950. The area is mountainous with a 

predominance of Quercus coccifera (Figure 2), with an average height of 1.25 m, and 

a percent cover of around 55%. The altitude varies from 442 to 1000 meters, with an 

average slope of 45% and standard deviation of 25%. 



 

Figure 1. Location of study area in Chiva (Spain). Black polygon represents area 

surveyed with LiDAR data. 

  

Figure 2. Study area photographs with dense presence of kermes oak (Quercus 

coccifera). 



2.2 LiDAR data 

The LiDAR data were acquired during a flight in December 2007, using an Optech 

ALTM 2050 system. The technical parameters were: flight height – 700 m above 

ground; pulse frequency – 50 kHz; scan frequency – 47 Hz; scan angle – ±18º; speed 

flight – 70 m/s; swath width – 400 m; distance between a scanning trajectory flight – 

300 m ; number of strips– 10; total points obtained for the test area – 78,919,301; 

nominal pulse density – 4 points/m2; Number of echoes - 2. However, given that 10 

overlapping flight lines were registered, some areas had a higher point density. For 

this reason, the average point density of the study area, considering both returns, was 

8 points/m2. More than 99% of the LiDAR values belonged to the first pulse. This 

could be caused by the small difference in height between the canopy of vegetation 

and the ground. 

 

To evaluate the validity of the DTMs, 1397 ground-surveyed checkpoints were 

distributed across the study area and randomly measured with an RTK-GPS system 

(Leica System 1200); thus making these independent validation data appropriate for 

assessing any global elevation bias in the DTM. Horizontal and vertical accuracy of 

the RTK-GPS system in terms of root mean square error (RMSE) value was 1 cm and 

2 cm respectively, according to the technical specifications of the instrument. Average 

horizontal and vertical errors for the measured points were 1 and 1.5 cm, respectively. 

The RTK-GPS system did not register any point whose error was greater than 5 cm. 

 

To assess the altimetry accuracy of LiDAR data, 60 checkpoints were selected in flat 

areas without vegetation (Streutker and Glenn, 2006). Elevations measured using the 

RTK-GPS were compared with the average elevation of LiDAR points in a buffer 



radius of 0.5 m around the point measured. This radius was selected because the 

horizontal accuracy of LiDAR points was 0.5 m according to the specifications of the 

technical report of the vendor company. The RMSE of the two sets of measurements 

was 6 cm. Similar results were obtained for some additional 23 points distributed in 

areas with an average slope of 40% without vegetation or any objects above the 

ground.  

 

2.3 DTM calculation 

Computing a DTM from LiDAR data involves using algorithms to eliminate points 

belonging to any object above ground surface such as vegetation or buildings. To do 

this, we generated a program based on iterative processes (Figure 3) written in IDL 

(Interactive Data Language, ITT Visual Systems).  

The DTM iterative algorithm involved 5 steps:  

 

Step 1. The study area was divided into windows, with an initial window size (v1). In 

each window, we selected the minimum elevation point. We used these points to 

calculate an initial DTM (DTM1) using the Delaunay triangulation method. 

Step 2. A smaller window size (v2) was then used to find new minimum heights from 

the input data.  

Step 3. We compared the points selected in step 2 with the DTM1 calculated in the 

step 1, and computed their differences. We then selected the points with height 

difference values lower than the defined height threshold (u1), rejecting points with 

difference values above this threshold. A new DTM (DTM2) was calculated using the 

remaining minimum points (i.e. which had not been rejected). 



Step 4. We created window size (v3), which was smaller than v2. Again, the 

minimum points in each window were selected.  

Step 5. As with step 3, minimum points were compared to DTM2. Points with height 

difference values greater than the second height threshold (u2) were eliminated. The 

final DTM was calculated with the remaining points (Figure 3). 

 

Figure 3. Algorithm used for calculating DTM (adapted from Clark et al., 2004). 

 

2.4 Parameters analyzed 

We analyzed the convenience of simplifying the data for processing purposes, 

comparing the effect of using different data types on the accuracy of the DTM. Two 

different input data types were considered: raw LiDAR data containing all points, and 

LiDAR rasterized data, obtained using a cell size of 1x1m. The value for each cell 

corresponded to the lowest LiDAR point contained in it. The DTM iterative algorithm 

was applied to both raw LiDAR and rasterized data.  

 



In addition, we evaluated the accuracy of the final DTM for 6 groups of window sizes, 

defined by the vectors w(v1,v2,v3) shown in Table 1. This table shows the window 

sizes applied to both raw LiDAR data and rasterized data in the filtering process 

(steps 1-5). Only six series of window sizes were tested: w0 (5, 2.5, 1); w1 (8, 4, 2); 

w2 (10, 5, 2.5); w3 (12, 6, 3); w4 (15, 10, 5); w5 (20, 10, 5). Each vector wi shows a 

sequence of window sizes applied in m for selecting the lowest LiDAR data. Thus, the 

window size applied in step 1 is defined by the first component (v1); the window size 

applied in the step 2 is defined by the second component (v2); and the window size 

applied in the step 4 is defined by the third component (v3). In addition, 25 height 

thresholds (Table 2), defined by the vectors tab(u1,u2), were used. Consequently, 

window sizes from 2.5 to 20 m were used with height threshold ranging from 0.5 m – 

2.5 m resulting in 125 DTM, which were computed and analyzed. Only the raw 

LiDAR data was used as the input data type. 

 

Table 1. Vectors of analysis window size applied to find minimum elevations 

Vectors 
Analysis window size (m) 

v1 v2 v3 

w0 5 2.5 1 

w1 8 4 2 

w2 10 5 2.5 

w3 12 6 3 

w4 15 10 5 

w5 20 10 5 

 

 



Table 2. Vectors tab of height threshold applied to eliminate points not belonging 

to the ground. 

 
u2 (m) 

0.5 1 1.5 2 2.5 

u1 (m) 

0.5 t11 t12 t13 t14 t15 

1 t21 t22 t23 t24 t25 

1.5 t31 t32 t33 t34 t35 

2 t41 t42 t43 t44 t45 

2.5 t51 t52 t53 t45 t55 

 

 

We assessed each DTM by using the checkpoints measured with the RTK-GPS 

system. The RMSE (1) was computed to evaluate the effect of the analysis window 

size and height threshold parameters on the accuracy of a DTM. 
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Where Zi is the elevation measured in the field with the RTK-GPS system; zi 

represents the elevation value obtained from the DTM calculation; and N is the 

number of points measured. 

 

Next, we analyzed input data type, terrain slope, point density, and shrub vegetation 

as factors affecting the accuracy of a DTM. A total of 10 DTMs were calculated with 

the following parameters: 



 

- 5 DTMs calculated with the vectors w1, w2, w3, w4, and w5; raw LiDAR 

data as input data type; height thresholds u1 and u2 with the optimal value 

obtained from the above analysis (i.e. the results of the RMSE for the 125 

DTM). 

- 5 DTMs calculated with the vectors w1, w2, w3, w4, and w5; input data type 

in rasterized data; height thresholds u1 and u2, with the optimal value obtained 

from the RMSE analysis (as above). 

 

We analyzed the input data type factor by calculating the RMSE of the checkpoints 

for each of the 10 DTMs. To detect the overestimation or underestimation of each 

DTM the mean signed error (MSE) was also calculated.  

 

To analyze the effect of terrain slope on the accuracy, we used the following intervals 

to classify the slope of the 1397 checkpoints: 0-10% (n=169), 10-20% (n=255), 20-

30% (n=353), 30-40% (n=249), 40-50% (n=189), 50-60% (n=97), >60% (n=67); 

where n is the number of checkpoints in each interval. For the 10 DTMs, we 

calculated the RMSE of the points included in each interval.  

 

In order to study the density factor, the number of LiDAR points per m2 was 

determined, with the GPS-RTK point at the center. These GPS points were classified 

according to the number of LiDAR points included in a buffer of 0.5 m radius (area 1 

m2). We found 84 GPS-RTK points with 1-2 points/m2 within their buffers; 134 GPS-

RTK points with 3-4 points/m2; 174 GPS-RTK points with 5-6 points/m2 ; 230 GPS-

RTK points with 7-8 points/m2; 250 GPS-RTK points with 9-10 points/m2; 180 GPS-



RTK points with 11-12 points/m2; 327 GPS-RTK points with the number of  points 

greater than 12 points/m2. For the 10 DTMs, we calculated the RMSE of each group.  

 

Finally, we studied the effect of the vegetation factor on the accuracy of the DTM by 

measuring 77 GPS-RTK checkpoints where the shrub vegetation occupied the entire 

ground surface of a circle with a 2 meter radius and with the checkpoint at the center. 

This meant areas 100% covered with a dominant vegetation height of 1.27 m. This 

analysis was performed by computing the RMSE and MSE for the 10 DTMs. We also 

analyzed this factor for analysis window size w0 (5, 2.5, 1).  

 

3. Results and discussion 

3.1 Effect of analysis window size and height threshold on DTM accuracy 

The RMSE showed a decreasing trend, when both height thresholds were increased up 

to a specific height threshold value, where the RMSE became minimum and constant 

(Figure 4). Moreover, for every vector w, the second height threshold produced lower 

RMSE values for vectors tab if a<b. For example, for vector w5 (20, 10 5), the RMSE 

obtained was 0.72 m when the height threshold was u1= 2.5 m and u2=0.5 m. In 

contrast, for height threshold values of u1= 0.5 m and u2=2.5 m, the RMSE was 0.6 

m. These results were different to those reported in studies where height thresholds 

were lower than 1 m and the vegetation was composed of trees (Clark et al., 2004; Yu 

et al., 2004; Estornell et al; 2007). However, since our study area was characterized 

by irregular slopes, the use of low height threshold values would increase the 

probability of eliminating ground points, thus giving inaccurate DTMs. In addition, 

we found that when window size w0 (5, 2.5, 1) was used for calculating a DTM, a 

lower RMSE was obtained with threshold values 2.5 m and 0.5 m for thresholds u1 



and u2, respectively. This could be because the distance between the v2 (2.5 m) and 

v3 (1 m) window size is 1.5 m; for this distance the height difference to the ground is 

lower than for the rest of the windows, assuming an average slope of 40%. The 

selection of higher threshold values entails the incorrect selection of points belonging 

to vegetation. 

 

a) 

 

b) 

Figure 4. RMSE of DTMs calculated for analysis window size vectors w2 (a), and w5 

(b), and varying the 1st and the 2nd height threshold. 



The analysis of the data in areas with local terrain irregularities and steep slopes 

revealed that the height thresholds with minimum RMSE were equal to or greater than 

the height difference in the horizontal window. These values of height threshold 

should be considered when the study area is characterized by local terrain 

irregularities and steep slopes. These features can be observed in a shaded relief 

image of a DTM in Figure 5. 

 

  

a) 

 

b) 

Figure 5. A shaded relief image of DSM (a) and shaded relief image of a DTM 

calculated with analysis window size vector 10, 5, and 2.5 m; thresholds 2.5 m; and 

rasterized data as entry data (b). In the detail it can be appreciated that the shrub 

vegetation areas have been removed in the height filtering in the DTM. 

 



To illustrate the height threshold values which give minimum RMSE, a profile of the 

study area is shown in Figure 6. Initially, the v1 analysis window is large, and the 

minimum elevation of point B is at the edge. Point A is the lowest point of the 

adjoining analysis window. From these data, DTM1 is obtained. As the slope between 

points A and B is not uniform, DTM1 is above actual ground level (DTM). After 

applying a smaller analysis window, v2, points A and B are selected again, and a new 

point, C, appears. This point may correspond either to the terrestrial surface or 

vegetation. If a threshold is used which takes into account the height difference in the 

horizontal window, C is selected if it does not exceed u1, in which case it is highly 

probable that it belongs to the ground and not vegetation. If low thresholds are used, C 

will not be selected and the RMSE of MDT2 will be the same as MDT1. When the 

next window (v3) is applied, the same procedure is followed. In this case, points C 

and D will be selected.  

 

 

Figure 6. Selection of minimum height points in a typical terrain profile of the study 

area.  

 



Regarding analysis window size, the RMSE showed a decreasing trend for small 

windows (Figure 4a). The minimum RMSE was 0.23 m using vector w0 and u1 

height threshold, 2.5 m, and u2 0.5 m and using vectors w1, and w2, and height 

threshold u1 and u2 equal to or greater than 1.5 m. For w3, RMSE was also 0.23 m, 

with thresholds equal to or higher than 2 m. For w4 and w5 (Figure 4b), the minimum 

RMSE were 0.28 m and 0.40 m, respectively. In these cases, height thresholds u1 and 

u2 were equal to or higher than 2.5m. These results showed that small analysis 

windows produced lower RMSE. In contrast, the RMSE increased when large 

analysis windows were used, revealing that large windows do not accurately define 

the micro relief of an area (Popescu et al., 2002). Large windows are only justified in 

areas where there are few gaps which allow pulses to reach the ground. For this 

reason, Clark et al., (2004) used an analysis window vector with components 20, 15, 

and 10 m in a dense forest. Therefore, analysis window size should be small enough 

to preserve topographic details and large enough to eliminate any object above the 

ground (Wang et al., 2009).  

 

3.2. Effect of input data type on the accuracy of a DTM 

DTMs obtained using rasterized data as input data had lower RMSE values than those 

computed using raw LiDAR data format (Figure 7). Moreover, the RMSE decreased 

when smaller windows were used, confirming the results discussed above. The lowest 

RMSE was 0.19 m when vector w2, and rasterized data were used. The highest RMSE 

was obtained using vectors w4-w5 and raw LiDAR data, which gave values of 0.28 

and 0.40 m, respectively. Furthermore, in our study the MSE increased in line with an 

increase in window size: the error sign changed from negative when raw LiDAR data 

were used, to positive for rasterized data format. This trend shows that raw LiDAR 



data type tends to overestimate the DTM for small windows, while rasterized data 

type underestimates the DTM for large windows. The lowest MSE values were for 

rasterized data format and vectors w1 and w2: -0.01 m and 0.02 m, respectively. The 

standard deviation was 0.20 m in both cases. The MSE results were in line with those 

obtained by Wang et al., (2009) in environments of low vegetation. However the 

higher standard deviation found in our study was because that vegetation occupied 

larger areas in our study, which made it more difficult to select ground points. In 

addition, the vegetation was closer and higher and the slopes were steeper. 

 

a) 

 

Figure 7. RMSE and MSE for 10 DTMs calculated with analysis window size vectors: 



w1, w2, w3, w4, and w5; height threshold, 2.5 m; input data type raw LiDAR data (a); 

and rasterized data type(b).  

Clark et al. (2004) showed a higher RMSE value (2.29 m) than that obtained in this 

study (0.19 m) using the same methodology and analysis window sizes of 20, 15, and 

10 m. These differences could be due to the vegetation type present in each study 

area. Unlike our study area, the area in Clark et al. (2004) was characterized by the 

presence of a dense layer of old growth trees, which made it difficult for the laser 

pulses to reach the ground. Therefore, they had to use large analysis windows in order 

to increase the likelihood of ground point selection. However, our findings suggest 

that large windows produce higher RMSE, as reported in Suárez et al., (2005) - they 

obtained an RMSE lower than 0.25 m. The terrain in their study was flat, thus 

allowing more accurate DTMs.  

 

3.3 Effect of terrain slope on the accuracy of a DTM 

As expected, there was a linear increase in RMSE as the slope increased, using DTMs 

calculated with vectors w1, w2, w3, and w4, and rasterized data as input data type 

(Figure 8). The variations in RMSE values were: 0.16 to 0.27 m (w1); 0.13 to 0.30 m 

(w2); 0.14 to 0.26 m (w3); and 0.24 to 0.41 m (w4). When large windows were used 

(vector w5), there was no relation between RMSE and terrain slope. For large 

windows, a significant amount of micro relief may be omitted, thus producing an 

increase in the RMSE. A similar trend with higher RMSE values was observed when 

the input data type was raw LiDAR data. These errors were lower than the errors 

found in Hyyppä et al., (2000) where there was a variation in the RMSE from 0.15 to 

0.40 m, while in Hollaus et al., (2006) the RMSE varied from 0.1 to 0.31 m for slopes 

from 0-10% to 40-50%. Although the methodology and characteristics of the study 



areas were different, the results seem to indicate that the parameters selected would be 

suitable for steep terrain.  

Horizontal accuracy of the LiDAR system can lead to vertical errors. Multiplying the 

nominal horizontal accuracy (0.5 m) and the average slope of the terrain (40%), a 

mean vertical error of 0.2 m was expected in the area. However, according to the 

assessment of the vertical accuracy of LiDAR data based on in-field measurements 

and described in section 2.2, a value of RMSE of only 0.06 m was obtained in steep 

slopes. This result could explain part of the RMSE values obtained in the analysis of 

the slope factor. 

 

 

Figure 8. Analyses of terrain slope effect in the RMSE with analysis window size 

vectors: w1, w2, w3, w4, and w5; height thresholds, 2.5 m; and entry data, rasterized 

data. 

 

3.4 Effect of point density on the accuracy of a DTM 

The results of our study showed that RMSE continued to decrease until point density 

reached 8 points/m2 (Figure 9). From this density upwards, the RMSE value remained 



constant. There was no relation between the RMSE and the point density for analysis 

window size w5, as this size of window masked the influence of other factors. The 

lowest RMSE was obtained with analysis window sizes w1 and w2, and rasterized 

data as input data type (Figure 9). For these parameters, RMSE values decreased from 

0.29 to 0.18 m for w1, and from 0.24 to 0.18 m for w2, when density varied from 1-2 

points/m2 to 12 points/m2. These results are in line with those presented in Hyyppä et 

al., (2005), where the RMSE increased from 0.12 to 0.18 m when point density varied 

from 8 to 1-2 points/m2, respectively.  

 

Figure 9. Analyses of point density in the RMSE of DTMs calculated with analysis 

window size vectors w1, w2, w3, w4, and w5; thresholds, 2.5 m; and entry data, 

rasterized data. 

 

3.5 Effect of shrub vegetation on DTM accuracy 

We analyzed the influence of vegetation by using 77 ground-surveyed checkpoints 

measured with RTK-GPS equipment in areas with dense shrub. The lowest RMSE 

(0.24 m) was found for vectors w2 and w3, and rasterized data as input data type 

(Figure 10). This value was 0.05 m higher than the lowest RMSE calculated from the 



1379 checkpoints. Su and Bork (2006) obtained a higher RMSE (0.5 m) in the 

computation of a DTM in areas with presence of silverberry whose structure was 

similar to the vegetation found in our study. These results suggests that this algorithm 

could be used in shrub vegetation areas with steep slopes, as is illustrated in Figure 5 

although accuracy decreases in zones occupied by dense vegetation (Cobby et al., 

2001; Raber at al., 2002; Hodgson et al., 2005; Riaño et al., 2007),  

 

a) 

 

     b) 

Figure 10. RMSE and MSE for the 10 DTMs calculated using 77 points measured in 

shrub vegetation areas. The parameters for calculating the DTMs were: analysis 

window size vectors w0, w1, w2, w3, w4, and w5; thresholds, 2.5 m; entry data, raw 

LiDAR data (a) and rasterized data (b).  



The MSE for the smallest window vectors w0 (5, 2.5, and 1 m) and w1 (8, 4 and 2 m) 

was negative, and the absolute value was high, especially when the raw LiDAR data 

were used. This result indicated that points belonging to vegetation were selected as 

ground-points, thus producing a DTM overestimation.  

 

4. Conclusions 

The influence of some parameters and factors in the accuracy of DTM calculation in 

shrub areas was analyzed. An algorithm based on iterative processes to select 

minimum elevations was applied for DTM computation in a steep mountain area with 

local terrain irregularities. Our results showed that the lowest RMSE was found for a 

medium analysis window size (w2, w3), rasterized data as input data, and height 

thresholds equal or greater than 1.5 m. The results also showed that small or large 

windows were inappropriate for the type of terrain studied. In terms of input data 

type, DTMs calculated from rasterized data produced better results, although the 

DTM tended to be underestimated. These results were confirmed when the effect of 

slope, point density, and presence of shrub vegetation on the accuracy of a DTM were 

analyzed. For other scenarios, however, different values of parameters might be 

needed to obtain accurate DTM. 

 

Previous research has pointed out the importance of accurate DTM in the height and 

volume estimation (Velazquez et al., 2010; Estornell et al., 2010), particularly in 

shrub areas, where there are small differences in height between the vegetation and 

the terrain, and there is height underestimation of shrub vegetation (Streutker and 

Glenn, 2006; Riaño et al., 2007). To minimize these errors, it is critical to select the 

parameters involved in DTM calculation correctly. 



 

Given that a highly accurate DTM is required to analyze shrub vegetation, the results 

obtained in this research could be applied to study the volume and height of this 

vegetation, as well as to obtain an accurate digital representation of the Earth. The 

appropriate processing and use of these data will contribute to improve our knowledge 

of Mediterranean forests, which have a main proportion of dense and low shrub. 
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