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3Universidad Internacional de la Rioja, 26002 Logroño, Spain

Correspondence should be addressed to P. Vindel; vindel@uji.es

Received 4 June 2014; Revised 25 July 2014; Accepted 27 July 2014; Published 24 December 2014

Academic Editor: Jisheng Kou

Copyright © 2014 B. Campos et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thedynamics of a biparametric family for solving nonlinear equations is studied on quadratic polynomials.This biparametric family
includes the 𝑐-iterative methods and the well-known Chebyshev-Halley family. We find the analytical expressions for the fixed and
critical points by solving 6-degree polynomials. We use the free critical points to get the parameter planes and, by observing them,
we specify some values of (𝛼, 𝑐) with clear stable and unstable behaviors.

1. Introduction

Iterative methods are needed for solving the most of the
nonlinear equations 𝑓(𝑥) = 0, because they are difficult or
impossible to solve exactly by means of analytical methods.
When they are applied on polynomials, they give rise to
rational functionswhose behavior is notwell known except in
small areas. A way to extend these regions is by studying the
dynamical behavior of the rational functions associated to the
iterative methods. In some previous papers, we focus on this
option and we start with the dynamical study of Chebyshev-
Halley family ([1–3]), the King’s family [4], and the 𝑐-family
[5].

The (𝛼, 𝑐)-family is a biparametric family of iterative
methods that includes the Chebyshev-Halley ([6, 7]) and 𝑐-
families when one of the parameters is fixed.

In [8] the authors establish the conjugacy classes for
(𝛼, 𝑐)-family and they find explicit formulations for fixed and
critical points of the Chebyshev, Halley, and super Halley
methods and also for the 𝑐-family, applied on an arbitrary
polynomial.

In this paper, we consider the (𝛼, 𝑐)-family and we
calculate the fixed and critical points of this family applied
on quadratic polynomials. By solving 6-degree polynomials
we obtain the analytical expressions for the fixed and critical
points of this family in terms of both parameters.

From these analytical expressions we make a study of the
points in the (𝛼, 𝑐)-plane for 𝛼 and 𝑐 real. The analysis of the
critical points helps us to obtain the parameter planes. From
these parameter planes we specify some values of (𝛼, 𝑐) with
clear stable and unstable behavior and show the dynamical
planes of the corresponding iterative methods.

The (𝛼, 𝑐)-family (see [9]) is a two-parametric third-order
class of iterative methods defined by
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and parameters 𝛼 and 𝑐 are complex. This family includes
Chebyshev-Halley family for 𝑐 = 0 and 𝑐-family when 𝛼 = 0.
As it is seen throughout this paper, the dynamical behavior of
this family ismuchmore complicated than previously studied
because it includes two parameters 𝛼 and 𝑐.

For beginning the study of the dynamics of this family, we
apply the operator associated to (1) on quadratic polynomials.
Taking into account that this family satisfies the scaling
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theorem (see [9]), the rational operators obtained when
applying the method on every quadratic polynomial are
conjugated to the one obtained on 𝑝(𝑧) = 𝑧

2

+ 𝑎. For this
polynomial, the operator 𝑀

𝑝
(𝑧, 𝛼, 𝑐, 𝑎) associated to (1) is a

rational function depending on three complex parameters, 𝑎,
𝛼, and 𝑐:
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(3)

Rational functions𝑅 and𝑔∘𝑅∘𝑔−1 are conjugated,𝑔 being
a Möebius map. Considering 𝑔(𝑧) = (𝑧 + 𝑖√𝑎)/(𝑧 − 𝑖√𝑎) the
parameter 𝑎 can be obviated and the operator𝑀(𝑧, 𝛼, 𝑐, 𝑎) is
conjugated to
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(4)

By using this Möebius map, the roots of 𝑝(𝑧) become 0 and
∞; meanwhile 𝑔(∞) = 1.

Iterative methods are used for finding the roots of a
nonlinear equation and, fromadynamical point of view, these
roots are included in the set of the fixed points of the operator
associated with the method. So, from this point of view, our
greatest interest is to find the fixed points of operator (4) and
to study their stability.

The natural space to study the dynamics of a rational map
𝑅 is the Riemann sphere ̂C, 𝑅 :

̂C →
̂C (see [10, 11], e.g.).The

dynamics of this rational map induces a subdivision of the
complex sphere into two sets, namely, the Fatou setF(𝑅) and
the Julia setJ(𝑅) of𝑅.The Fatou set of a nonconstant rational
function 𝑅 is the maximal open subset of ̂C on which the
family of iterates {𝑅𝑛} is equicontinuous (roughly speaking,
they preserve the proximity of points) and the Julia set is its
complement in ̂C. From this definition, we know thatF(𝑅) is
open andJ(𝑅) is compact. Moreover, if 𝑆 = 𝑔∘𝑅∘𝑔

−1, where
𝑔 is a Möebius map, then 𝐹(𝑆) = 𝑔(𝐹(𝑅)) and 𝐽(𝑆) = 𝑔(𝐽(𝑅))

([11, Theorem 3.1.4]).
Let us recall some dynamical concepts of complex

dynamics that we use in this paper (see [10]). Given a rational
function 𝑅 :
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We analyze the phase plane of the map 𝑅 by classifying the
starting points from the asymptotic behavior of their orbits.
A point 𝑧

0
∈
̂C is called a fixed point if 𝑅(𝑧

0
) = 𝑧
0
. A periodic
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0
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, for 𝑘 < 𝑝. A preperiodic point is a point
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0
) is periodic. A point 𝑧

0
is a critical point of the rational

map 𝑅 if 𝑅 fails to be injective in any neighborhood of 𝑧
0
.

Moreover, a fixed point 𝑧
0
is called attractor if |𝑅(𝑧

0
)| < 1,

superattractor if |𝑅(𝑧
0
)| = 0, repulsor if |𝑅(𝑧

0
)| > 1, and

parabolic if |𝑅(𝑧
0
)| = 1. The fixed points different from the

roots of the polynomial 𝑝(𝑧) are called strange fixed points.
The basin of attraction of an attractor 𝛼 is defined as

A (𝛼) = {𝑧
0
∈
̂C : 𝑅
𝑛

(𝑧
0
) → 𝛼, 𝑛 → ∞} . (6)

The Fatou set of the rational function𝑅 is the set of points
𝑧 ∈

̂C whose orbits tend to an attractor (fixed point, periodic
orbit, or infinity). Since its complement in ̂C is the Julia set
the basin of attraction of any fixed point belongs to the Fatou
set and the boundaries of these basins of attraction belong to
the Julia set.

The rest of the paper is organized as follows. In Section 2
we make a preliminary study of the fixed points, obtaining
their analytic expressions and presenting the regions of the
(𝛼, 𝑐)-plane where they are complex or real. Section 3 is
devoted to the analysis of the critical points, which will
be useful in Section 5 to obtain the parameter planes. In
Section 4 we check that the obtained results are consistent
with the known ones of Chebyshev-Halley class and 𝑐-family.
Section 6 shows some dynamical planes where interesting
qualitative behaviors appear. Finally, in Section 7, some con-
clusions are stated.

2. Study of the Fixed Points

The fixed points of the operator (4) are obtained by solving
the equation 𝑂

𝑝
(𝑧, 𝛼, 𝑐) = 𝑧. Evaluating 𝑂

𝑝
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have to solve the equation
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4

= 0,

(7)

where 𝑃(𝑧, 𝑎, 𝑐) is the symmetric 6-degree polynomial:

𝑃 (𝑧, 𝑎, 𝑐) = 1 + (7 − 2𝛼) 𝑧 + (19 − 8𝛼 + 4𝑐) 𝑧
2

+ (26 − 12𝛼 + 8𝑐 − 8𝛼𝑐) 𝑧
3

+ (19 − 8𝛼 + 4𝑐) 𝑧
4

+ (7 − 2𝛼) 𝑧
5

+ 𝑧
6

.

(8)

The solutions 𝑧 = 0 and 𝑧 = ∞ of (7) are asso-
ciated to the roots of 𝑝(𝑧). We observe that 𝑧 = 1 is a
strange fixed point for every value of the parameters. The
other fixed points come from the roots of 𝑃(𝑧, 𝑎, 𝑐). These
roots must include the strange fixed points of Chebyshev-
Halley family for 𝑐 = 0 and the respective ones of 𝑐-
family for 𝛼 = 0, as we will see in Section 4. In the
following result we present the explicit expressions of the
strange fixed points. An exhaustive proof can be found in
[12].
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Theorem 1. The fixed points of the operator (4), associated to
the biparametric family of iterative methods (1) on quadratic
polynomials, are:

(i) 𝑧 = 0 and 𝑧 = ∞, corresponding to the roots of the
polynomial;

(ii) seven strange fixed points: 𝑧 = 1 and the following six
points:
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Proof. The fixed points satisfy 𝑂
𝑝
(𝑧, 𝛼, 𝑐) = 𝑧. As we have

seen, the numerator of 𝑂
𝑝
(𝑧, 𝛼, 𝑐) − 𝑧 can be factorized as

−𝑧 (𝑧 − 1) 𝑃 (𝑧, 𝑎, 𝑐) , (11)

where 𝑃(𝑧, 𝑎, 𝑐) is the polynomial given in (8).

The fixed points 𝑧 = 0 and 𝑧 = 1 are trivially obtained.
Now, we look for the roots of the 6-degree polynomial (8).
The change of variable 𝑥 = 𝑧+1/𝑧 transforms polynomial (8)
into the cubic one:

𝑥
3

+ (7 − 2𝛼) 𝑥
2

+ (16 − 8𝛼 + 4𝑐) 𝑥 + 12 − 8𝛼 + 8𝑐 − 8𝛼𝑐,

(12)

whose roots are

𝑥
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3
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𝑥
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3
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(
3
√𝑓 (𝛼, 𝑐) −

3
√𝑔 (𝛼, 𝑐)) ,

(13)

where
𝑓 (𝛼, 𝑐) = (−1 + 2𝛼)

3

+ 18 (1 + 4𝛼) 𝑐 − 6√3√Δ,

𝑔 (𝛼, 𝑐) = (−1 + 2𝛼)
3

+ 18 (1 + 4𝛼) 𝑐 + 6√3√Δ,

Δ = 𝑐 (2𝛼(−1 + 2𝛼)
3

+ 𝑐 (−1 + 40𝛼 + 32𝛼
2

+ 16𝑐)) .

(14)

Undoing the change of variable, the six roots of the
polynomial 𝑃(𝑧, 𝛼, 𝑐) are obtained by solving the quadratic
equation:

𝑧
2

− 𝑧𝑥 + 1 = 0, (15)

whose solutions are

𝑧
±
=

𝑥 ± √𝑥
2
− 4

2

. (16)

That is, the six roots of (8) are obtained by substituting in (16)
the values of 𝑥 given in (13).

FromCardano’s method we know that, 𝛼 and 𝑐 being real:

(i) if Δ > 0 there is a unique real solution and a pair of
complex conjugated roots;

(ii) if Δ = 0 there are two different real solutions, one
of them double; and there is one real solution with
multiplicity three (𝑥 = (−7 + 2𝛼)/3) when the
following system of equations is fulfilled:

Δ = 0,

(−1 + 2𝛼)
3

+ 18 (1 + 4𝛼) 𝑐 = 0;

(17)

the only values of the parameters that satisfy this
system are

(𝛼 =

1

2

, 𝑐 = 0) , (𝑎 =

−1

16

, 𝑐 =

27

256

) ; (18)

(iii) if Δ < 0 there are three different real solutions.
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Figure 1: The curves 𝐶
−
and 𝐶

+
.

So, (𝛼, 𝑐)-plane is divided into two regions, as we see
in Figure 1. In this figure, the orange region corresponds to
Δ < 0 and the blue region corresponds to Δ > 0. They are
delimited by the axis 𝑐 = 0 and the curve Δ = 0. This curve is
formed by the graphics of the two functions:

𝐶
±
=

1 − 40𝑎 − 32𝑎
2

± √(16𝑎 + 1)
3

32

.
(19)

Moreover, from (16), if a point 𝑥
𝑖
(𝛼, 𝑐), 𝑖 = 1, 2, 3, is real,

it must be satisfied 𝑥
𝑖
(𝛼, 𝑐) ≥ 2 or 𝑥

𝑖
(𝛼, 𝑐) ≤ −2 in order to

be real the corresponding fixed points 𝑧
𝑖
(𝛼, 𝑐). So, we look for

the separating curves 𝑥
1
(𝛼, 𝑐) = 2 and 𝑥

1
(𝛼, 𝑐) = −2:

𝑥
1
(𝛼, 𝑐)

= 2 ⇒

1

3

(−7 + 2𝛼) +

1

3

(
3
√𝑓 (𝛼, 𝑐) +

3
√𝑔 (𝛼, 𝑐)) = 2.

(20)

Raising to the cube both sides of the equality and taking into
account that

(
3
√𝑓 (𝛼, 𝑐) +

3
√𝑔 (𝛼, 𝑐))

3

= 𝑓 (𝛼, 𝑐) + 𝑔 (𝛼, 𝑐)

+ 3
3
√𝑓 (𝛼, 𝑐) 𝑔 (𝛼, 𝑐) (

3
√𝑓 (𝛼, 𝑐) +

3
√𝑔 (𝛼, 𝑐))

= 𝑓 (𝛼, 𝑐) + 𝑔 (𝛼, 𝑐)

+ 3 (1 − 4𝛼 + 4𝛼
2

− 12𝑐) (
3
√𝑓 (𝛼, 𝑐) +

3
√𝑔 (𝛼, 𝑐)) ,

(21)

we obtain

216 (𝛼 (4 + 𝑐) − 2 (5 + 𝑐)) = 0 ⇒ 𝑐 =

2 (−5 + 2𝛼)

2 − 𝛼

. (22)

Similarly,

𝑥
1
(𝛼, 𝑐) = −2 ⇒ 216𝛼𝑐 = 0 ⇒ 𝑐 = 0 or 𝛼 = 0. (23)
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Figure 2: Bifurcation curves of fixed points.

It can be checked that the same separating curves appear
when we consider 𝑥

2
(𝛼, 𝑐) = ±2 and 𝑥

3
(𝛼, 𝑐) = ±2. In

Figure 2, we observe the different regions separated by these
curves and the number of real and complex fixed points
in each region. Let us note that the fixed points change
their nature, from complex to real or vice versa, when they
cross these curves. For example, for 𝛼 = −1, there are
six real roots for negative values of 𝑐 below the curve 𝑐 =

2(−5 + 2𝛼)/(2 − 𝛼); two of them change to complex when
they cross this curve and other two roots change from real
to complex when crossing the axis 𝑐 = 0 (see Figure 3).
An exhaustive study of these bifurcations has been made in
[12].

3. Study of Critical Points

Critical points satisfy𝑂
𝑝
(𝑧, 𝛼, 𝑐) = 0, where the prime means

the derivative of 𝑂
𝑝
(𝑧, 𝛼, 𝑐) with respect to 𝑧. The expression

of this derivative is

𝑂


𝑝
(𝑧, 𝛼, 𝑐)

=

−2𝑧
2

(1 + 𝑧)
4

𝑄 (𝑧, 𝛼, 𝑐)

((1 + 𝑧)
4

(2𝛼𝑧 − 1 − 2𝑧) + 4𝑐𝑧
3
(1 + 𝑧)

2

− 8𝛼𝑐𝑧
4
)

2
,

(24)

where

𝑄 (𝑧, 𝑎, 𝑐) = 𝑏
0
+ 𝑏
1
𝑧 + 𝑏
2
𝑧
2

+ 𝑏
3
𝑧
3

+ 𝑏
2
𝑧
4

+ 𝑏
1
𝑧
5

+ 𝑏
0
𝑧
6

,

(25)
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Figure 3: Bifurcation diagram of fixed points for 𝛼 = −1.

𝑏
0
= −3 + 3𝛼 + 6𝑐,

𝑏
1
= −18 + 20𝛼 − 4𝛼

2

+ 16𝑐 − 24𝛼𝑐,

𝑏
2
= −45 + 53𝛼 − 16𝛼

2

+ 10𝑐 − 16𝛼𝑐 + 24𝛼
2

𝑐,

𝑏
3
= −60 + 72𝛼 − 24𝛼

2

+ 16𝛼𝑐 − 32𝛼
2

𝑐.

(26)

The solutions 𝑧 = 0 and 𝑧 = ∞ are associated to the roots
of𝑝(𝑧), which are always super attractors becausemethods of
family (1) have order of convergence three.The expressions of
the other critical points come from the roots of the 6-degree
symmetric polynomial𝑄(𝑧, 𝑎, 𝑐) given in the following result.

Theorem 2. The critical points of the operator 𝑂
𝑝
(𝑧, 𝛼, 𝑐),

associated to the biparametric family of iterative methods (1)
on quadratic polynomials, are

(i) 𝑧 = 0 and 𝑧 = ∞, which are associated to the
nonstrange fixed points;

(ii) seven free critical points: 𝑧 = −1 and

𝑧
1
(𝛼, 𝑐) =

𝑥
1
(𝛼, 𝑐) + √𝑥

1
(𝛼, 𝑐)
2

− 4

2

,

𝑧
2
(𝛼, 𝑐) =

𝑥
1
(𝛼, 𝑐) − √𝑥

1
(𝛼, 𝑐)
2

− 4

2

,

𝑧
3
(𝛼, 𝑐) =

𝑥
2
(𝛼, 𝑐) + √𝑥

2
(𝛼, 𝑐)
2

− 4

2

,

𝑧
4
(𝛼, 𝑐) =

𝑥
2
(𝛼, 𝑐) − √𝑥

2
(𝛼, 𝑐)
2

− 4

2

,

𝑧
5
(𝛼, 𝑐) =

𝑥
3
(𝛼, 𝑐) + √𝑥

3
(𝛼, 𝑐)
2

− 4

2

,

𝑧
6
(𝛼, 𝑐) =

𝑥
3
(𝛼, 𝑐) − √𝑥

3
(𝛼, 𝑐)
2

− 4

2

,

(27)

where

𝑥
1
(𝛼, 𝑐) = −

𝑏
1

3𝑏
0

+ 𝑠
1
+ 𝑠
2
,

𝑥
2
(𝛼, 𝑐) = −

𝑏
1

3𝑏
0

−

1

2

(𝑠
1
+ 𝑠
2
) + 𝑖

√3

2

(𝑠
1
− 𝑠
2
) ,

𝑥
3
(𝛼, 𝑐) = −

𝑏
1

3𝑏
0

−

1

2

(𝑠
1
+ 𝑠
2
) − 𝑖

√3

2

(𝑠
1
− 𝑠
2
) ,

𝑠
1
=

3
√
−𝑞 + √𝐷

2

, 𝑝 = −3 +

𝑏
2

𝑏
0

−

𝑏
2

1

3𝑏
2

0

,

𝑠
2
=

3
√
−𝑞 − √𝐷

2

, 𝑞 =

𝑏
3
− 𝑏
1

𝑏
0

−

𝑏
1
𝑏
2

3𝑏
2

0

+

2𝑏
3

1

27𝑏
3

0

,

𝐷 =

4

27

𝑝
3

+ 𝑞
2

.

(28)

Proof. The critical points 𝑧 = 0, −1,∞ are obtained immedi-
ately. So, we search the roots of the polynomial 𝑄(𝑧, 𝛼, 𝑐) in
operator (24). For 𝑏

0
̸= 0, the solutions of 𝑄(𝑧, 𝑎, 𝑐) = 0 are

the same of

1 + 𝑎
1
𝑧 + 𝑎
2
𝑧
2

+ 𝑎
3
𝑧
3

+ 𝑎
2
𝑧
4

+ 𝑎
1
𝑧
5

+ 𝑧
6

= 0, (29)

where 𝑎
𝑖
= 𝑏
𝑖
/𝑏
0
, 𝑖 = 1, 2, 3, and 𝛼 ̸= 1 − 2𝑐.

As 𝑧 = 0 is not a root of the polynomial (25), we can divide
the previous equation by 𝑧

3 and use the change of variable
𝑥 = 𝑧 + 1/𝑧, which leads to the cubic polynomial equation:

𝑥
3

+ 𝑎𝑥
2

+ 𝑏𝑥 + 𝑐 = 0, (30)

where

𝑎 = 𝑎
1
=

𝑏
1

𝑏
0

, 𝑏 = (−3 +

𝑏
2

𝑏
0

) , 𝑐 =

𝑏
3
− 2𝑏
1

𝑏
0

. (31)

The quadratic term is eliminated by means of the change

𝑥 = 𝑦 −

𝑎

3

, (32)

and the final polynomial equation is

𝑦
3

+ 𝑝𝑦 + 𝑞 = 0, (33)

where

𝑝 = 𝑏 −

𝑎
2

3

= −3 +

𝑏
2

𝑏
0

−

𝑏
2

1

3𝑏
2

0

,

𝑞 =

2𝑎
3

27

−

𝑎𝑏

3

+ 𝑐 =

𝑏
3
− 𝑏
1

𝑏
0

−

𝑏
1
𝑏
2

3𝑏
2

0

+

2𝑏
3

1

27𝑏
3

0

.

(34)

By using the change 𝑦 = 𝑠
1
+ 𝑠
2
, 𝑦3 = 𝑠

3

1
+ 𝑠
3

2
+ 3𝑠
1
𝑠
2
𝑦 is

obtained. By identifying the coefficients of this equation with
the coefficients of (33) we obtain

𝑠
3

1
+ 𝑠
3

2
= −𝑞,

𝑠
3

1
𝑠
3

2
= −

𝑝
3

27

.

(35)

So, 𝑠3
1
and 𝑠3
2
are solutions of the quadratic equation𝑊2+𝑞𝑊−

𝑝
3

/27 = 0; that is,

𝑠
3

1
, 𝑠
3

2
=

−𝑞 ± √𝑞
2
+ 4𝑝
3
/27

2

.
(36)
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Therefore, the three solutions of (33) are

𝑦
1
= 𝑠
1
+ 𝑠
2
,

𝑦
2
= −

1

2

(𝑠
1
+ 𝑠
2
) + 𝑖

√3

2

(𝑠
1
− 𝑠
2
) ,

𝑦
3
= −

1

2

(𝑠
1
+ 𝑠
2
) − 𝑖

√3

2

(𝑠
1
− 𝑠
2
) ,

(37)

where

𝑠
1
=

3
√
−𝑞 + √𝐷

2

, 𝑠
2
=

3
√
−𝑞 − √𝐷

2

,

𝐷 =

4

27

𝑝
3

+ 𝑞
2

.

(38)

Undoing all the changes, the six roots of (25) are obtained
from

𝑧 =

𝑥 ± √𝑥
2
− 4

2

, (39)

for the different values of variable 𝑥.

The number of real and complex roots of (33) depends on
the sign of 𝐷. If 𝐷 > 0, there are one real and two complex
roots, meanwhile if𝐷 ≤ 0, the three roots are real.

As

𝐷 = (−64𝛼
3

𝑐 (−10𝛼
2

(−1 + 2𝛼)
3

+ 𝛼 (−3575 + 5360𝛼 − 2696𝛼
2

+384𝛼
3

+ 36𝛼
4

) 𝑐

−8 (−2 + 𝛼) (−5 + 3𝛼)
3

𝑐
2

))

× (2187(−1 + 𝛼 + 2𝑐)
4

)

−1

,

(40)

the curve𝐷 = 0 implies 𝛼 = 0, 𝑐 = 0, or

− 10𝛼
2

(−1 + 2𝛼)
3

+ 𝛼 (−3575 + 5360𝛼 − 2696𝛼
2

+ 384𝛼
3

+ 36𝛼
4

) 𝑐

− 8 (−2 + 𝛼) (−5 + 3𝛼)
3

𝑐
2

= 0.

(41)

This last equation defines two functions:

𝐶
±

= (−𝛼( (−3575 + 5360𝛼 − 2696𝛼
2

+ 384𝛼
3

+ 36𝛼
4

)

± 𝛼√3 (5 − 6𝛼 + 2𝛼
2
) (95 − 58𝛼 + 6𝛼

2
)
3

))

× (16 (−2 + 𝛼) (−5 + 3𝛼)
3

)

−1

,

(42)

whose domain is {𝛼 : 𝛼 ≤ (1/6)(29 − √271) ∪ 𝛼 ≥ (1/6)(29 +

√271)}. We can check that 𝛼 = 2 is an asymptote of 𝑐+ and

5 10 15 20 25
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40
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Figure 4: Bifurcation curves of critical points.
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Figure 5: Critical points in the (𝛼, 𝑐)-plane for 𝛼 < 0.

𝛼 = 5/3 is an asymptote of 𝐶
−; moreover, 𝐶− has the

horizontal asymptote 𝑐 = 20/9 and𝐶+ has not any horizontal
asymptote.

Taking into account the change (39), the number of real
and complex roots also depends on whether 𝑥 ≥ 2 or 𝑥 ≤ −2.
Taking 𝑥 = 2, we get

𝑠
1
+ 𝑠
2
=

6 + 𝑎
1

3

⇒ (𝑠
1
+ 𝑠
2
)
3

= (

6 + 𝑎
1

3

)

3

. (43)

As 𝑠
1
𝑠
2
= −𝑝/3 and 𝑠

3

1
+ 𝑠
3

2
= −𝑞, we obtain the equation

16 (𝛼 − 2) (6 + 𝛼 (−4 + 𝑐) − 2𝑐)

3 (−1 + 𝛼 + 2𝑐)

= 0. (44)

So, if −1 + 𝛼 + 2𝑐 ̸= 0, we obtain the bifurcation curves 𝛼 = 2

and 𝑐 = 2(2𝛼 − 3)/(𝛼 − 2), 𝛼 ̸= 2.
Taking 𝑥 = −2, then

−

80𝛼
2

𝑐

3 (−1 + 𝛼 + 2𝑐)

= 0. (45)

So, if −1 + 𝛼 + 2𝑐 ̸= 0, we obtain the bifurcation curves
𝛼 = 0 and 𝑐 = 0. All these bifurcation curves can be seen in
Figure 4.

These curves separate the (𝛼, 𝑐)-plane into different
regions with different number of real and complex critical
points. These regions are shown in Figures 5, 6, and 7.
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Figure 6: Critical points in the (𝛼, 𝑐)-plane for 0 < 𝛼 < 2.
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Figure 7: Critical points in the (𝛼, 𝑐)-plane for 1.9 < 𝛼 and 𝑐 > 0.

Let us remark that there are only three free critical points
because they satisfy the relationships:

𝑧
1
𝑧
2
= 1, 𝑧

3
𝑧
4
= 1, 𝑧

5
𝑧
6
= 1, (46)

for every values (𝛼, 𝑐).
If−1+𝛼+2𝑐 = 0, then polynomial (25) becomes a product

of 𝑧 and a symmetric 4-degree polynomial. Following the
same steps as before, on the line𝛼 = 1−2𝑐 and𝛼 ̸= ±√5/2, we
have for 𝛼 < (1/2)(−5−√65) two real and two complex roots,
for (1/2)(−5 − √65) < 𝛼 < 0 four real roots, for 0 < 𝛼 < 1

four complex roots, for 1 < 𝛼 < (1/2)(−5+√65) two real and
two complex roots, for (1/2)(−5+√65) < 𝛼 < 2 four complex
roots, and for 𝛼 > 2 two real and two complex roots. Finally,
for 𝛼 = ±√5/2, polynomial (25) yields a symmetric 2-degree
polynomial. For 𝛼 = −√5/2 both roots are complex and for
𝛼 = √5/2 both roots are real.

4. Chebyshev-Halley Class and 𝑐-Family of
Iterative Methods

We know that Chebyshev-Halley class and 𝑐-family of itera-
tive methods are included in the biparametric family (1). In
this section, we prove that the 6-degree polynomial (8) can

be factorized as a product of a polynomial of degree two and
a polynomial of degree four, whose roots correspond to the
fixed points of Chebyshev family for 𝑐 = 0 and 𝑐-family for
𝛼 = 0, respectively.

So,

𝑃 (𝑧, 𝛼, 𝑐) = ℎ
1
(𝑧, 𝛼, 𝑐) ℎ

2
(𝑧, 𝛼, 𝑐) , (47)

where

ℎ
1
(𝑧, 𝛼, 𝑐) = 1 + 𝑑𝑧 + 𝑧

2

,

ℎ
2
(𝑧, 𝛼, 𝑐) = 1 + 𝑑

1
𝑧 + 𝑑
2
𝑧
2

+ 𝑑
3
𝑧
3

+ 𝑧
4

.

(48)

To fulfill this relationship, the coefficients must satisfy the
relations

𝑑
1
+ 𝑑 = 7 − 2𝛼,

𝑑
2
+ 𝑑𝑑
1
+ 1 = 19 − 8𝛼 + 4𝑐,

𝑑
3
+ 𝑑𝑑
2
+ 𝑑
1
= 26 − 12𝛼 + 8𝑐 − 8𝛼𝑐,

1 + 𝑑𝑑
3
+ 𝑏
2
= 19 − 8𝛼 + 4𝑐,

𝑑 + 𝑑
3
= 7 − 2𝛼.

(49)
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From the first and the last relations, it follows that 𝑑
1
= 𝑑
3
.

Clearing 𝑑
1
and 𝑑

2
in terms of 𝑑 in the first two equations, we

get
𝑑
1
= 7 − 2𝛼 − 𝑑,

𝑑
2
= 18 − 8𝛼 + 4𝑐 − 7𝑑 + 2𝑑𝛼 + 𝑑

2

,

(50)

and substituting in the third one, we obtain again the cubic
equation:

𝑑
3

+ (−7 + 2𝛼) 𝑑
2

+ (16 − 8𝛼 + 4𝑐) 𝑑 − 12

+ 8𝛼 − 8𝑐 − 8𝛼𝑐 = 0.

(51)

For (𝛼, 𝑐) real, the real solution of this polynomial is

𝑑 (𝛼, 𝑐) =

1

3

(7 − 2𝛼) −

1

3

(
3
√𝑓 (𝛼, 𝑐) +

3
√𝑔 (𝛼, 𝑐)) , (52)

with 𝑓 and 𝑔 previously defined.
For 𝑐 = 0, then 𝑓(𝛼, 0) = 𝑔(𝛼, 0) = (−1 + 2𝛼)

3; then,

ℎ
1
(𝑧, 𝛼, 0) = 1 + 𝑏𝑧 + 𝑧

2

= 1 + (3 − 2𝛼) 𝑧 + 𝑧
2

, (53)

whose zeros coincide with the strange fixed points of the
Chebyshev-Halley family (see [1]).

Moreover, for 𝛼 = 0, the cubic equation (51) is

𝑑
3

− 7𝑑
2

+ (16 + 4𝑐) 𝑑 − 8𝑐 − 12 = 0, (54)

whose solutions are

𝑑 = 2, 𝑑 =

5

2

+

1

2

√1 − 16𝑐,

𝑑 =

5

2

−

1

2

√1 − 16𝑐,

(55)

and if 𝑑 = 2, then 𝑑
1
= 5 and 𝑑

2
= 8 + 4𝑐. So, the zeros of the

function,

ℎ
2
(𝑧, 0, 𝑐) = 1 + 5𝑧 + 8𝑧

2

+ 4𝑧
2

𝑐 + 5𝑧
3

+ 𝑧
4

, (56)

coincide with the strange fixed points 𝑧
𝑖
, 𝑖 = 1, 2, 3, 4, of the

𝑐-family (see [5]).
On the other hand, for 𝑐 = 0, the critical points are

𝑧
1
(𝛼, 0) =

3 − 4𝛼 + 2𝛼
2

+ √𝛼 (−2 + 𝛼) (−3 + 2𝛼) (−1 + 2𝛼)

3 (−1 + 𝛼)

,

𝑧
2
(𝛼, 0) =

3 − 4𝛼 + 2𝛼
2

− √𝛼 (−2 + 𝛼) (−3 + 2𝛼) (−1 + 2𝛼)

3 (−1 + 𝛼)

,

𝑧
3
(𝛼, 0) = 𝑧

4
= 𝑧
5
= 𝑧
6
= −1,

(57)

which are the critical points of Chebyshev-Halley family (see
[1]).

Finally, for 𝛼 = 0, the critical points are

𝑧
1
(0, 𝑐) =

3 + 4𝑐 + 2√5𝑐 (3 − 𝑐)

3 (−1 + 2𝑐)

,

𝑧
2
(0, 𝑐) =

3 + 4𝑐 − 2√5𝑐 (3 − 𝑐)

3 (−1 + 2𝑐)

,

𝑧
3
(0, 𝑐) = 𝑧

4
= 𝑧
5
= 𝑧
6
= −1,

(58)

which coincide with the critical points of 𝑐-family (see [5]).

5. Study of the Parameter Space

As we have said, the critical points whose analytical expres-
sion has been previously obtained satisfy that 𝑧

2𝑘−1
(𝛼, 𝑐) =

1/𝑧
2𝑘
(𝛼, 𝑐), for 𝑘 = 1, 2, 3. So, only three of them are free

critical points.
It is a known fact that any basin of attraction must

hold, at least, one critical point (see, e.g., [10] or [11]). Then,
the knowledge of the critical points and their behavior as a
starting point of the iterative process is of vital importance.
In this section, the parameter plane associated to each free
critical point is obtained, by using them as starting points of
the (𝛼, 𝑐)-family and taking note of their orbits depending on
the real values of the parameters involved. So, in Figure 8 each
point (𝑎, 𝑏) of the real plane [−10, 10] × [−10, 10] represents
a scheme of the (𝛼, 𝑐)-family, for 𝛼 = 𝑎 and 𝑐 = 𝑏.
Then, the color of this point is drawn in red if this specific
method converges to one of the roots (0 and∞, after Möbius
transformation), or in white in other case. Besides, the color
will be brighter if the number of iterations needed to reach
one of the roots is small and darker if it is high. The routines
used to get these pictures are slightly modified from those
appearing in [13]. Similar features can be found in [14].

So, we will observe the different parameter planes in
order to find the stable behavior (in red) and the “dangerous”
regions (in white). In the last ones, divergence, attracting
strange fixed points or even attracting periodic orbits, can
appear.

In Figure 8(a), the parameter plane associated to critical
points 𝑧

1
and 𝑧

2
can be observed. Wide white areas of no

convergence to the roots are found, but also the number of
elements of the (𝛼, 𝑐)-family that can be used to converge to
them is high.

A similar behavior can be found in Figures 8(b) and 8(c).
Stable behavior appears in wide areas of the region where
𝛼 > 0 and 𝑐 > 0 and also for 𝛼 < 0 and 0 < 𝑐 < 3. In
the following, we select different points in stable and unstable
regions of the parameter planes (i.e., we choose some iterative
methods of the class) and we see their specific dynamical
behavior on quadratic polynomials.

6. Dynamical Planes

The analysis of dynamical planes of a parametric family or a
method is a usual technique for improving the knowledge of
a method; see, for example, [15–18] and references therein.

The generation of dynamical planes is very similar to
the one of parameter spaces. In case of dynamical planes,
the value of each parameter, 𝛼 and 𝑐, is constant. So, each
point of the complex plane is considered as a starting point
of concrete element of the family of iterative methods and it
is painted in different colors depending on the point which it
has converged to. If it converges to 0, then the point is painted
in orange, when it converges to∞, it appears in clear blue. If
the iterates converge to a strange fixed point it is painted in
different colors, as green or dark blue. Finally, the basins of
attraction of periodic orbits are painted in black. As in the
case of the parameter planes, routines appearing in [13] have
been used.
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Figure 8: Parameter planes corresponding to different critical points.

Firstly, let us take into account the information obtained
in the parameter planes (Figure 8). The most stable behavior
corresponds to those (𝛼, 𝑐) values that remain in red at every
parameter plane: they correspond to methods of the family
that, using any free critical point as an initial estimation, it
only converges to zero or infinite, that is, to any of the roots of
the original quadratic polynomial. However, it can be seen at
Figure 9 that all these dynamical planes are not equally useful,
as the wideness of the immediate basin of attraction is clearly
bigger in some cases.

With respect to the unstable behavior, in Figures 10 to 12,
different situations can be observed. Specifically, in Figures
10(a) and 10(b), two periodic orbits of period 4 are found
for values of the parameters 𝛼 = 5 and 𝑐 = 5. Indeed, in
Figure 11(b), a two-periodic orbit is observed for 𝛼 = 𝑐 = 10,
with a wide basin of attraction in black. In Figure 11(a), a two-
periodic orbit is found, but also an attracting strange fixed

point whose basin of attraction is much bigger than the one
of 𝑧 = 0. Finally, in Figure 12, some dynamical planes with
four different basins of attraction are shown, two of them
corresponding to attracting strange fixed points.

Let us remark that in all cases, a cubic symmetry is
observed.This fact is due to the symmetry of the polynomials
(with respect to their coefficients) involved in the rational
operator associated to the family.

7. Conclusions

In this paper, the dynamical behavior of the (𝛼, 𝑐)-family has
been studied, confirming that it is muchmore than the union
of cases 𝛼 = 0 (𝑐-family) and 𝑐 = 0 (Chebyshev-Halley
family), as there exist hybrid iterative methods with specially
stable behavior. The fixed and critical points of the rational
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Figure 9: Stable behavior.
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Figure 10: Unstable behavior: two 4-periodic orbits.
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Figure 11: Unstable behavior: one 2-periodic orbit.
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Figure 12: Unstable behavior: attracting strange fixed points.

operator associated to the family on quadratic polynomials
were obtained, and the regions in which these points are
real or complex have been shown. From critical points, the
parameter planes of the family were drawn and some regions
of very stable and unstable behavior have been detected.
Dynamical planes for specific values of the parameters in
these regions were shown.
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