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ABSTRACT 

 

When the number of defects in a production process has to be monitored there are cases where the 

Poisson distribution is suitable for modeling the frequency of these defects and for developing a 

control chart.  In this paper we analyze the monitoring of p Poisson quality characteristics 

simultaneously, developing a new multivariate control chart based on the linear combination of the 

Poisson variables, the LCP control chart. The coefficients of this linear combination are optimized 

to keep the desired in-control ARL and to minimize the out-of-control ARL. In order to facilitate the 

use of this new control chart the optimization is carried out employing user-friendly Windows© 

software, which also makes a comparison of performance between this chart and other schemes 

based on monitoring a set of Poisson variables; namely: a control chart on the sum of the variables 

(MP chart), a control chart on their maximum (MX chart) and an optimized set of univariate 

Poisson charts (Multiple scheme). The LCP control chart shows very good performance. First, the 

desired in-control ARL (ARL0) is achieved, which is an advantage over the rest of charts, which 

cannot in general achieve the required ARL0 value, because their control limits can only take integer 

values.  Secondly, in the vast majority of cases this scheme detects the process shifts faster than the 

rest of the charts. 

 

KEYWORDS: Control Chart, Poisson, Genetic Algorithm, Multivariate 

 

1. Introduction 

The monitoring of a single Poisson variable employing a quality control chart is an easy task: 3-

sigma limits are given in closed form as a function of the in-control mean of the variable; 

alternatively, probability limits can be determined by inverting the cumulative distribution so as to 

achieve an acceptable false-alarm probability (although exactly matching a specified false-alarm 

probability is not in general possible, due to the discreteness of the Poisson variable, which makes 
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its cumulative distribution discontinuous). For details, see, for instance, Montgomery (2012). When 

several Poisson variables need to be monitored simultaneously, the practitioner has two options: (i) 

a control scheme based on one chart for each variable (multiple scheme); and (ii) a control scheme 

based on one single control chart (multivariate scheme). There is a large bibliography about 

multivariate and multiple statistical process control for continuous variables; see, for example, 

Bersimis et al. (2006). However, very little research has been done when the variables to be 

monitored are discrete, and in the specific case of this paper, when they follow the Poisson 

distribution. 

 

Holgate (1964) investigated the bivariate distribution of correlated Poisson variables. His model 

assumes that there is a common factor for all the variables, plus a unique factor for each of the 

observed variables. For example, the common factor in a cutting process can be the rotational speed 

of a saw when cutting wood panels. The speed affects the frequencies of two types of possible 

defects in the surface. The influence of this common factor in the number of defects of the observed 

variables Xi, i = 1, 2, is represented by an unobservable variable Y0, and the influence of each 

individual factor on the respective observed variable Xi is represented by an unobservable variable 

Yi so that Xi = Y0 + Yi. The common part Y0 responds for the correlation between the observed 

variavles Xi. This model can be easily extended to more than two variables, simply by making i = 1, 

2, ... , p, with p > 2. This extended Holgate’s model is assumed throughout this paper. Let  λi denote 

the mean of each Poisson variable Yi. It is straightforward to obtain: 

 

E(Xi)=λ0+λi                Cov(Xi, Xj)= λ0          
0

0 0

( , )
( )( )

i j

i j

X X



   


 

  (1)

 

 

Another reference in multiple process control by attributes is Patel (1973), who developed a 

multivariate control chart based on the multivariate normal approximation to the binomial 

distribution. More recently, Skinner et al. (2003) proposed to employ the Deviance Residual of the 

general linear model as the statistic to monitor several independent Poisson variables. Chiu and Kuo 

(2008) proposed the multivariate monitoring of several Poisson variables by the sum of all of them, 

in what they named the MP control chart. They found the distribution of this sum and analyzed the 

performance under Holgate’s model for correlation. Another multivariate proposal was presented by 

Ho and Costa (2009), for the case of a bivariate Poisson. They proposed monitoring the variables by 

their difference (DX chart) and also by the maximum of them (MX chart). An exhaustive 

comparison of performance is presented in their paper. 
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With respect to the Multiple scheme, designing a set of univariate Poisson control charts is not an 

easy task. Aparisi et al. (2013) developed a procedure to design this set of charts, considering that 

the set has to achieve a required in-control ARL. They provided user-friendly software to perform 

the ARL calculations and optimize the charts parameters. The difficulty is that, since the in-control 

means of the variables are fixed values, then the only parameter in each chart that one has freedom 

to change (as a decision variable) is the upper control limit. Since, however, the Poisson variable 

can take only integer values, its cumulative distribution is discontinuous, which prevents (except by 

a lucky chance) adjusting the limits of this set of charts for a specified false-alarm probability so as 

to match the required in-control ARL. Sometimes a close value can be obtained, but the majority of 

times there is a large distance between the desired value and the closest ARL available. For that 

reason, in many cases, we have to choose from a scheme where the number of false alarms is high, 

or from a scheme that is not powerful to detect the process shifts, because the in-control ARL is too 

large (which is tantamount to saying that the control limit is too high for providing good power for 

the chart). A similar problem occurs with all previously cited charts based on the Poisson 

distribution. 

 

Laungrungong, Borror and Montgomery (2011) developed a multivariate EWMA control chart for 

Poisson variables (the MPEWMA control chart) assuming Holgate’s model as well. The MPEWMA 

chart was compared with the traditional MEWMA control chart (Lowry et al., 1992) applied to the 

Poisson variables. They show that the use of the MEWMA chart only produces reasonable results 

when the mean of the Poisson variables have a value of 5 of more. When this condition is not 

satisfied, the MEWMA chart tends to produce more false alarms. 

 

One of the applications where often there is the need of monitoring several discrete (and often 

Poisson) variables is health surveillance. There is a vast bibliography about this field, where the 

new control chart developed in this paper may be applied. A good review of the use of control 

charts in health-care and public-health surveillance is Woodall (2006). Other interesting papers, 

where the interested reader can find more information and references are Joner et al. (2008) and 

Jiang et al. (2011).   

 

In this paper we propose a new multivariate control chart, the Linear Combination of Poisson 

counts (LCP) chart, that can be optimized to obtain the required in-control ARL, solving one of the 

problems of multivariate control charts for Poisson variables. In addition, as it will be shown, the 

optimized LCP chart is practically always the most powerful one to detect process shifts. In order to 

promote the use of the LCP chart, user-friendly software (available by request) has been developed. 
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This software finds the best linear combination of the Poisson variables and the best control limits 

in order to minimize the out-of-control ARL. Moreover, this computer program also optimizes the 

multivariate MP and MX control charts and the Multiple scheme, and makes a complete comparison 

of performance among all the charts. This way, the end-user can determine which is the most 

efficient control scheme for his/her particular needs. 

 

The remainder of this paper is organized as follows: Section 2 presents the theoretical basis of the 

(optimized) multiple scheme (several univariate control charts) and of the multivariate schemes 

focused here (sum, maximum and linear combination of the variables). Section 3 gives a formal 

definition of the optimization problem. Section 4 describes a computer program that has been 

developed with the aim of helping the final user with selecting the best control scheme for his/her 

process. This software allows obtaining the control limits for the charts mentioned in Section 2, 

when p = 2, 3 or 4 Poisson variables are monitored, in order to obtain the desired in-control ARL, or 

the closest possible. In addition, the software carries out a complete performance comparison 

between the different control charts. A sensitivity analysis appears in Section 5. A general 

comparison of performance is shown in Section 6. Finally, Section 7 summarizes the conclusions of 

this paper. 

 

 

2. Controlling several Poisson variables: multivariate and multiple 

approaches. 

In this section all the Poisson control charts that will be considered in the comparison of 

performance are introduced. The performance measure that will be used is the Average Run Length 

(ARL), which is the most used one to make this type of comparisons. It is the average number of 

points on the control chart until the chart signals, i.e., until a point is plots outside the control limits 

or just on the control limits. A signal will be a false alarm if the process is in control, that is, with no 

shifts in its parameters. Therefore a large in-control ARL is usually required. On the other hand, 

shifts in the process parameters (out-of-control state) must be detected quickly, therefore small out-

of-control ARLs are desired. In the type of charts analyzed in this paper, where the statistics (points) 

to be plotted are independent, the number of samples until a signal follows a geometric distribution, 

and the ARL is the reciprocal of the probability of a signal, formally, ARL = 1 / P(signal). 
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2.1 The Multiple Scheme: multiple univariate Poisson control charts.  

The multiple scheme consists of monitoring each Poisson variable by one control chart. Aparisi et 

al. (2013) offer a computer program that optimizes this set of univariate control charts to minimize 

the ARL for a given shift. The authors also analyze the performance of this scheme for a large 

number of cases. In that paper, as in the present one, it is assumed that each of these Poisson’s 

charts has only the upper control limit, as normally the practitioner is only interested in detecting 

shifts that increase the number of defects. Therefore, if p Poisson variables are to be monitored, p 

upper control limits should be determined. The search for their optimal values is conducted taking 

into account that a specified value, ARL0, is required for the joint in-control ARL of the set of p 

control charts. However, it is normally not feasible to achieve the required value of ARL0 given that 

the Poisson variables can take only integer values. Aparisi et al. (2013) search the control limits 

following the objective of obtaining the closest possible value of in-control ARL to the required 

ARL0, but always larger than ARL0 if the exact value cannot be matched. This criterion will be 

employed in this article as well. 

 

The statistic to be plotted in each chart is the observed value of the variable, Xi. One chart shows a 

signal when the observed value is greater or equal than the control limit, i.e.,  Xi  ≥ UCLi. Hence, 

this set of p control charts shows an out-of-control signal when one or more control charts signal.   

 

 

2.2 Multivariate Schemes 

As it was previously mentioned, the multivariate approach consists in employing a unique statistic 

for all the p variables to be monitored. For example, in the case of Poisson variables, Chiu and Kuo 

(2008) formulated the statistic 𝐷 = ∑ 𝑋𝑖
𝑝
𝑖=1 , i. e., the sum of the observed values of the Poisson 

distributions, known as the MP chart. Ho and Costa (2009) proposed charting the difference, DF = 

X1 - X2, and the maximum of two (p = 2) Poisson variables, MX = max(X1, X2).   

 

In this paper we propose a new chart, based on the optimized Linear Combination of Poisson 

variables (LCP chart). Note that the sum of the variables in the MP chart and the difference of the 

variables in the DF chart (which can be used only in the two variables case) are particular cases of a 

linear combination. Therefore, it is expected that the LCP chart will outperform these charts. An 

important aspect of the LCP chart is that it will need a lower control limit when some of coefficients 

of the optimum linear combination are negative, because negative values can be produced when the 

process is in control. To account for this possibility, the optimization problem formulation will 
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consider the chart as two-sided, letting the search algorithm find the best values for the coefficients 

and control limits. 

 

Let 
1 1 2 2 p pLCP a X a X a X     denote the linear combination of p Poisson Correlated Random 

Variables, where [ 1, 1]ia  
 

and 
0i iX Y Y  . This linear combination can be expressed as a 

function of the unobservable Poisson variables Y0 and {Yi}, i = 1, 2, ... , p, as follows:  

 

𝐿𝐶𝑃 = ∑ 𝑎𝑖 ∙ 𝑋𝑖 =𝑝
𝑖=1 ∑ 𝑎𝑖 ∙ (𝑌0 + 𝑌𝑖) = ∑ 𝑎𝑖 ∙ 𝑌0 +𝑝

𝑖=1
𝑝
𝑖=1 ∑ 𝑎𝑖 ∙ 𝑌𝑖 = 𝑏 ∙ 𝑌0 + ∑ 𝑎𝑖 ∙ 𝑌𝑖

𝑝
𝑖=1

𝑝
𝑖=1       (2) 

 

Hence, the probability function 𝑃(𝐿𝐶𝑃 = 𝑑) is given by  

0

( / )

0 0 0 0

1 0 1

( ) ( * * ) ( , * * )
p trunc d b p

i i i i

i i i

P LCP d P b Y a Y d P Y i a Y d b i
  

                  (3) 

0 1

0 1 0

(( * )/ )( / )

0 0 1 1 0 1 1

0 2

( ) ( , , * * * )
trunc d b i atrunc d b p

i i

i i i

P LCP d P Y i Y i a Y d b i a i




 

                  (4) 

 

Where 𝑏 =  ∑ 𝑎𝑖
𝑝
𝑖=1 .   

 

 

It is noted that the maximum values of each sum with index ij of the equations (3), (4) and (5) are 

obtained assuming that the Poisson independent variables Yj with  j = k+1, k+2 ,…., p take the 

value of 0. 

 

 And now, developing equation 4, we obtain the probability function of the Linear Combination in 

(6):  
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(6)  

 

 

 

Note that, given a set of coefficients {ai}, LCP can only take discrete values, namely, the ones that 

satisfy the following equation: 

 

𝑑 = ∑ 𝑎𝑖 ∗ 𝑌0 + ∑ 𝑎𝑖 ∗ 𝑌𝑖

𝑝

𝑖=1

𝑝

𝑖=1

 

𝑦𝑖 = 0, 1, 2, … , ∞ ; 𝑖 = 0, 1, 2, … , 𝑝 

The expression for the ARL is 

 

𝐴𝑅𝐿 =
1

1−𝑃(𝐿𝐶𝐿<𝐿𝐶𝑃<𝑈𝐶𝐿)
             (7) 

 

 where the probability that the statistic LCP falls between the control limits is:  

 

𝑃(𝐿𝐶𝐿 < 𝐿𝐶𝑃 < 𝑈𝐶𝐿) =

= ∑ ∑ ∑ ∑ … . ∑ 𝑒𝑥𝑝 {− [∑(𝜆𝑖

𝑝

𝑖=0

)]}
𝜆0

𝑖0 ∗ 𝜆1
𝑖1 ∗ … .∗ 𝜆𝑝−1

𝑖𝑝−1 ∗ 𝜆𝑝

𝑑−𝑏∗𝑖0−∑ 𝑎𝑖∗(𝑖𝑖))
𝑝−1
𝑖=1 /𝑎𝑝

𝑖0! ∗ 𝑖1! ∗ … … … .∗ 𝑖𝑝−1! ∗ (𝑑 − 𝑏 ∗ 𝑖0 − ∑ 𝑎𝑖 ∗ (𝑖𝑖))
𝑝−1
𝑖=1 /𝑎𝑝)!

𝑡𝑟𝑢𝑛𝑐((𝑑−𝑏∗𝑖0−∑ 𝑎𝑖∗(𝑖𝑖))
𝑝−2
𝑖=1 /𝑎𝑝−1)

𝑖𝑝−1=0

𝑡𝑟𝑢𝑛𝑐(
𝑑−𝑏∗𝑖0−𝑎1∗𝑖1

𝑎2 )

𝑖2=0

𝑡𝑟𝑢𝑛𝑐(
𝑑−𝑏∗𝑖0

𝑎1 )

𝑖1=0

𝑡𝑟𝑢𝑛𝑐(
𝑑
𝑏)

𝑖0=0

𝑈𝐶𝐿

𝑑=𝐿𝐶𝐿

 

(8) 

 

Note that the function    (𝑑 − 𝑏 ∗ 𝑖0 − ∑ 𝑎𝑖 ∗ (𝑖𝑖))𝑝−1
𝑖=1 /𝑎𝑝 only can return integer values. Therefore, 

whatever combination of the values of i0, …, ip-1 that returns a non-integer value must be discarded 

in the ARL calculations.  

 

 

3. Optimization of the LCP control chart 

It is a common practice in designing a control chart to set a value, ARL0, for the in-control ARL, as 

a constraint, and to minimize the out-of-control ARL for a shift in the process parameters that is 

considered relevant. In the case of the LCP control chart the optimization problem consists in findi-

ng the values of the control limits and of the coefficients ai of the linear combination: [ 1, 1]ia   , i 

= 1, 2, … , p and  LCP =
1

*
p

i i

i

a X


 . 
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The formal definition of this optimization problem is: 

 

Given 

In-control ARL: ARL0 

In control means: λ0,i   i = 0, 1, 2, …, p 

Shift for which to minimize the ARL: d* = (d0, d1, d2 ,…, dp) 

di  =  (λ1,i - λ0,i)/ (λ0,i)
1/2

  i = 0, 1, 2,…..,p 

where:  λ0,i: in-control means 

λ1,i:   out-of-control means. 

di:     shift in sigma units for mean λ0,i 

Find 

Upper and lower control limits for LCP Chart: LCL and UCL. 

The parameters  𝑎𝑖  , [ 1, 1]ia   , i = 1, 2, …, p for the linear combination LCP =
1

*
p

i i

i

a X


 . 

 Minimize: ARL (d = d*) 

Such that ARL (d = 0) = ARL0  

 

This is a rather complex optimization problem that has been solved using Genetic Algorithms (GA). 

The GA employed in this paper has been calibrated to maximize its performance employing the 

technique of design of experiments. GA have proved to be an efficient tool to optimize quality 

control charts. For example, some references are: Chen (2007), Kaya (2009) and Aparisi et al. 

(2009). 

 

 

4. Software and example of application 

To easy the use of the LCP control chart, we have developed user-friendly Windows© software for 

optimizing its parameters and making a complete comparison of performance with the previously 

mentioned other control charts based on the Poisson distribution. An example of use of this 

computer program follows.  
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According to Sánchez et al. (2002), there are two types of defects that can occur in the production 

of ceramic vases: blisters and discolorations. These defects are sometimes produced by raw material 

contaminants, like manganese oxides, iron oxides, and titanium oxides. It is required to monitor the 

production to control these two types of defects. In order to estimate their means, 100 samples of 10 

ceramic vases each were taken when the process was assumed to be in control. The results are 

shown in Table 1, where X1 is the number of blisters and X2 is the number of discolorations. 

 

X1 X2 Frecuency 

0 0 4 

0 1 5 

0 2 10 

0 3 4 

0 4 4 

0 5 2 

0 6 1 

1 0 5 

1 1 12 

1 2 6 

1 3 7 

1 4 6 

1 6 1 

2 0 6 

2 1 3 

2 3 8 

2 4 2 

2 5 1 

3 0 1 

3 2 1 

3 3 1 

3 4 4 

3 5 2 

3 6 1 

4 1 1 

4 3 1 

5 4 1 

E(X1)=1.2 E(X2)=2.29 Σ = 100 

 Table 1.  Sampling from the process. X1 is the number of blisters, and X2 is the number of 

discolorations 

 

 

The observed correlation between these variables is r = 0.15. It is desired to obtain the control limits 

for all the charts shown on Section 2 in order to obtain an in-control ARL0  =  370 or the closest 

possible. 
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It is possible to estimate the means of the non-observed Yi Poisson variables, knowing that 

1 2( ) ( ) ( , )i iE Y E X Cov X X  , see equation (1). It is required to find the chart’s best parameters to 

detect rapidly a shift of 1 sigma unit in the mean λ1.  The following relationships are used to 

determine the out-of-control Yi mean values: 

    

λ1,i =  λ0,i + di * (λ0,i)
1/2

;.      di  =  (λ1,i - λ0,i)/ (λ0,i)
1/2

  i = 0, 1, 2 

where:  λ0,i: in-control means 

              λ1,i:   out-of-control means. 

              di:     shift in sigma units for mean λ0,i 

 

 

 

Table 2 shows the results: 

 

In control Out of control 

λ0,0 λ0,1 λ0,2 λ1,0 λ1,1 λ1,2 

0.27 0.93 2.01 0.27 1.89 2.01 

Table 2.  Means values for the example of application 

 

Table 3 shows the in-control and out-of-control ARLs for all the charts studied. Figure 1 shows the 

software output.  

 

 Type of Chart 

 MP Chart MX Chart LCP Chart Multi Poisson Chart 

Control Limits UCL = 11 UCL = 8 LCL =-0.97 UCL = 3.12 UCL1 = 7 UCL2 = 8 

ARL (d = 0) 440.58 401.31 369.72 370.24 

ARL ( d  = d* ) 105.49 236.65 36.74 108.08 

Table 3. Control limits for each control scheme  
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Figure 1. The computer program solving the example of application. 

 

 

As Table 3 shows, the fact that the LCP values are not integers, but real numbers, allows matching 

the actual in-control ARL, ARL(d = 0) = 369.72, to the required value ARL0 = 370. This is one of 

the advantages of the LCP control chart. The rest of the charts analyzed, in contrast, cannot in 

general fulfill this requirement. In this example, the in-control ARLs of the MP, MX and Multi-

Poisson charts are of 440.58, 401.31 and 370.24, respectively. The last value, of 370.24, happens to 

be quite close to the required value of 370, but this happens by chance, only occasionally, and 

cannot be taken as granted in general. 

 

The comparison now focuses on the out-of-control ARLs. Although this comparison is not strictly 

fair, because the in-control ARLs are not the same for all the charts, it seems clear that the LCP 

control chart shows the best performance.  Employing the parameters  𝑎1 = –0.27, 𝑎2 = 0.37, LCL 

= –0.97 and UCL = 3.12, the out-of-control ARL is 36.74, while the out-of-control ARLs of the MP, 

MX and multi-Poisson charts are 105.49, 236.65 and 108.08, respectively. All this information is 

part of the program output (see Figure 1). The results are summarized in Table 3. 

 

Now follows an example of use of the LCP chart. Table 4 shows several samples of 10 ceramic 

vases and the number of defects observed in each sample. As before, X1 is the number of blisters, 

and X2 is the number of discolorations. The statistics to be plotted is LCP =  −0.27𝑋1 + 0.37𝑋2. 
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Figure 2 shows the LCP chart with the values from Table 4 plotted. The last sample (LCP = 3.16) 

plots above the upper control limit (UCL = 3.12), indicating that we should consider that the 

process is out of control. 
 

 

 
Sample X1 X2 LCP 

1 1 4 1.21 

2 1 0 -0.27 

3 0 4 1.48 

4 1 1 0.1 

5 0 2 0.74 

6 0 1 0.37 

7 4 3 0.03 

8 1 1 0.1 

9 0 2 0.74 

10 2 10 3.16 

Table 4. Values for the LCP Chart. X1 is the number of blisters, and X2 is the number of discolorations  

 

 

 

Figure 2. LCP Chart of the example 

 

 

One of the important features of the developed software is that it can carry out a complete 

comparison of performance among the MP, MX, LCP charts and the Multiple scheme. This 

comparison is done after optimizing the charts in the “Optimization” tab. Then the “Comparison” 

tab is selected by the user to begin the analysis of performance (see Figure 3). The leftmost plot in 

this tab, “Best Control Chart: Two free shifts”, shows which control chart is the best for a given 

couple of shifts in two of the variables Yi, i = 0, ..., p. The user has to select two of the variables (Yi, 

Yj) for the horizontal and vertical axis. In the case shown in Figure 3 the shifts in Y1 are on the 

horizontal axis and the shifts in Y2 are on the vertical axis.  

 

w 

LCL = −0.97 

UCL = 3.12 

 

LCP 
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This plot shows that when, for example, the shifts in the Y1 and the Y2 means are of 1.0 and 0.2 

sigma units respectively, and the Y0 mean does not change (the user had set this shift to 0), the best 

scheme is the LCP chart. The figure only indicates which chart is the best (lowest ARL) for that 

shift. The exact ARL values for this case can be easily obtained in the “Optimization” tab for the 

MX, MP and Multiple Poisson charts. The ARL for the LCP chart for a given shift is shown in the 

right area of the software interface window, “ARL calculations for LCP chart”. In the example, the 

LCP chart shows an ARL of 45.57, which is 47%, 70% and 38% smaller than the ARLs of the 

Multiple Scheme, MX chart and MP Chart, respectively. As another example, when the Y0 mean 

undergoes no shift, and the Y1 and Y2 means have a shift of 0.4 sigma units each, then the plot 

shows that the best option is the Multiple Scheme. In this case the Multiple scheme has an out-of-

control ARL of 98.53; 9,7%, 8% and 42% less than the ARLs of the MX, MP and LCP charts 

respectively.  

 

The second plot in the interface window (Figure 3), “Best Control Chart: One free shift”, displays 

the ARL curves (ARLs in the vertical axis, shifts in the horizontal axis) for shifts in Y1 in, when the 

means of Y0 and Y2 undergo no changes (the user had set these shifts to 0). The chart clearly shows 

that the best control chart is the LCP (lowermost curve). In general, the user specifies fixed values 

for the shifts in all variables but one and the program plots the ARL curves as a function of the 

shifts in the latter. See the entries above the plot, in Figure 3. Let’s repeat that, although the user in 

this example entered 0 for the shifts in the means of Y0 and Y2, he or she could have chosen any 

other fixed value for them.  
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Figure 3. Comparison of the charts for the example of application. 
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5. Sensitivity Analysis 
 

A common technique for optimally designing a control chart is to specify a shift in the process 

parameters for which the ARL should be minimized, subject to a constraint in the in-control ARL. 

This is the procedure employed in this paper and implemented in the software developed. A proper 

choice of shift for optimization is often the smallest shift that is already relevant to detect because it 

is enough large to have an impact on the product quality. The ARLs for larger shifts will be, of 

course, smaller than the ARL for the selected shift, since the chart will be more sensitive to larger 

shifts. This does not mean, however, that the chart is optimal for these larger shifts. Other charts 

(and other designs of the same type of chart) may perform better for the larger shifts. No chart is 

uniformly better for all shifts. The question that arises is, then, what is the performance of the chart 

for these larger shifts. 

 

Therefore, it results interesting to study the robustness of the optimization with respect to the 

selected out-of-control shift. The objective is to know whether the optimized LCP control chart 

shows good performance as well for other shifts than the selected one. This study is not trivial. For 

example, when p > 2 it is difficult to see the variation of the performance for different shifts, due to 

the combinatorial explosion of the number of possible cases, since the shifts could occur in any 

subset of the Yi variables, including the case of all of them. For instance, just with p = 3, we should 

study the sensitivity for different values of Y0, Y1, Y2 and Y3. Therefore, for better understanding, a 

sensitivity analysis is here presented for the case p = 2, although similar conclusions are found for 

larger values of p.   

 

First of all, a result that we have found is that two charts optimized for shift vectors such that (in 

each shift vector) the shifts in the means of two variables are equal have equal performance. no 

matter the magnitude of these shifts. An example will illustrate this. Suppose an in-control ARL of 

500 is required, and the in-control means are λ0,0 = 0.5, λ0,1 = 1, λ0,2 = 3. The next step is to select a 

set of shift increments in the means for the optimization. Let us optimize for two different shift 

vectors: A = (0.5, 1, 1) and B = (0.5, 2, 2), where the i-th element is the shift increment in the mean 

of Yi. After optimizing for both shift vectors, the optimum LCP control charts will have the same 

ARLs for whatever shift vector. The conclusion is the same for whatever couple (Yi, Yj), Yi = Yj 

that is selected for the optimization. The ARLs for different increments in variables Y1 and Y2 are 

shown on Table 5, and we remind that these ARLs are the same for LCP charts optimized for cases 
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A and B.  

 

 

 Shifts for Y2 

 

 

 

 

Shifts for Y1 

 0.5 1 1.5 2 2.5 3 

0.5 41.31 21.39 12.27 7.68 5.18 3.73 

1 28.68 15.55 9.33 6.09 4.26 3.17 

1.5 20.73 11.72 7.31 4.94 3.58 2.74 

2 15.52 9.10 5.88 4.11 3.06 2.41 

2.5 11.95 7.26 4.85 3.49 2.67 2.15 

3 9.43 5.93 4.08 3.02 2.37 1.95 

 

Table 5. Out-of-control ARLs for LCP charts optimized for increments A = (0.5, 1, 1) and B = (0.5, 2. 2). In-

control ARL = 500. 

 

 

The same ARLs are obtained because both optimizations return equivalent schemes. The LCP chart 

optimized for shift vector A has these parameters: a1 = 0.68, a2 = 0.71, UCL = 9.72 and LCL = -0.01 

and the LCP chart optimized for shift vector B has: a1 = 0.64, a2 = 0.69, UCL = 9.28 and LCL = -

0.01. Although the parameters are not the same, they are equivalent, proportional, yielding the same 

ARLs for whatever shift. Indeed, if the shifts in the variables keep a constant proportion, it is 

reasonable that the coefficients of the linear combination also keep a proportion. So both linear 

combinations are the same, except for a matter of scale. And the constraint on the in-control ARL 

forces the UCLs of the two charts to be equivalent (i.e., the same but for a matter of scale). 

Therefore, for any given shift, both schemes will have the same performance. As a practical 

conclusion, if all shift vectors the final user is concerned with keep a constant proportion between 

their elements, then the magnitude of the shifts to be entered for the optimization (the norm of the 

shift vector) does not matter: the result will be the same. This may sometimes simplify the user’s 

decision. In addition, it is worth commenting that the ARLs for large shifts are quite small, what it 

is a very desirable result. 

 

Another issue that arises from inspection of Table 5 is why the ARLs for shifts that are symmetric 

are not equal. For example ARL(0.5, 1) = 21.39, different from ARL(1, 0.5) = 28.68. Intuitively, 
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they could be expected to be equal, since the shifts in Y1 and Y2 are the same, just interchanged.  

However, their ARLs are different (Table 5 is not symmetrical). This occurs because the coefficients 

of the optimal linear combination, a1 and a2, are not equal. The reason they are not equal is that 

there is no way to obtain an ARL(d = 0) = 500 with a1 = a2. This is easy to check, because the 

software optimizes as well the sum of variables, the MP chart; the sum is the linear combination, 

with a1 = a2 =1. Therefore, if this chart based on sums if optimized for sets A or B, the closest ARL 

that is obtained is 1212.4, far away from 500. For that reason, the optimization of the LCP chart 

returns values of a1 and a2 that are not equal, producing the asymmetry found in Table 5. 

 

To continue with the analysis of sensitivity, let’s examine another pair of shift vectors for 

optimization. In this case, in-control ARL = 400, point A = (0.5, 1, 1) and B = (0.5, 1, 1.5). The 

objective is to see what happens when the shift vectors selected for the optimization are not very 

different. Table 6 shows the ARLs of both optimal designs. 

 

 Shifts for Y2 

 

 

 

 

 

 

 

Shifts for Y1 

 0.5 1 1.5 2 2.5 3 

 

0.5 

34.27 

(41.53) 

19.88 

(18.39) 

12.3 

(9.66) 

8.1 

(5.8) 

5.65 

(3.86) 

4.15 

(2.80) 

 

1 

21.74 

(34.62) 

13.42 

(15.73) 

8.78 

(8.47) 

6.06 

(5.19) 

4.41 

(3.52) 

3.36 

(2.60) 

 

1.5 

14.59 

(29.20) 

9.49 

(13.62) 

6.52 

(7.49) 

4.7 

(4.69) 

3.55 

(3.24) 

2.8 

(2.43) 

 

2 

10.29 

(24.82) 

7.00 

(11.89) 

5.02 

(6.69) 

3.76 

(4.27) 

2.94 

(3.00) 

2.39 

(2.28) 

 

2.5 

7.59 

(21.2) 

5.36 

(10.45) 

3.99 

(6.02) 

3.10 

(3.91) 

2.50 

(2.79) 

2.08 

(2.15) 

 

3 

5.81 

(18.14) 

4.25 

(9.22) 

3.27 

(5.44) 

2.62 

(3.60) 

2.17 

(2.61) 

1.85 

(2.01) 

 

Table 6. Comparison of ARLs for LCP control charts optimized for A = (0.5, 1, 1) and B = (0.5, 1, 1.5). ARL 

values for B in parenthesis. In-control ARL = 400. 

 

The analysis of Table 6 shows that both charts perform well and with very similar ARLs when both 
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variables Y1 and Y2 have large shifts. This result is important because, even though the 

optimizations have been carried out for moderate shifts, the charts have good performance for large 

shifts, which are always very costly for the company and must be detected quickly. For example, 

ARLA(2.5, 2.5) = 2.50 and ARLB(2.5, 2.5) = 2.79. Another case is ARLA(3, 2.5) = 2.17 and 

ARLB(3, 2.5) = 2.61 However, there are differences in the performance for other cases. When the 

shift in Y1 is small, Y1 = 0.5, and the shift in Y2 is moderate or large, the best chart is always the one 

optimized for case B. For example, ARLA(0.5, 2) = 8.1 and  ARLB(0.5, 2) = 5.8. Nevertheless, as 

the value of increment of Y1 increases, the differences become smaller. For example, ARLA(1, 2) = 

6.06 and  ARLB(1, 2) = 5.19. On the other hand, the ARLs for small shifts in Y2 are always smaller 

for the chart optimized for the shift vector A. For example, ARLA(0.5, 0.5) = 34.27 and  ARLB(0.5, 

0.5) = 41.53, or ARLA(2, 0.5) = 10.29 and  ARLB(2, 0.5) = 24.82. Therefore, as an expected result, 

the chart optimized for a larger increment in the mean of Y2 performs better when the shift in the 

mean of Y1 is small for and the shift in the mean of Y2 is large  and the control chart optimized for a 

smaller increment in Y2 performs better for small shifts in this variable.  

 

 

 Shifts for Y2 

 

 

 

 

 

 

 

Shifts for Y1 

 0.5 1 1.5 2 2.5 3 

 

0.5 

10.03 

(9.98) 

6.97 

(8.92) 

5.11 

(8.01) 

3.91 

(7.22) 

3.11 

(6.55) 

2.56 

(5.96) 

 

1 

9.04 

(6.96) 

6.35 

(6.31) 

4.70 

(5.74) 

3.63 

(5.23) 

2.92 

(4.80) 

2.42 

(4.41) 

 

1.5 

8.21 

(5.10) 

5.82 

(4.68) 

4.34 

(4.31) 

3.39 

(3.97) 

2.74 

(3.68) 

2.29 

(3.412) 

 

2 

7.50 

(3.91) 

5.36 

(3.62) 

4.04 

(3.37) 

3.17 

(3.14) 

2.59 

(2.94) 

2.18 

(2.76) 

 

2.5 

6.88 

(3.11) 

4.96 

(2.91) 

3.76 

(2.73) 

2.98 

(2.57) 

2.45 

(2.43) 

2.08 

(2.30) 

 

3 

6.33 

(2.56) 

4.61 

(2.42) 

3.53 

(2.29) 

2.82 

(2.17) 

2.33 

(2.07) 

1.99 

(1.97) 

 

Table 7. Comparison of ARLs for LCP control charts optimized for A = (1.5, 0.5, 2) and B = (1.5, 2, 0.5). ARL 

values for B in parenthesis. In-control ARL = 400. 
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Another interesting combination of shift vectors is when the shifts are symmetric, and very 

different, for example, in-control ARL = 400, A = (0.5, 0.5, 3) and B = (0.5, 3, 0.5). Table 7 shows 

the comparison of ARLs. It is easily seen that as the charts are optimized for two points that are 

symmetric with respect to the line Y1 = Y2, for shifts in that line (see the main diagonal of Table 7), 

the ARLs are practically equal. For example, ARLA(1, 1) = 10.03 and  ARLB(1, 1) = 9.98 or 

ARLA(2.5, 2.5) = 2.45 and  ARLB(2.5, 2.5) = 2.43. Therefore, for shifts with very similar value for 

Y1 and Y2 the performance of both charts is equivalent. As it can be expected, the performance of 

both charts is quite different in the area around the point selected for the optimization. The LCP 

chart optimized for point A shows a better performance in the area around that point, and the same 

behavior occurs for the chart optimized for point B. For example, ARLA(0.5, 2) = 3.91 and  

ARLB(0.5, 2) = 7.22, where ARLA(2.5, 1) = 4.96 and  ARLB(2.5, 1) = 2.95. Of course, these large 

differences are due to the fact we are comparing a chart optimized for one region and a chart 

optimized for a completely different region. Nevertheless, both charts have the same performance 

on the line Y1 = Y2. Also, and importantly, both optimized control charts perform well for large 

shifts. 

 

As a summary for this Section, as expected, the choice of the shift for which to optimize the chart is 

important. However, if we are expecting a shift with similar values for all the means, it does not 

matter which point is selected for the optimization. It is also important to note that when comparing 

two very different vector shifts employed for the optimization, if they are symmetric with respect to 

Yi = Yj, the ARL values will be the same in the line Yi = Yj. 

 

 

6. Comparison of performance 

As commented before, there is a problem when optimizing the MP, MX and Multiple Poisson 

charts, due to the discrete nature of the Poisson variables. For that reason, in the large majority of 

the times, the in-control ARL differs noticeably of the desired ARL0. This problem does not occur 

with the LCP control chart. This issue complicates a lot our aim of making a fair comparison of 

performance among the charts, because when there is a large difference in the ARL0’s of two charts, 

the one with the larger one is in disadvantage regarding its out-of-control performance. Since, for 

the optimization, a minimum value for the in-control ARL is specified, and the LCP chart is able to 

match it (this is one of its advantages, as already pointed out) while the other charts in generally are 

not, this might favor the LCP chart in the comparison. We have tried to avoid this problem showing 
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in this Section only cases where the differences in the in-control ARLs of the optimized charts are 

not large. 

 

The comparisons are made for p = 2 and 3 variables for mean shifts measured in sigma units di = 

(λ1,i-λ0,i )/(λ0,i)
½
, where λ1,i is the mean E(Yi) when the process is out of control and λ0,i is the mean 

E(Yi) when in control. We have also results for p = 4 variables, which  are not included in this paper 

due to space limitations, taking into account that the tables are very large for p = 4 and that the 

conclusions are very similar. All results shown on the following tables have been obtained 

employing the software presented in Section 4. 

 

Four different scenarios have been considered for p = 2 and 3: A, B, C, and D. These scenarios are 

described in Tables 8 and 9. They correspond to different correlations among the non-observed 

variables, Yi. For example, Table 8 shows the value of the means when the process is in control for 

the four scenarios, when p = 2, with correlations 0.15, 0.33, 0.50 and 0.75. The scenarios shown on 

Tables 8 and 9 are the same considered in Aparisi et al. (2013). 

 

 

 

 

λ0.0 λ1.0 λ2.0 ρ 

Scenario A 0.25 1 2 0.15 

Scenario B 0.5 1 1 0.33 

Scenario C 1.45 1.45 1.45 0.50 

Scenario D 3.94 1.32 1.32 0.75 

Table 8. Analyzed cases for p = 2 

 

 

 

λ0.0 λ1.0 λ2.0 λ3.0 ρ12 ρ13 ρ23 

Scenario A 0.5 1 1 1 0.33 0.33 0.33 

Scenario B 0.7 1.4 0.5 1 0.44 0.37 0.49 

Scenario C 0.7 0.7 0.7 0.7 0.50 0.50 0.50 

Scenario D 2 0.5 1 0.7 0.73 0.77 0.70 

Table 9. Analyzed cases for p = 3 

 

 

We have considered mean shifts, di, from 0 to 2. If di = 0, for i = 0, 1 and 2, then the process is in 

control. Table 10 shows the ARL values and the new correlations as a function of the mean shifts 

for Y0, Y1 and Y2 variables (p = 2). The ARL values in bold represents the best (lowest) ARLs for 

that shift and case. As found by Aparisi et al. (2013), the MX chart and the Multiple scheme have 
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the same ARLs for scenarios B, C, and D, as Table 10 reflects. The first impression after 

considering these results is that the LCP control chart, in the large majority of cases, is the chart 

with best performance. There are 104 out-of-control comparisons on Table 10 and in only 15 of 

them the LCP chart is not the best option. Even in such cases, the differences between the LCP chart 

and the best chart are very small. For example: Scenario A, shifts d0 = 1, d1 = 1, and d2 = 1: the best 

chart is the MP chart, with an ARL = 8.83, whilst the LCP chart has an ARL = 8.98, practically the 

same value. Another example: the only case where the LCP chart is not the best option for Scenario 

B: d0 = 0, d1 = 0.25, and d2 = 0.25, where the MX chart and the Multiple scheme have an ARL = 

231.40, whist the LCP chart has ARL = 249.24, being this difference the largest one found in the 

Table.  

 

The largest differences among the ARLs of the LCP chart and the rest of competitors normally are 

found when there is a shift in only one of the variables and for Scenario A. One example is d0 = 0, 

d1 = 0.75, and d2 = 0, the LCP chart has an ARL = 45.24 and the best competitor is the MP chart 

with ARL = 140.98, more than three times larger. Another example: d0 = 0.25, d1 = 0, and d2 = 0: the 

LCP chart has an ARL of 180.19 and the best competitor is again the MP chart, with ARL = 233.31. 

Of course, when that shifts are large, and they are present in all the variables, the differences of 

performance among the charts are smaller, for example, in Scenario C, d0 = 1.5, d1 = 1.5, and d2 = 

1.5, where the LCP chart has an ARL = 4.60 and the MX chart and the Multiple scheme have an 

ARL = 4.97. In general terms, the best performance of the LCP chart is found for small shifts, 

where the real need of showing a good performance is more important. 

 

Table 11 shows the comparison of performance for three variables (p = 3) and for the four scenarios 

analyzed. In this case, the MX control chart and the Multiple scheme have the same ARL values for 

Scenarios A, C and D. There are 140 ARL comparisons on Table 11 and in only 25 of them the LCP 

chart is not the best option, which again demonstrates the very good performance of the LCP chart. 

The conclusions are very similar to the case p = 2. These same conclusions are reached from some 

examples from the Table 11. As before, when the LCP control chart is not the best option, the 

difference between this chart and the best competitor is normally small. For example, the largest 

difference is found in Scenario D, with d0 = 0.25, d1 = 0.25, d2 = 0.25, and d3 = 0.25, where the LCP 

control chart has an ARL = 177.83 and the Multiple Scheme has an ARL of 168.29. However, in the 

majority of cases the performance is quite similar, for example, in Scenario C: d0 = 1, d1 = 1, d2 = 1 

and d3 = 1. The ARLs are of 11.66 and 11.28 for the LCP and MX charts, respectively. Again the 

LCP chart has good performance for detecting small shifts, especially if few variables have shifted. 

In some cases the reduction is remarkable. For example, if we examine the shift d0 = 0, d1 = 0, d2 = 
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0.5, and d3 = 0.5 for the four scenarios we obtain that: in Scenario A, the ARL of the LCP chart is of 

56.21: its best competitor has an ARL of 103.25. In Scenario B, the values are of 79.21 against 

141.54. Scenario C: 75.52 versus 174.86. Scenario D: 83.02 versus 221.33.  

 

Hence, the conclusion of this Section is that the LCP control chart outperforms all its competitors in 

the large majority of cases. When the shifts are small the gains in performance are the most 

significant, where in some cases the ARL is about one third of its best competitor.  
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Shift in means Scenario A (ARL(d = d*)) Scenario B (ARL(d = d*)) Scenario C (ARL(d = d*)) Scenario D (ARL(d = d*)) 

d0 d1 d2 ρ MP Chart MX Chart LCP Chart Multiple ρ MP Chart 
MX 

Chart 
LCP Chart Multiple ρ MP Chart MX Chart LCP Chart Multiple ρ MP Chart MX Chart LCP Chart Multiple 

0 0 0 0.15 446.89 431.99 370 387.44 0.33 572.23 549.81 545 549.81 0.5 663.66 607.13  600.00 607.13 0.75 682.14 511.96  500.00 511.96 

0 0.25 0 0.14 296.3 410.92 161.02  314.45 0.31 388.42 325.02 213.9  325.02 0.48 485.64 395.46 268.19  395.46 0.73 556.74 385.38 214.68  385.38 

0 0 0.25 0.14 251.94 184.4 156.10  175.89 0.31 388.42 325.02 213.89 325.02 0.48 485.62 395.44 247.97  395.44 0.73 556.73 385.37 214.73  385.37 

0.25 0 0 0.21 233.31 309.93 180.19  271.99 0.4 248.26 297.78 246.25  297.78 0.55 284.89 301.52 264.15  301.52 0.77 287.44 234.65 217.69  234.65 

0 0.5 0 0.13 201.83 366.46 79.71 224.99 0.29 269.28 185.6 102.28  185.6 0.45 359.59 246.21 119.68  246.21 0.71 456.42 280.54 109.11  280.54 

0 0.25 0.25 0.13 173.43 180.5 143.5 159.26 0.29 269.28 231.4 249.24  231.4 0.45 359.62 294.54 290.78  294.54 0.71 456.45 311.2 256.47 311.2 

0 0 0.5 0.13 149.68 90.5 76.78  88.44 0.29 269.28 185.6 113.42  185.6 0.45 359.59 246.21 138.05  246.21 0.71 456.42 280.54 112.39  280.54 

0.25 0.5 0 0.18 117.82 259.94 70.99  159.21 0.35 131.81 116.53 94.44  116.53 0.5 167.69 138.16 114.93  138.16 0.73 201.8 139.39 87.17  139.39 

0 0.75 0 0.12 140.98 298.35 45.24  147.91 0.27 190.48 108.69 56.09  108.69 0.44 269.37 153.13 65.34  153.13 0.69 375.87 201.29 62.30  201.29 

0.25 0 0.75 0.17 60.16 40.95 38.9  40.27 0.34 98.37 72.96 52.36  72.96 0.48 130.57 91.5 74.53  91.5 0.72 170.1 104.73 70.49  104.73 

0.25 0.5 0.75 0.15 35.58 40.01 31.36  36.65 0.29 57.29 53.62 53.39  53.62 0.44 81.41 68.69 72.29  68.69 0.69 122.27 82.65 87.26 82.65 

0.5 0 0 0.26 137.35 227.17 116.47  195.42 0.46 127.97 174.95 127.32  174.95 0.59 141.02 163.9 132.7  163.9 0.79 137.2 119.15 107.14  119.15 

0.5 0.5 0 0.22 75.35 188.85 46.21  115.82 0.41 74.18 77 65.79  77 0.54 88.67 82.9 65.88  82.9 0.75 100.33 75.66 67.61  75.66 

0.5 0 0.5 0.23 59.92 58.24 49.09  56.07 0.41 74.18 77 65.83  77 0.54 88.67 82.9 65.88  82.9 0.75 100.33 75.66 68.89  75.66 

0.5 0.5 1 0.18 19.27 21.24 16.86  19.98 0.33 28.99 28.26 26.29  28.26 0.47 38.71 33.7 30.23 33.7 0.69 55.97 39.04 42.11  39.04 

0 1 0 0.11 100.8 221.55 28.16  94.55 0.26 137.35 66.72 34.02  66.72 0.42 204.04 97.4 49.11  97.4 0.68 310.91 144.35 38.79 144.35 

0 0 1 0.12 60.62 29.72 25.72  29.51 0.26 137.35 66.72 34.01 66.72 0.42 204.04 97.4 49.08  97.4 0.68 310.88 144.35 58.31  144.35 

1 0 0 0.34 59.94 129.21 54.32  107.54 0.55 46.92 72.74 46.8  72.74 0.65 46.71 59.92 44.83  59.92 0.82 41.7 39.27 34.15  39.27 

1 1 0 0.27 23.96 70.03 13.92  34.67 0.45 20.91 20.12 17.92  20.12 0.57 23.14 20.23 20.07  20.23 0.76 25.73 18.92 19.32  18.92 

1 0 1 0.28 17.3 16.18 13.97  15.87 0.45 20.91 20.12 17.92  20.12 0.57 23.14 20.23 20.07  20.23 0.76 25.73 18.92 17.12  18.92 

1 1 1 0.22 8.83 14.85 8.98  12.49 0.38 10.73 12.29 10.64  12.29 0.5 12.67 12.92 11.99  12.92 0.71 16.62 13.36 14.03  13.36 

1 1.5 0.5 0.22 10.03 23.97 8.38  14.43 0.38 10.73 10.43 9.5  10.43 0.5 12.67 11.07 11.17  11.07 0.71 16.61 11.99 10.06 11.99 

1.5 1.5 1.5 0.24 3.75 6.09 3.86  5.19 0.38 4.4 5.03 4.37  5.03 0.5 4.79 4.97 4.6  4.97 0.69 5.98 5.08 5.3  5.08 

0 2 0 0.09 32.3 48.95 7.62  20.09 0.22 44.14 15.16 8.62  15.16 0.37 74.64 22.25 12.54  22.25 0.62 151.49 43.07 16.97 43.07 

2 0 0 0.46 19.32 50.49 17.98 40.46 0.66 12.82 20.7 12.81  20.7 0.73 10.81 14.44 10.59  14.44 0.86 8.44 8.54 7.41 8.54 

2 0 2 0.338 4.14 3.74 3.42  3.71 0.51 4.81 4.29 4.14  4.29 0.6 4.65 3.88 4.10  3.88 0.77 4.74 3.58 3.85  3.58 

2 2 2 0.25 2.2 3.3 2.26  2.88 0.39 2.49 2.8 5.2  2.8 0.5 2.56 2.66 2.48 2.66 0.69 3 2.68 2.76  2.68 

 

Table 10. Comparison of performance, two variables, p = 2.
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Shift in means Scenario A (ARL(d = d*)) Scenario B (ARL(d = d*)) Scenario C (ARL(d = d*)) Scenario D (ARL(d = d*)) 

d0 d1 d2 d3 
Mp 

Chart 
Mx 

Chart 
Multiple 
Charts 

LCP Chart ρ12 ρ13 ρ23 
Mp 

Chart 
Mx 

Chart 
Multiple 
Charts 

LCP Chart ρ12 ρ13 ρ23 
Mp 

Chart 
Mx 

Chart 
Multiple 
Charts 

LCP Chart ρ12 ρ13 ρ23 
Mp 

Chart 
Mx Chart 

Multiple 
Charts 

LCP Chart ρ12 ρ13 ρ23 

0 0 0 0 407.5 372.2 372.21  370.00 0.33 0.33 0.3 561.7 534.7 530.42 530.00  0.44 0.4 0.49 596.32 578.17 578.17 570.00  0.5 0.5 0.5 582.8 631.16 624.38 620.00  0.7 0.77 0.7 

0 0.25 0 0 323 254.5 254.5 154.62  0.31 0.31 0.3 436.8 272 499.23 244.28  0.41 0.4 0.49 496.97 407.66 407.66 212.04  0.5 0.47 0.5 526.09 576.36 446.89 249.71  0.7 0.74 0.7 

0 0 0.25 0 323 254.5 254.5 155.73 0.31 0.33 0.3 482.9 520.6 300.81 210.03  0.41 0.4 0.46 496.97 407.66 407.66 215.06  0.5 0.5 0.5 504.42 414.74 548.95 243  0.7 0.77 0.7 

0 0 0 0.25 323 254.5 254.5 154.04 0.33 0.31 0.3 454 416.8 416.85 242.03  0.44 0.4 0.46 496.97 407.66 407.66 215.03  0.5 0.47 0.5 516.47 522.37 521.03 287.51  0.7 0.74 0.7 

0.25 0 0 0 169.2 204.1 204.06 155.81  0.4 0.4 0.4 223.9 291.1 248.51 210.7  0.5 0.4 0.55 229.84 273.42 273.42 222.03  0.6 0.56 0.6 234.65 281.33 268.35 247.43  0.8 0.8 0.7 

0 0.25 0.25 0 257.5 193.8 193.81 130.21 0.29 0.31 0.3 377 268.6 290.77 169.12  0.39 0.4 0.46 415.37 315.83 315.83 170.97  0.4 0.47 0.5 455.72 391.63 408.31 186.48  0.7 0.74 0.7 

0.25 0.25 0 0 139.3 147.3 147.28 108.88 0.38 0.38 0.4 181 162.9 236.98 154.42  0.47 0.4 0.55 197.2 204.16 204.16 165.56 0.5 0.53 0.6 214.71 258.41 201.84 194.63  0.7 0.77 0.7 

0.25 0 0.25 0.25 115.2 115.6 115.59 93.01  0.38 0.38 0.4 165 225.5 137 130.49  0.48 0.4 0.49 169.56 163.56 163.56 141.14  0.5 0.53 0.5 186.55 176.7 210.75 168.1  0.7 0.77 0.7 

0.25 0.25 0.25 0.25 95.7 95.37 95.37 88.47 0.35 0.35 0.4 134.4 140.7 133.67 127.54   0.45 0.4 0.49 146.17 136.91 136.91 139.70  0.5 0.5 0.5 170.96 168.29 168.29 177.83  0.71 0.75 0.69 

0 0.5 0 0 257.5 160.8 160.75 76.57 0.29 0.29 0.3 341.8 145.7 439.2 130.66  0.39 0.3 0.49 415.39 266.58 266.58 111.29  0.4 0.44 0.5 475.29 504.64 317.14 116.83  0.7 0.72 0.7 

0 0 0.5 0.5 166.7 103.3 103.25 56.21  0.29 0.29 0.3 276.7 280 141.54 79.71  0.39 0.3 0.38 292.97 174.86 174.86 75.52  0.4 0.44 0.4 345.32 221.33 329.4 83.02  0.7 0.72 0.6 

0.5 0 0 0 86.05 121.6 121.57 81.63 0.46 0.46 0.5 109 170.6 132.16 102.11 0.55 0.5 0.6 109.52 146.08 146.08 106.5  0.6 0.62 0.6 110.9 141.21 131.68 116.24  0.8 0.82 0.8 

0.5 0.5 0 0 61.77 65.32 65.32 44.63 0.41 0.41 0.5 75.72 63.66 117.84 57.76  0.5 0.4 0.6 84.31 84.67 84.67 65.15  0.6 0.55 0.6 94.95 117.37 80.38 77.01  0.8 0.78 0.8 

0.5 0 0.5 0.5 45.08 45.23 45.23 34.46  0.41 0.41 0.4 65.53 98.79 50.44 55.96  0.5 0.4 0.49 65.4 60.49 60.49 48.48  0.6 0.55 0.5 74.45 64.63 83.45 61.34  0.7 0.77 0.7 

0.5 0.5 0.5 0.5 33.43 34.89 34.89 31.07  0.36 0.36 0.4 46.72 50.86 48.44 44.31  0.45 0.4 0.49 51.19 47.53 47.53 49.27  0.5 0.5 0.5 64.15 60.14 60.99 66.78  0.7 0.73 0.7 

0.75 0 0 0 49.95 77.43 77.43 47.64  0.51 0.51 0.5 60.79 106.1 77.18 58.42  0.59 0.5 0.64 60.16 85.65 85.65 58.79  0.7 0.65 0.7 59.09 77.98 71.69 61.5  0.8 0.84 0.8 

0 0.75 0 0 206.6 99.89 99.89 49.25  0.27 0.27 0.3 269.4 83.59 353.34 77.8  0.37 0.3 0.49 348.29 170.42 170.42 63.89  0.4 0.42 0.5 429.72 423.73 225.96 73.27  0.7 0.7 0.7 

0 0 0.75 0.75 110.4 58.45 58.45 38.66 0.27 0.27 0.2 198.1 180.9 82.75 39.3 0.37 0.3 0.34 209.36 101.54 101.54 38.12  0.4 0.42 0.4 268.2 139.27 224.47 51.5  0.7 0.69 0.6 

0.75 0.75 0 0 32.48 32.88 32.88 22.78 0.43 0.43 0.5 37.83 30.04 63.43 27.34  0.52 0.5 0.64 42.8 40.77 40.77 32.02  0.6 0.57 0.7 48.18 58.69 37.82 35.18  0.8 0.78 0.8 

0.75 0 0 0.75 32.48 32.88 32.88 22.05 0.51 0.43 0.4 40.6 51.23 44.85 26.61  0.59 0.5 0.56 42.8 40.77 40.77 31.87  0.7 0.57 0.6 46.43 48.69 47.07 34.91  0.8 0.77 0.7 

0.75 0.75 0.75 0.75 15.1 16.18 16.18 14.29  0.37 0.37 0.4 20.35 22.94 22.16 19.43  0.45 0.40 0.49 22.77 21.2 21.2 21.98  0.5 0.5 0.5 29.01 26.58 27.14 28.54  0.69 0.72 0.67 

0 1 0 0 166.7 63.41 63.41 31.38  0.26 0.26 0.3 213.5 51.08 260.02 31.76  0.35 0.3 0.49 292.97 110.24 110.24 39.19  0.4 0.4 0.5 388.71 343.04 162.95 40.22  0.6 0.68 0.7 

0 0 1 0 166.7 63.41 63.41 30.36  0.26 0.33 0.3 311.3 384.9 72.67 40.02  0.35 0.37 0.39 292.97 110.24 110.24 39.60  0.40 0.50 0.40 329.9 118.14 255.74 47.64  0.63 0.77 0.61 

0 0 1 1 74.84 35.34 35.34 17.89  0.26 0.26 0.2 143.7 115.3 51.58 28.91 0.35 0.3 0.31 151.57 62.3 62.3 25.64  0.4 0.4 0.3 209.59 91.19 152.07 35.72  0.6 0.67 0.5 

1 0 0 0 31.84 52.08 52.08 30.62  0.55 0.55 0.6 37.28 69.5 48.63 35.71  0.63 0.6 0.68 36.6 54.04 54.04 35.93 0.7 0.69 0.7 34.69 46.59 42.51 36.63  0.8 0.85 0.8 

1 1 0 0 19.26 18.53 18.53 12.93  0.45 0.45 0.6 21.45 16.36 36.6 16.45 0.53 0.5 0.68 24.59 22.27 22.27 17.33  0.6 0.59 0.7 27.27 32.12 20.34 27.74  0.8 0.78 0.8 

1 0 0 1 19.26 18.53 18.53 12.97  0.55 0.45 0.5 23.28 27.73 24.73 14.64 0.63 0.5 0.57 24.59 22.27 22.27 17.25  0.7 0.59 0.6 26.11 26.04 25.29 21.86 0.8 0.78 0.7 

1 1 1 0 12.25 11.79 11.79 10.17 0.38 0.45 0.5 15.84 15.46 14.78 13.14  0.46 0.5 0.58 16.95 14.7 14.7 13.06  0.5 0.59 0.6 19.66 16.57 16.94 18.36  0.7 0.78 0.7 

1 1 1 1 8.18 8.88 8.88 7.81  0.38 0.38 0.4 10.68 12.17 11.96 10.65  0.46 0.4 0.49 12.02 11.28 11.28 11.66  0.5 0.5 0.5 15.19 13.8 14.14 15.3  0.7 0.71 0.7 

1 0 2 0 12.25 7.16 7.16 6.7  0.4 0.55 0.4 19.39 28.55 7.29 12.31  0.48 0.6 0.52 16.95 9.37 9.37 8.06  0.5 0.69 0.5 17.93 8.51 14.12 9.57  0.7 0.85 0.7 

1 2 1 0.5 6.8 5.82 5.82 5.22  0.33 0.36 0.4 8.34 5.72 10.1 5.71 0.4 0.4 0.53 10.23 7.64 7.64 8.91  0.4 0.48 0.5 13.94 12.11 9.61 10.02  0.6 0.69 0.7 

1.5 1.5 1.5 1.5 3.47 3.8 3.8 3.37  0.38 0.38 0.4 4.26 4.86 4.89 4.14  0.46 0.4 0.49 4.79 4.59 4.59 5.03  0.5 0.5 0.5 5.78 5.28 5.42 5.9 0.7 0.7 0.7 

2 0 0 0 9.23 15.72 15.72 9.05 0.66 0.66 0.7 9.72 18.97 12.73 9.47  0.72 0.67 0.76 9.39 14.09 14.09 9.29  0.77 0.77 0.77 7.8 10.39 9.45 8.27  0.87 0.89 0.85 

2 2 0 0 4.91 4.16 4.16 3.81  0.51 0.51 0.7 4.9 3.57 7.16 3.50  0.57 0.52 0.76 5.71 4.64 4.64 4.70  0.62 0.62 0.77 5.78 5.91 4.11 4.95  0.77 0.79 0.85 

2 0 2 2 2.99 2.77 2.77 2.59  0.51 0.51 0.4 3.8 4.58 2.95 2.97  0.59 0.53 0.49 3.74 3.17 3.17 2.97 0.62 0.62 0.50 3.78 3.03 3.66 3.44  0.75 0.78 0.64 

2 2 2 2 2.05 2.22 2.22 2.07  0.39 0.39 0.4 2.38 2.66 2.71 2.32  0.46 0.41 0.49 2.64 2.57 2.57 2.60  0.50 0.50 0.50 3.01 2.8 2.87 3.01  0.66 0.69 0.64 

Table 11. Comparison of performance, three variables, p = 3.  
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7. Conclusions 

In this paper a new control chart designed for monitoring correlated Poisson variables has been 

introduced: the Linear Combination of Poisson variables (LCP) control chart. The statistics to be 

plotted is a linear combination of the Poisson scores. The values of the coefficients of this linear 

combination and of the chart’s control limits that result in the required in-control ARL (ARL0) and 

minimize the out-of-control ARL are obtained by employing user-friendly Windows© software 

developed by the authors. A main advantage of this chart is that it makes possible to match whatever 

value of ARL0 specified by the user because the possible values of the control limits are real 

numbers, not integers, contrarily to what happens with the rest of Poisson control charts.  

 

The software developed, freely available from the authors, also optimizes the parameters of the MP, 

MX and multiple univariate Poisson charts. In addition, it carries out a complete comparison of 

performance among them. Therefore, it is possible to carefully study which is the best control chart 

under different scenarios. We think that this software makes much easier to employ this new chart, 

or the previous ones, in real applications.  

 

In the vast majority of cases analyzed in this paper the LCP chart outperforms the other control 

schemes considered. In some cases, the LCP chart gives ARL values that are about one third of the 

ones of its best competitor. In the few cases where the LCP chart does not have the best 

performance, the differences are rather small. 
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