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A modified classical method for preliminary orbit determination is presented. In our proposal, the spread of the observations is
considerably wider than in the original method, as well as the order of convergence of the iterative scheme involved.The numerical
approach is made by using matricial weight functions, which will lead us to a class of iterative methods with a sixth local order
of convergence. This is a process widely used in the design of iterative methods for solving nonlinear scalar equations, but rarely
employed in vectorial cases. The numerical tests confirm the theoretical results, and the analysis of the dynamics of the problem
shows the stability of the proposed schemes.

1. Introduction

The analysis of linear systems has a well-developed math-
ematical and computational theory. However, many of the
applied problems in science and engineering are nonlinear.
This situation is more complicated than the linear one, and
the estimation of its solution needs a numerical treatment.

While computational engineering has achieved signifi-
cant maturity, computational costs can be extremely large
when high accuracy simulations are required. The devel-
opment of a practical high-order solution method could
diminish this problem by significantly decreasing the com-
putational time required to achieve an acceptable error level
(see, for instance, [1]).

The existence of an extensive literature on higher order
methods reveals that they are only limited by the nature
of the problem to be solved: in particular, the numerical
solution of nonlinear equations and systems is needed in
the study of dynamical models of chemical reactors [2] or
in radioactive transfer [3]. Moreover, many of numerical
applications use high precision in their computations; in [4],
high-precision calculations are used to solve interpolation
problems in astronomy; in [5], the authors describe the use
of arbitrary precision computations to improve the results
obtained in climate simulations; the results of these numerical
experiments show that the high order methods associated

with a multiprecision arithmetic floating point are very
useful, because it yields a clear reduction in iterations. A
motivation for an arbitrary precision in interval methods can
be found in [6], in particular for the calculation of zeros of
nonlinear functions.

In last decades, many researchers have proposed different
iterative methods to improve Newton’s one, which is still the
most used scheme in practice. These variants of Newton’s
method have been designed bymeans of different techniques,
providing in the most of cases multistep schemes. Some of
them are extensions of one-dimensional schemes (see, e.g.,
[7, 8]), and others come from Adomian decomposition (see
e.g., [9, 10]), specifically the methods proposed by Darvishi
and Barati in [11, 12] with super cubic convergence and
the schemes proposed by Cordero et al. in [13] with order
of convergence 4 and 5. Another procedure to develop
iterative methods for nonlinear systems is the replacement
of the second derivative in Chebyshev-type methods by
some approximation. In [14], Traub presented a family of
multipoint methods based on approximating the second
derivative that appears in the iterative formula of Chebyshev’s
scheme, and Babajee et al. in [15] designed two Chebyshev-
like methods free from second derivatives.

A common way to generate new schemes is the direct
composition of known methods with a later treatment to
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Figure 1: Size, shape, and anomalies in orbital plane 2-dimensional
coordinate system.

reduce the number of functional evaluations (see e.g., [16–
19]). A variant of this technique is the so called pseudo-
composition, introduced in [20, 21]. Let us note that if the
initial approximation or any of the successive estimations
make the jacobian matrix almost singular, the convergence
is not guaranteed. In some of these cases, the problem can
be avoided by using some kind of pseudoinverse to solve the
linear system involved in each step of the iterative process
(see, for instance, [22, 23]).

Recently, for 𝑛 = 1, the weight-function procedure
has been used to increase the order of convergence of
known methods [7]. This technique can be also used, with
some restrictions, in the development of high order iterative
methods for systems: see, for example the papers of Sharma
et al. [24, 25] and Abad et al. [26], where the authors apply the
designed method to the software improvement of the Global
Positioning System.

1.1. Preliminary Orbit Determination. A classical reference
in preliminary orbit determination is F. Gauss (1777–1855),
who deduced the orbit of the minor planet Ceres, discovered
in 1801 and afterwards lost. The calculation of its trajectory
by means of the procedure designed by Gauss marked the
international recognition of Gauss and his work.

The first step in orbit determination methods is to obtain
preliminary orbits, as the motion analyzed is under the
premises of the two bodies problem. It is possible to set a
two-dimensional coordinate system (see Figure 1), where the
X axis points to the perigee of the orbit, the closest point of
the elliptical orbit to the focus and center of the system, the
Earth. In this picture, the true anomaly ] and the eccentric
anomaly 𝐸 can be observed. In order to place this orbit in the
celestial sphere and determine completely the position of a
body in the orbit, some elements (called orbital or keplerian
elements) must be determined. These orbital elements are as
follows.

(i) Ω (right ascension of the ascending node): defined
as the equatorial angle between the Vernal point 𝛾

and the ascending node 𝑁; it orients the orbit in the
equatorial plane.

(ii) 𝜔 (argument of the perigee): defined as the angle of
the orbital plane, centered at the focus, between the
ascending node 𝑁 and the perigee of the orbit; it
orients the orbit in its plane.

(iii) i (inclination): dihedral angle between the equatorial
and the orbital planes.

(iv) a (semimajor axis): which sets the size of the orbit.
(v) e (eccentricity): which gives the shape of the ellipse.
(vi) 𝑇

0
(perigee epoch): time for the passing of the object

over the perigee, to determine a reference origin in
time. It can be denoted by a exact date, in Julian days,
or by the amount of time ago the object was over the
perigee.

The so-called Gauss’ method is based on the rate 𝑦
between the triangle and the ellipse sector defined by two
position vectors, ⃗𝑟

1
and ⃗𝑟
2
, from astronomical observations.

This proportion is related with the geometry of the orbit and
the observed position by

𝑦 = 1 + 𝑋 (𝑙 + 𝑥) , (1)

where

𝑙 =

𝑟
1
+ 𝑟
2

4√𝑟1
𝑟
2
cos ((]

2
− ]
1
) /2)

−

1

2

,

𝑥 = sin2 (𝐸2 − 𝐸1
4

) ,

𝑋 =

𝐸
2
− 𝐸
1
− sin (𝐸

2
− 𝐸
1
)

sin3 ((𝐸
2
− 𝐸
1
) /2)

.

(2)

The angles 𝐸
𝑖
, ]
𝑖
, 𝑖 = 1, 2, are the eccentric and true

anomalies, respectively, associated to the observed positions
⃗𝑟
1
and ⃗𝑟
2
(let us denote by 𝑟

𝑖
themodulus of vector ⃗𝑟

1
, 𝑖 = 1, 2).

Equation (1) is, actually, the composition of the first Gauss
equation

𝑦
2
=

𝑚

𝑙 + 𝑥

(3)

and the second Gauss equation

𝑦
2
(𝑦 − 1) = 𝑚𝑋, (4)

where 𝑚 = 𝜇𝜏
2
/[2√𝑟1

𝑟
2
cos((]

2
− ]
1
)/2)]
3, 𝜇 is the gravi-

tational parameter of the motion, and 𝜏 is a modified time
variable.

The original scheme used by Gauss (see [27]) was based
on applying fixed point method on unified (1). By using the
initial estimation 𝑦

0
= 1, the classical Gauss procedure gets

to calculate the orbital elements only if the range of the true
anomalies corresponding to the observed positions is lower
than 𝜋/4. Our aim is to widen the admissible range of true
anomalies up to 𝜋 by solving the same problem but using the
nonlinear system formed by (3) and (4), being the unknowns
𝑦 and 𝐸

2
− 𝐸
1
.
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In the second section of this paper, we present a class of
sixth-order Newton-type methods by using the composition
technique and matricial weight functions. The convergence
results of this family have been obtained by means of the 𝑛-
dimensional Taylor expansion of the involved functions, by
using the notation introduced in [28]. Section 3 is devoted
to analyze the efficiency of the proposed methods applied
on preliminary orbit determination and other nonlinear
problems, compared with the classical Newton’, Traub’ [14],
and Jarratt’s [29] methods. In Section 4, the preliminary orbit
determination problem is revisited in order to analyze the
stability of the mentioned schemes by means of dynamical
planes, comparing the set of starting points that leads each of
the methods to converge to the solution. We finish the paper
with some conclusions and the references used in it.

2. The New Family and Its Convergence

In this section, we present our three-step iterative methods
designed from Newton’s one composing with itself twice,
once with a “frozen” function and other one with a “frozen”
Jacobian matrix. By using matricial weight functions in the
second and third step, we proof that the methods of the
proposed family have order of convergence six, under certain
conditions of function 𝐹 and of weight functions.

Let us consider the following three-step iterative method
which makes use of the weight functions:

𝑦
(𝑘)
= 𝑥
(𝑘)
− [𝐹

(𝑥
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
) ,

𝑧
(𝑘)
= 𝑦
(𝑘)
− 𝐻(𝜇

(𝑘)
) [𝐹

(𝑦
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
) ,

𝑥
(𝑘+1)

= 𝑧
(𝑘)
− 𝐺 (𝜇

(𝑘)
) [𝐹

(𝑦
(𝑘)
)]

−1

𝐹 (𝑧
(𝑘)
) ,

(5)

where 𝜇(𝑘) = [𝐹(𝑦(𝑘))]
−1

𝐹

(𝑥
(𝑘)
) and 𝐻,𝐺 : R𝑛×𝑛 → R𝑛×𝑛

are matricial functions.

Theorem 1. Let 𝛼 ∈ 𝐷 be a zero of a sufficiently differentiable
function 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 in a convex set 𝐷 with non-
singular Jacobian in 𝛼. Let 𝐻 and 𝐺 be any function with the
following conditions: 𝐻(𝐼) = 0, 𝐻(𝐼) = (1/2)𝐼, H(𝐼) = 0

and 𝐺(𝐼) = 𝐼, 𝐺(𝐼) = 0, 𝐺(𝐼) = (1/2)𝐼, being 𝐼 the identity
matrix. Then, the scheme defined in (5) provides sixth order of
convergence, whose error equation is given by

𝑒
(𝑘+1)

= [−

3

2

𝐶
3
𝐶
2
𝐶
3
+

1

4

𝐶
2
𝐶
2

3
+ 6𝐶
3
𝐶
3

2

−𝐶
2
𝐶
3
𝐶
2

2
+ 𝐶
3

2
𝐶
3
− 4𝐶
5

2
] 𝑒
(𝑘)
6

+ 𝑂(𝑒
(𝑘)
7

) ,

(6)

where 𝐶
𝑘
= (1/𝑘!)[𝐹


(𝛼)]
−1
𝐹
(𝑘)
(𝛼), 𝑘 = 2, 3, 4, . . ., and 𝑒(𝑘) =

𝑥
(𝑘)
− 𝛼.

Proof. If we use Taylor expansion of 𝐹(𝑥(𝑘)) and 𝐹(𝑥(𝑘))
around 𝛼, we obtain

𝐹 (𝑥
(𝑘)
) = 𝐹

(𝛼) {𝑒

(𝑘)
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2
𝑒
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3
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) .

(7)

From (7), we calculate the expression of the inverse

[𝐹

(𝑥
(𝑘)
)]

−1

= {𝐼 + 𝑋
2
𝑒
(𝑘)
+ 𝑋
3
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2
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4
𝑒
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5
𝑒
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6
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(8)

where 𝑋
2
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2
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3
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2
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3
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4
= 6𝐶
3
𝐶
2
− 6𝐶
2
𝐶
3
−

8𝐶
3

2
−4𝐶
4
,𝑋
5
= −5𝐶

5
+8𝐶
2
𝐶
4
+8𝐶
4
𝐶
2
−12𝐶

2

2
𝐶
3
−12𝐶

3
𝐶
2

2
−

12𝐶
2
𝐶
3
𝐶
2
+9𝐶
2

3
+16𝐶

4

2
, and𝑋

6
= −6𝐶

6
+10𝐶

2
𝐶
5
+10𝐶

5
𝐶
2
−

16𝐶
2

2
𝐶
4
−16𝐶
4
𝐶
2

2
−16𝐶
2
𝐶
4
𝐶
2
+12𝐶
3
𝐶
4
+12𝐶
4
𝐶
3
−18𝐶
3
𝐶
2
𝐶
3
−

18𝐶
2
𝐶
2

3
−18𝐶
2

3
𝐶
2
+24𝐶
3

2
𝐶
3
+24𝐶
2

2
𝐶
3
𝐶
2
+24𝐶
2
𝐶
3
𝐶
2

2
+24𝐶
3
𝐶
3

2
−

32𝐶
5

2
.

These values have been obtained by imposing the condi-
tions

[𝐹

(𝑥
(𝑘)
)]

−1

𝐹

(𝑥
(𝑘)
) = 𝐹

(𝑥
(𝑘)
) [𝐹

(𝑥
(𝑘)
)]

−1

= 𝐼. (9)

Then, the error expression in the first step of the method
is

𝑦
(𝑘)
− 𝛼 = 𝐶

2
𝑒
(𝑘)
2

+ (−2𝐶
2

2
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3
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2
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2
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2
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4
𝐶
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2
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2
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3
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4

2
) 𝑒
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5
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6

) .

(10)

Furthermore, we know that

𝐹 (𝑦
(𝑘)
) = 𝐹

(𝛼) {(𝑦

(𝑘)
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2
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5

)

(11)
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and if we replace in (11) the powers of (𝑦(𝑘) − 𝛼), we obtain
after some operations

𝐹 (𝑦
(𝑘)
) = 𝐹

(𝛼) {𝐶2

𝑒
(𝑘)
2

+ 2 (−𝐶
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2
+ 𝐶
3
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(𝑘)
6
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and also

𝐹

(𝑦
(𝑘)
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= 𝐹
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2

2
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2
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3
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2
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2
) 𝑒
(𝑘)
4

+ (8𝐶
2
𝐶
5
− 12𝐶

2

2
𝐶
4
− 8𝐶
2
𝐶
4
𝐶
2
+ 16𝐶

3

2
𝐶
3

+ 12𝐶
2
𝐶
3
𝐶
2

2
+ 12𝐶

2

2
𝐶
3
𝐶
2
− 12𝐶

3
𝐶
3

2

− 12𝐶
2
𝐶
2

3
+ 6𝐶
3
𝐶
2
𝐶
3

+ 6𝐶
2

3
𝐶
2
− 16𝐶

5

2
) 𝑒
(𝑘)
5
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) .
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In a similar way as in (8),

[𝐹

(𝑦
(𝑘)
)]

−1
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2
𝑒
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3
𝑒
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2
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4
𝑒
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+ 𝑌
5
𝑒
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6
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}
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) ,

(14)

where 𝑌
2
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3
= −2𝐶
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2
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3
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5
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4
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2
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3
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2
𝐶
3
𝐶
2
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2
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2
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6
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So,

[𝐹

(𝑦
(𝑘)
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𝐹 (𝑥
(𝑘)
)

= 𝑒
(𝑘)
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On the other hand, we get the Taylor expansion of 𝜇(𝑘) by
using (7) and (15):

𝜇
(𝑘)

= [𝐹

(𝑦
(𝑘)
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𝐹
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2
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− 8𝐶
5

2
− 8𝐶
2
𝐶
5
) 𝑒
(𝑘)
5

+ 𝑂(𝑒
(𝑘)
6

) .

(16)

Let us note that 𝜇(𝑘) tends to the identity matrix when
𝑥
(𝑘) and 𝑦(𝑘) tend to 𝛼, thereby the second order polynomial

approximation of the weight function,𝐻(𝜇(𝑘)), is

𝐻(𝜇
(𝑘)
) ≈ 𝐻 (𝐼) + 𝐻


(𝐼) (𝜇

(𝑘)
− 𝐼) +

𝐻

(𝐼)

2

(𝜇
(𝑘)
− 𝐼)

2

.

(17)

Let us consider now the following notation:

𝐻(𝐼) = 𝐻
0
, 𝐻


(𝐼) = 𝐻

1
,

𝐻

(𝐼)

2

= 𝐻
2
. (18)

So,

𝑧
(𝑘)
− 𝛼

= 𝑦
(𝑘)
− 𝛼 − 𝐻(𝜇

(𝑘)
) [𝐹

(𝑦
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
)

= −𝐻
0
𝑒
(𝑘)
+ (𝐼 − 𝐻

0
− 2𝐻
1
) 𝐶
2
𝑒
(𝑘)
2

+ [(−2𝐼 + 2𝐻
0
− 4𝐻
2
) 𝐶
2

2
+ (2𝐼 − 𝐻

0
− 3𝐻
1
) 𝐶
3
] 𝑒
(𝑘)
3
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+ [(3𝐼 − 𝐻
0
− 4𝐻
1
) 𝐶
4
+ (4𝐼 − 2𝐻

0
+ 6𝐻
1
+ 4𝐻
2
) 𝐶
3

2

+ (−4𝐼 + 4𝐻
0
+ 2𝐻
1
− 6𝐻
2
) 𝐶
2
𝐶
3

+ (−3𝐼 − 3𝐻
1
− 6𝐻
2
) 𝐶
3
𝐶
2
] 𝑒
(𝑘)
4

+ [ (4𝐼 − 𝐻
0
− 5𝐻
1
) 𝐶
5
+ (−6𝐼 − 8𝐻

2
+ 6𝐻
0
+ 4𝐻
1
)

× 𝐶
2
𝐶
4
+ (−4𝐼 − 8𝐻

2
− 4𝐻
1
) 𝐶
4
𝐶
2

+ (8𝐼 + 10𝐻
2
− 6𝐻
0
+ 8𝐻
1
) 𝐶
2

2
𝐶
3

+ (6𝐼 + 3𝐻
0
+ 9𝐻
1
) 𝐶
3
𝐶
2

2

+ (6𝐼 − 2𝐻
0
+ 2𝐻
2
+ 6𝐻
1
) 𝐶
2
𝐶
3
𝐶
2

+ (−6𝐼 − 9𝐻
2
− 3𝐻
1
) 𝐶
2

3

+ (−8𝐼 + 12𝐻
2
− 12𝐻

1
) 𝐶
4

2
] 𝑒
(𝑘)
5

+ 𝑂(𝑒
(𝑘)
6

) .

(19)

Then,

𝐹 (𝑧
(𝑘)
)

= 𝐹

(𝛼) {−𝐻

0
𝑒
(𝑘)
+ (𝐼 − 𝐻

0
− 2𝐻
1
+ 𝐻
2

0
) 𝐶
2
𝑒
(𝑘)
2

+ [(−2𝐼 + 2𝐻
2

0
− 4𝐻
2
+ 4𝐻
0
𝐻
1
) 𝐶
2

2

+ (2𝐼 − 𝐻
0
− 3𝐻
1
− 𝐻
3

0
) 𝐶
3
] 𝑒
(𝑘)
3

+ [(3𝐼 − 𝐻
0
− 4𝐻
1
+ 𝐻
4

0
) 𝐶
4

+ (5𝐼 + 2𝐻
1
+ 4𝐻
2
− 3𝐻
2

0
+ 8𝐻
0
𝐻
2

+ 4𝐻
2

1
+ 4𝐻
0
𝐻
1
) 𝐶
3

2

+ (−4𝐼 + 2𝐻
1
− 6𝐻
2
+ 2𝐻
2

0
+ 6𝐻
0
𝐻
1
) 𝐶
2
𝐶
3

+ (−3𝐼 − 3𝐻
1
− 6𝐻
2
+ 3𝐻
2

0

− 6𝐻
2

0
𝐻
1
− 3𝐻
3

0
) 𝐶
3
𝐶
2
] 𝑒
(𝑘)
4

+ [(4𝐼 − 𝐻
0
− 𝐻
5

0
− 5𝐻
1
) 𝐶
5

+ (−6𝐼 + 4𝐻
1
− 8𝐻
2
+ 2𝐻
2

0
+ 8𝐻
0
𝐻
1
) 𝐶
2
𝐶
4

+ (−4𝐼 − 4𝐻
1
− 8𝐻
2
− 4𝐻
3

0
+ 4𝐻
4

0
+ 8𝐻
3

0
𝐻
1
)

× 𝐶
4
𝐶
2
+ (10𝐼 − 𝐻

0
+ 𝐻
1
+ 10𝐻

2
+ 𝐻
0
𝐻
1

+ 12𝐻
0
𝐻
2
− 7𝐻
2

0
+ 6𝐻
2

1
) 𝐶
2

2
𝐶
3

+ (6𝐼 + 9𝐻
1
+ 12𝐻

0
𝐻
1
− 12𝐻

2

0
𝐻
1

−12𝐻
0
𝐻
2

1
− 12𝐻

2

0
𝐻
2
+ 3𝐻
3

0
) 𝐶
3
𝐶
2

2

+ (8𝐼 + 𝐻
0
− 𝐻
1
+ 2𝐻
2
+ 11𝐻

0
𝐻
1

+ 12𝐻
0
𝐻
2
+ 𝐻
2

0
+ 6𝐻
2

1
) 𝐶
2
𝐶
3
𝐶
2

+ (−6𝐼 + 6𝐻
2

0
− 3𝐻
3

0
− 3𝐻
1

− 9𝐻
2

0
𝐻
1
− 9𝐻
2
) 𝐶
2

3

+ (−12𝐼 − 4𝐻
1
− 20𝐻

0
𝐻
1

+ 4𝐻
2
+ 16𝐻

1
𝐻
2
) 𝐶
4

2
] 𝑒
(𝑘)
5

}

+ 𝑂(𝑒
(𝑘)
6

) .

(20)

Let us consider the truncated Taylor expansion of order
two of the weight function 𝐺(𝜇(𝑘)),

𝐺(𝜇
(𝑘)
) ≈ 𝐺 (𝐼) + 𝐺


(𝐼) (𝜇

(𝑘)
− 𝐼) +

𝐺

(𝐼)

2

(𝜇
(𝑘)
− 𝐼)

2

,

(21)

and let us denote by

𝐺 (𝐼) = 𝐺
0
, 𝐺


(𝐼) = 𝐺

1
,

𝐺

(𝐼)

2

= 𝐺
2
. (22)

Finally, the error equation is expressed as

𝑒
(𝑘+1)

= 𝐻
0
(𝐼 − 𝐺

0
) 𝑒
(𝑘)
+ [(𝐼 − 𝐻

0
− 𝐺
0
+ 𝐺
0
𝐻
0
+ 2𝐺
1
𝐻
0

−𝐺
0
𝐻
2

0
− 2𝐻
1
+ 2𝐺
0
𝐻
1
) 𝐶
2
] 𝑒
(𝑘)
2

+ [ (−2𝐼 + 2𝐺
0
− 2𝐺
1
+ 2𝐻
0
− 2𝐺
0
𝐻
0

+ 4𝐺
2
𝐻
0
− 2𝐺
0
𝐻
2

0
− 2𝐺
1
𝐻
2

0

+ 4𝐺
1
𝐻
1
− 4𝐺
0
𝐻
0
𝐻
1

− 4𝐻
2
+ 4𝐺
0
𝐻
2
) 𝐶
2

2

+ (2𝐼 − 𝐻
0
− 3𝐻
1
− 2𝐺
0
+ 𝐺
0
𝐻
0

+ 3𝐺
0
𝐻
1
+ 𝐺
0
𝐻
3

0
+ 3𝐺
1
𝐻
0
) 𝐶
3
]

× 𝑒
(𝑘)
3

+ 𝑂(𝑒
(𝑘)
4

) .

(23)

If we choose𝐻
0
= 0, 𝐻

1
= (1/2)𝐼, and𝐻

2
= 0, we obtain

𝑒
(𝑘+1)

= [(−2𝐼 + 2𝐺
0
) 𝐶
2

2
+ (

1

2

𝐼 −

𝐺
0

2

)𝐶
3
] 𝑒
(𝑘)
3

+ 𝑂(𝑒
(𝑘)
4

) .

(24)

So, to increase the order of convergence up to four, the
value of 𝐺

0
must be 𝐺

0
= 𝐼, and then,

𝑒
(𝑘+1)

= 𝐺
1
[−𝐶
3
+ 4𝐶
2

2
] 𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) . (25)
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Table 1: Orbital elements and temporal distance between ⃗𝑟
1
and ⃗𝑟
2
.

Reference Orbit I.

𝑎 = 4.0 e.r. i = 15∘ Δ𝑡 = 0.01044412D.J.
𝑒 = 0.2 e.r. Ω = 30∘ Δ] = 12.232∘

𝑇 = January 1, 1964 0hr, 0min, 0seg 𝜔 = 10∘

Table 2: Orbital elements and temporal distance between ⃗𝑟
1
and ⃗𝑟
2
.

Tundra Orbit.

𝑎 = 6.62 e.r. 𝑖 = 63.43∘ Δ𝑡 = 0.399753D.J.
𝑒 = 0.27 e.r. Ω = 290.2∘ Δ] = 171∘

𝑀 = 144∘ 𝜔 = 270∘

Moreover, in order to reach fifth order of convergence,𝐺
1

must be null. Therefore, the error equation is

𝑒
(𝑘+1)

= [(𝐼 − 2𝐺
2
) 𝐶
2

2
𝐶
3
+ (−4𝐼 + 8𝐺

2
) 𝐶
4

2
] 𝑒
(𝑘)
5

+ 𝑂(𝑒
(𝑘)
6

) .

(26)

Finally, if 𝐺
2
= (1/2)𝐼, we have

𝑒
(𝑘+1)

= [−

3

2

𝐶
3
𝐶
2
𝐶
3
+

1

4

𝐶
2
𝐶
2

3
+ 6𝐶
3
𝐶
3

2
− 𝐶
2
𝐶
3
𝐶
2

2

+𝐶
3

2
𝐶
3
− 4𝐶
5

2
] 𝑒
(𝑘)
6

+ 𝑂(𝑒
(𝑘)
7

) ,

(27)

and the theorem is proved.

From the previous theorem, (5) defines a family of
sixth-order methods. We can find different weight functions
satisfying the conditions of the theorem. Specifically, we
propose the following examples for the next sections.

Example 2. An element of our family of sixth-order is given
by the weight functions

𝐻(𝑡) =

1

2

(𝑡 − 𝐼) ,

𝐺 (𝑡) = [𝐼 + 𝑡]
−1
(2𝐼 − 𝑡 + 𝑡

2
) ,

(28)

which is called NAJC1.

Example 3. Another combination of weight functions that
can be used is

𝐻(𝑡) =

1

2

(𝑡 − 𝐼) ,

𝐺 (𝑡) = 𝐼 +

1

2

(𝑡 − 𝐼)
2
.

(29)

We will refer to this element of the class as NAJC2.

3. Numerical Results

In this section, we analyze the computational efficiency of
our methods and compare them with other classical ones in
the problem of preliminary orbit determination as well as in
academic examples. The classical methods used are Newton’,
Traub’, and Jarratt’s ones of convergence order 2, 3, and 4,
respectively, whose iterative expressions are as follows.

(i) Newton (N)

𝑥
(𝑘+1)

= 𝑥
(𝑘)
− [𝐹

(𝑥
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
) . (30)

(ii) Traub (T)

𝑦
(𝑘)
= 𝑥
(𝑘)
− [𝐹

(𝑥
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)
− [𝐹

(𝑥
(𝑘)
)]

−1

𝐹 (𝑦
(𝑘)
) .

(31)

(iii) Jarratt (J)

𝑧
(𝑘)
= 𝑥
(𝑘)
−

2

3

[𝐹

(𝑥
(𝑘)
)]

−1

𝐹 [𝑥
(𝑘)
] ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)
−

1

2

[3𝐹

(𝑧
(𝑘)
) − 𝐹

(𝑥
(𝑘)
)]

−1

× (3𝐹

(𝑧
(𝑘)
)) − 𝐹


(𝑥
(𝑘)
) [𝐹

(𝑥
(𝑘)
)]

−1

𝐹 (𝑥
(𝑘)
) .

(32)

In our tests, we have used the following numerical
settings: variable precision arithmetics of two hundred and
fifty digits in Mathematica 8.0; moreover, in each iterative
method, we have used the stopping criterium ‖𝐹(𝑥

(𝑘+1)
)‖ +

‖𝑥
(𝑘+1)

−𝑥
(𝑘)
‖ < 10

−100, and the approximated computational
order of convergence 𝜌 (see [30]) has been calculated by using
the formula:

𝑝 ≈ 𝜌 =

ln (

𝑥
(𝑘+1)

− 𝑥
(𝑘)



/






𝑥
(𝑘)
− 𝑥
(𝑘−1)




)

ln (

𝑥
(𝑘)
− 𝑥
(𝑘−1)



/




𝑥
(𝑘−1)

− 𝑥
(𝑘−2)



)

. (33)

From this value, we have designed two practical indices
to measure the computational efficiency: the approximated
efficiency index

𝐼 = 𝜌
1/𝑑
, (34)

and the approximated computational index

𝐼
𝑐
= 𝜌
1/op

, (35)

𝑑 and op being the number of functional evaluations and the
number of operations (products and quotients) per iteration,
respectively.

In Tables 3, 4, 5, 6, and 7, we show the number of
iterations, the previously defined indices, and the absolute
errors committed between theoretical and practical values
that we denote by 𝜖.

Two reference orbits have been used in the test for the
preliminary orbit determination. The first can be found in
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Table 3: Results of reference Orbit I.

Method Iter 𝜌 𝐼 𝐼
𝑐

𝜀
𝑎

𝜀
𝑒

𝜀
𝑖

𝜀
𝑤

𝜀
Ω

Time (s)
N 7 1.9999 1.1112 1.1112 3.2757𝑒 − 109 4.8982𝑒 − 110 7.3653𝑒 − 109 2.6237𝑒 − 108 0 0.005049
T 5 2.9995 1.1396 1.1102 2.0466𝑒 − 120 3.0603𝑒 − 121 4.6017𝑒 − 120 1.6393𝑒 − 119 0 0.005463
J 4 4.0000 1.1264 1.0771 4.8431𝑒 − 200 8.8034𝑒 − 201 3.9324𝑒 − 200 1.4008𝑒 − 199 0 0.005906
NAJC1 3 5.7569 1.1347 1.0485 3.6731𝑒 − 148 4.3049𝑒 − 148 1.5905𝑒 − 146 5.6659𝑒 − 146 0 0.009218
NAJC2 3 5.7821 1.1352 1.0487 3.9057𝑒 − 149 4.6174𝑒 − 149 1.7089𝑒 − 147 6.0879𝑒 − 147 0 0.007306

Table 4: Results of tundra Orbit.

Method Iter 𝜌 𝐼 𝐼
𝑐

𝜀
𝑎

𝜀
𝑒

𝜀
𝑖

𝜀
𝑤

𝜀
Ω

Time (s)
N 6 2.0121 1.1041 1.1041 3.1284𝑒 − 16 1.6038𝑒 − 17 2.4321𝑒 − 16 6.5148𝑒 − 15 0 0.005069
T 5 2.9852 1.1331 1.1051 3.1284𝑒 − 16 1.6038𝑒 − 17 2.4321𝑒 − 16 6.5148𝑒 − 15 0 0.005493
J 3 3.9931 1.1409 1.0859 3.1284𝑒 − 16 1.6038𝑒 − 17 2.4321𝑒 − 16 6.5148𝑒 − 15 0 0.004457
NAJC1 3 4.9478 1.1336 1.0482 3.1284𝑒 − 16 1.6038𝑒 − 17 2.4321𝑒 − 16 6.5148𝑒 − 15 0 0.009004
NAJC2 3 5.2465 1.1337 1.0482 3.1284𝑒 − 16 1.6038𝑒 − 17 2.4321𝑒 − 16 6.5148𝑒 − 15 0 0.007704

Table 5: Results of system (a), 𝑥(0) = (4, −3)𝑇.

Method Iter 𝜌 𝐼 𝐼
𝑐

𝜀
𝛼1

𝜀
𝛼2

Time (s)
N 8 1.9999 1.1734 1.1078 7.5993𝑒 − 174 0 0.004658
T 6 3.0000 1.3841 1.1251 5.8838𝑒 − 206 0 0.006098
J 4 3.9887 1.1174 1.0715 2.0217𝑒 − 113 0 0.004620
NAJC1 4 6.0051 1.1259 1.0451 0 0 0.009178
NAJC2 4 6.0028 1.1289 1.0462 0 0 0.008030

Table 6: Results of system (b), 𝑥(0) = (12, −2, −1)𝑇.

Method Iter 𝜌 𝐼 𝐼
𝑐

𝜀
𝛼1

𝜀
𝛼2

𝜀
𝛼3

Time (s)
N 13 1.9948 1.0281 1.0201 3.4121𝑒 − 125 2.7759𝑒 − 125 1.0794𝑒 − 125 0.007766
T — — — — — — — —
J 8 3.9940 1.0301 1.0158 0 0 0 0.009805
NAJC1 5 4.9496 1.0646 1.0171 0 0 0 0.013722
NAJC2 6 4.9329 1.0716 1.0190 0 0 0 0.013029

Table 7: Results of system (c), 𝑥(0) = (5, 5, 5, −1)𝑇.

Method Iter 𝜌 𝐼 𝐼
𝑐

𝜀
𝛼1

𝜀
𝛼2

𝜀
𝛼3

𝜀
𝛼4

Time (s)
N 10 2.0244 1.0249 1.0249 6.5830𝑒 − 102 6.5830𝑒 − 102 6.5830𝑒 − 102 2.7466𝑒 − 103 0.007272
T 7 3.0909 1.0356 1.0162 2.9862𝑒 − 145 2.9862𝑒 − 145 2.9862𝑒 − 145 7.8319𝑒 − 147 0.009802
J 5 4.1871 1.0349 1.0141 6.5830𝑒 − 102 6.5830𝑒 − 102 6.5830𝑒 − 102 2.7466𝑒 − 103 0.007952
NAJC1 5 6.4193 1.0493 1.0104 0 0 0 0 0.017668
NAJC2 5 6.1729 1.0520 1.0110 0 0 0 0 0.014849

[27], and the second one is a commercial real orbit called
Tundra. As the orbital elements of each one are known, the
vector positions (measured in Earth radius) at the instants
𝑡
1
and 𝑡
2
have been recalculated with 500 exact digits. These

vector positions are

⃗𝑟
1
≈ [2.46080928705339, 2.04052290636432,

0.14381905768815] ,

⃗𝑟
2
≈ [1.98804155574820, 2.50333354505224,

0.31455350605251] ,

(36)

for Reference Orbit I and

⃗𝑟
1
≈ [−2.02862564034533, −0.74638890547506,

− 4.322222156844465] ,
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⃗𝑟
2
≈ [4.24372000256074, −1.689387746496,

6.79724893784587] ,

(37)

for Tundra Orbit. Then, our aim is to gain from these
positions the orbital elements showed in Tables 1 and 2 with
a precision as high as possible by means of proposed iterative
schemes.

If we look at the numerical results of Table 3, ourmethods
NAJC1 and NAJC2 have the least number of iterations, the
highest order of convergence with the highest efficiency
index. For this case, the absolute error committed by Jarratt’s
method is lower than in our procedures, which is due to use
of an initial estimation very close to the solution and a very
small temporal distance.

If we observe the numerical results of Tundra Orbit
(Table 4), we note that the absolute error is stabilized, and
we maintain the good results of the Reference Orbit I. We
can conclude that working with the two equations provided
by Gauss as a system, we improve the original procedure
which has the restriction that the difference of true anomalies
cannot be greater than 𝜋/4. We are able to increase the
range of the difference of true anomalies associated to the
observations until values close to 𝜋.

3.1. Other Nonlinear Problems. In order to continue checking
the computational efficiency of the proposed schemes, NAJC1
and NAJC2 we use, in the following, some academic exam-
ples.

(a) 𝐹
1
(𝑥) = (𝑓

1
(𝑥), 𝑓
2
(𝑥))
𝑇: 𝑥 = (𝑥

1
, 𝑥
2
)
𝑇 and 𝑓

𝑖
: R2 →

R, 𝑖 = 1, 2, 𝛼 ≈ (3.47063096, −2.47063096),
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1 (
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1
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2
,

𝑓
2
(𝑥) = 𝑥

1
+ 𝑥
2
− 1.

(38)
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3
)
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𝑓
𝑖
: R3 → R, 𝑖 = 1, 2, 3, 𝛼 ≈ (2.14025, −2.09029,

−0.223525),
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2

1
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2

2
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2

3
− 9,

𝑓
2
(𝑥) = 𝑥

1
𝑥
2
𝑥
3
− 1,

𝑓
3
(𝑥) = 𝑥

1
+ 𝑥
2
− 𝑥
2

3
.

(39)
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(40)

The results are showed in Tables 5, 6, and 7, where 𝜀
𝛼𝑖

denotes |𝑓
𝑖
(𝛼)|. From these tables, the best schemes in terms

of precision are NAJC1 and NAJC2, even when the initial
estimation is far from the solution. In system (b), Traub’s
method does not converge after five hundred iterations from
this initial estimation.

4. Dynamical Planes

From the numerical results presented in Section 3, our
proposed methods show to be competitive with respect to
existing ones. Nevertheless, under the dynamical point of
view, we have checked that they can have better behavior in
terms of stability and wideness of the region of convergence.

For the representation of the convergence basins of our
procedures and classical methods, we have used the software
described in [31]. We draw a mesh with two thousand points
per axis; each point of themesh is a different initial estimation
which we introduce in each procedure. If the method reaches
the final solution in less than five hundred iterations, this
point is drawn in orange.The color will bemore intense when
the number of iterations is lower. Otherwise, if the method
arrives at the maximum of iterations, the point will be drawn
in black. In each axis, we will represent each of the variables
withwhichwework.The ratio sector triangle is represented in
the abscissas and the difference of eccentric anomalies in the
ordinates. In addition, we will use the reference orbit I, which
is defined in Table 1, and the solution of the nonlinear system
is in this case around (1, 0.1). For this reason, we choose
[0, 3] × [−1, 1] as the region of representation.

In Figure 2, we show the dynamical planes of the clas-
sical methods. It can be observed that, in general, higher
order means lower stability. If we focus our attention on
the attraction basins of each plane, the method with the
greatest stability isNewton, and the procedurewith the lowest
number of iterations is Jarratt.

As we can see in Figure 3, both NAJC1 and NAJC2 have
large areas of stability, similar to Newton’s one, but with order
of convergence six. For the intensity of the orange in the
attraction basins, the two schemes will have the least number
of iterations. Moreover, if we compare both procedures,
the attraction basins of NAJC1 are more disperse than the
convergence basins of NAJC2 whichmakes the first onemore
unstable than the second one.

5. Conclusions

The classical Gauss’ method for preliminary orbit determi-
nation has been improved, introducing a new performance
by means of a nonlinear system. This fact increases the
admissible spread of the observations (in order to ensure
the convergence) from 𝜋/4 to 𝜋 and reduces the number of
iterations of the process.

The new sixth-order methods NAJC1 and NAJC2 belong-
ing to the class ofmethods designed by usingmatricial weight
functions have good global properties of convergence and
stability, even for initial estimations far from the solution.
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Figure 2: Dynamical planes from classical methods and Reference Orbit I.
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Figure 3: Dynamical planes from new methods and Reference Orbit I.

It is a well-known fact that the size of the area of conver-
gence is inversely proportional to the order of convergence.
However, our methods hold a basin of attraction comparable
withNewton’s one in spite of their sixth-order of convergence.
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