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Abstract

The success of oral surgery is subject to accurate advanced planning. In
order to properly plan for dental surgery or a suitable implant placement,
it is necessary an accurate segmentation of the jaw tissues: the teeth, the
cortical bone, the trabecular core and over all, the inferior alveolar nerve.
This manuscript presents a new automatic method that is based on fuzzy
connectedness object extraction and mathematical morphology processing.
The method uses computed tomography data to extract different views of
the jaw: a pseudo-orthopantomographic view to estimate the path of the
nerve and cross-sectional views to segment the jaw tissues. The method has
been tested in a groundtruth set consisting of more than 9000 cross-sections
from 20 different patients and has been evaluated using four similarity in-
dicators (the Jaccard index, Dice’s coefficient, point-to-point and point-to-
curve distances), achieving promising results in all of them (0.726 ± 0.031,
0.840 ± .019, 0.144 ± 0.023 mm and 0.163 ± 0.025 mm, respectively). The
method has proven to be significantly automated and accurate, with errors
around 5% (of the diameter of the nerve), and is easily integrable in current
dental planning systems.
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1This work has bee supported by the project MIRACLE (DPI2007-66782-C03-01-
AR07) of Spanish Ministerio de Educación y Ciencia.

Preprint submitted to Computer Methods and Programs in Biomedicine June 2, 2012



1. Introduction

The lower jaw is the densest and most prominent bone in the face. It
is made up of four easily distinguishable tissues: the teeth, a hard exterior
cortical bone that contains a softer osseous tissue that is filling its inner
cavity, the trabecular (or cancellous or spongy) core, and the mandibular
canal (when present), which contains the inferior alveolar nerve. The nerve,
together with the inferior alveolar artery, constitutes the inferior alveolar
neurovascular bundle. The inferior alveolar nerve runs along the lower jaw,
crossing both hemimandibles, from mandibular foramen to mental foramen
through the inferior alveolar canal, providing sensation to the mandible. For
this reason, an injury to the canal might result in temporary or permanent
numbness and paresthesia. Consequently, the nerve must be avoided in any
type of surgical intervention. All this gives rise to the need for accurate
segmentation that provides precise information to assure the success of the
dental surgery for a great number of medical applications such as dental
implant planning systems, plastic reconstructive surgery, etc.

Many dental applications carry out the process of 3D reconstruction from
CT data de-emphasizing tissue segmentation as in [1], and many others del-
egate this task to dentists or surgeons, providing tools for this purpose [2].
Fütterling et al. [3] carry out a segmentation of hard tissues by thresholding,
while inner tissues are segmented by assigning different material properties
to the tetrahedral finite elements, depending on the density values in the CT
data-set. Kršek et al. [4] present a tissue segmentation process that requires
a high level of human interaction that is assisted only by basic morphological
operations and thresholding in Hounsfield values. Xiaojun et al. [5] threshold
the CT data in order to segment the hard tissues and use a semi-automatic
region growing method to find the contours of the inferior alveolar nerve in
cross-sections, which are finally closed in a bicubic B-spline. Focusing on
the segmentation of the inferior alveolar nerve, Stein et al. [6] use Dijkstra’s
algorithm aided by 3D morphology to trace the most favorable path between
two nodes (here, the mandibular foramen and mental foramen) marked by an
expert. Similarly, Kondo et al. [7] use a panoramic projection (which mostly
includes the nerve) inverting and multiplying it by its second derivative in
order to isolate this tissue. The nerve is then bidirectionally tracked starting
from two nodes (specified manually) using a mask-based algorithm. Rueda
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et al. [8] use active appearance models (AAM) for the segmentation of jaw
tissues in serial cross-sections of the jaw, but the precision achieved is in-
sufficient. Recently, Kainmuller et al. [9] combine a statistical model of the
nerve with an optimization of Dijkstra’s algorithm.

These methods are either not accurate enough or require several human
interactions. Lloréns et al. [10] evaluated and validated the fuzzy connect-
edness methodology presented by Udupa [11, 12] for the segmentation of
jaw tissues achieving encouraging results. Our aim is to adapt the work of
Lloréns et al. to design a method that allows the accurate segmentation and
3D reconstruction of jaw tissues. Kim et al. [13] presented a very similar
approach but using a variation of Dijkstra’s algorithm.

2. Method

The method presented in this paper aims to reconstruct the tissues of the
human jaw from a set of serial cross-sections that are defined perpendicu-
larly to the dental arch plane (section 2.1). The jaw is divided into 5 areas
according to the tissues present in them. The method scans the jaw slice
by slice. The algorithm estimates which area each cross-section belongs to
and attempts to segment the tissues that are present (section 2.3). The hard
tissues, it is the cortical bone and the teeth, are segmented by thresholding
in Hounsfield domain. The spongy bone is defined as the inner area of the
cortical bone that is not considered to be as part of the nerve. The nerve is
segmented by means of the fuzzy connectedness object extraction algorithm
(FCOE), so it is necessary to know at least the position of one pixel be-
longing to this tissue to play the part of a seed (section 2.2). With this in
mind, a pseudo-orthopantomographic projection is built, as described below
(subsection 2.1), where a wider view of the nerve can be observed. In this
view, the nerve is fitted by means of a second-degree function since the nerve
describes an almost quadratic trajectory. This provides a seed for the seg-
mentation method. These projections also allow those cross-sections where
the segmentation of the nerve may be carried out with high probability of
error to be determined. In these cases, and in those where the segmentation
is wrong, only the hard tissues are segmented, and the nerve and trabecular
bone are predicted later using an interpolation technique based on Fourier
descriptors (section 2.4). When all the cross-sections are segmented, the 3D
volume of the different tissues is reconstructed by means of the marching
cubes algorithm (section 2.5).
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2.1. Materials

This section details the materials and tools at our disposal, as well as
the way they were obtained. The CT data was provided by GE Medical
Systems HiSpeed QXi and Philips Medical Systems - Philips CT Aura. CT
volumes are comprised of slices of size 512× 512 pixels separated by 1 mm,
with resolutions of ∆x = ∆y = 0.26 mm and ∆z = 1 mm. The number of
slices varies in each patient.

In order to reformat the CT data, Implametric software was used. Im-
plametric (3Dent c⃝, Spain) is a dental implant planning system, that allows
points along the dental arch to be defined in a transversal view as shown
in figure 2.a to describe the dental arch curve. However, there are a great
number of commercially available programs that allow this task to be carried
out. In addition, this parabola can be estimated by means of morphologic
operations as described in [7].

The cross-sectional set, denoted as ΩN , consists of a series of N slices or
cross-sections that are orthogonally oriented to the dental arch plane and
separated 0.20 mm from each other.

ΩN = {section1, section2, ..., sectionN} (1)

For example, figure 2.a shows a patient’s mandible, whose dental arch length
is 192.1 mm. Consequently, the cross-sectional sets of both hemimandibles
are made up of 480 slices. Cross-section number 233 (Ω233

480) is shown in
figure 2.b.

With regard to the size of the cross-sections, the width (x axis in the
coordinate system of figure 1) is 153 pixels and the height (y axis) depends
on the number of slices of the CT data set.

The pseudo-orthopantomographic projection, denoted as Γn, is obtained
from the half of the dental arch plane that corresponds to the hemimandible
under study. Projection Γn is made by concatenating the n-th column of all
the N cross-sections of the set ΩN in the following way:

Γn(:, i) = Ωi
N(:, n) (2)

with i ranging from 1 to N. Consequently, the width of the projections is N
pixels and the height is the height of the cross-sections, as shown in figure 3.

The processing core of the algorithm was developed on Matlab R⃝ and
the 3D reconstructing process was carried out by means of VTK libraries on
Visual Studior 2005.
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Figure 1: Acquisition of cross-sections and a pseudo-orthopantomographic projection from
a CT volume.

a) b)

Ω233
480

Figure 2: a) CT slice where the dental arch curve has been defined; b) Example of a
cross-section.

2.1.1. Anatomical region labelling

Since the extension of the nerve does not cover the whole jaw, there are
cross-sections where the channel is not present, as in the chin. It is therefore
necessary to know the tissues to be segmented in each slice. To fulfill this
task, the buccal environment is divided into different areas.

• area 1. From the edge of the ramus to the mandibular foramen: this sec-
tion includes the area from the beginning of the jaw up to the mandibu-
lar foramen. Only teeth, cortical bone and trabecular core are present.
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Figure 3: Construction of pseudo-orthopantomographic projections from cross-sections

• area 2. Mandibular foramen: the inferior alveolar nerve enters the
mandible via the mandibular foramen and runs along the body of the
jaw.

• area 3. Body: this section includes part of the ramus, the angle, and
the mandibular body where the nerve is embedded in the mandibular
canal within the mandible.

• area 4. Mental foramen: the nerve exits the mandible through the
mental foramen, at about the second premolar.

• area 5. Mandibular symphysis: half of the parasymphyseal area.

Figure 4 shows the division of the jaw. An example of cross-sections of
each area is included. As shown, the inferior alveolar nerve is only present
in areas 2, 3 and 4.

Due to the fact that cross-sections are processed sequentially depending
on the area they belong to, it is important to define a solid algorithm in
order to determine the change of area (where one area ends and the other
area begins). The algorithm is based on the entrance and exit of the channel
in both foramina to determine the change of area. For this reason, the region
of interest is focused on these apertures. A mask is defined by computing the
ellipse that closes the 2D shape of the section of the cortical bone in the cross-
sections. The major axis is computed, and regions α and β are defined as the
upper-right region and lower-left region, respectively, as shown in figure 5.
Specifically, the algorithm evaluates the break and recovery of the section
of the cortical bone. Thus, while in area 1, if a break is detected in region
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a) b) c)

d) e)

1 2 3 4 5

Figure 4: a) Hemimandible division. Examples of a) area 1; b) area 2; c) area 3; d) area
4; e) area 5.

a) b)

α

β

Figure 5: a) Estimation of the ellipse closing the surface; b) Definition of the mask.

α, the break indicates the entrance of the alveolar bundle into the jaw, and
consequently the change into area 2. However, while in area 2, if a recovery
is detected in α, the recovery indicates that the canal has finally entered into
the jaw, which implies the change into area 3.

Similarly, from the region 3 onward, the algorithm evaluates the β region.
When the nerve begins to exit, a break in the cortical bone is detected,

7



indicating the change into area 4. Finally, when the cortical bone is recovered,
it implies the change into area 5.

The break and recovery of the cortical bone are detected by means of
mathematical morphology processing as explained in algorithm 1.

Algorithm 1 Detection of entrance and exit of the nerve

1: segmentation of cortical bone as described in section 2.3 ⇒ Ihard tissues

2: estimation of the shape of the jaw ⇒ Isection = φ(Ihard tissues)
3: extraction of inner objects ⇒ Iblobs = Isection − Ihard tissues

4: filtering of non-relevant objects ⇒ Iblobs = Iblobs · Imask

5: extraction of boundary objects
6: boundary objects analysis ⇒ presence/absence of nerve

The expression φ(x) represents the morphological closing of image x,
which leads to the elimination of the darkest areas. As shown in the algo-
rithm, the inner part of the cortical bone is analyzed. If any blob intersects
the boundary with a large enough geometrical area, it is considered as an
entrance or exit of the nerve. In contrast, the cortical bone is considered to
be a continuous surface.

2.2. Fuzzy connectedness fundamentals

Fuzzy connectedness is a fuzzy subset theory-based methodology. The
algorithm starts from a seed and evaluates the affinity between the seed
and the pixels in the image, as explained in [11, 12]. Thus, the algorithm
computes the connectivity map of the image under study, where each pixel
value represents the affinity between the pixel and the seed. Consequently,
it is intuitive to define an object as those pixels whose connectivity value is
greater than a certain threshold.

The affinity describes the similarity between two pixels and represents
the power of the connection between them. For this reason, the affinity is
based on the adjacency between the pixels and on the similarity of their
intensities. Adjacency represents the contiguity between pixels. For this
study, 4-adjacency is considered and can be defined for pixels ci and di as
follows:

µα(c, d) =

{
1 ,if

√∑
i (ci − di)2 ≤ 1

0 ,otherwise
(3)

Analytically, the affinity can be expressed as:

µκ(c, d) = h(µα(c, d), f(c), f(d), c, d) (4)
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That is, the affinity between the pixels depends on their adjacency, their
position, as well as on some function of these two parameters.

According to the fuzzy connectedness theory described in [14], besides the
adjacency, the affinity should consist of two components: an object-feature-
based component and a homogeneity-based component. Both components
must be considered in the design of the affinity, although in some applications,
it is more productive to consider only one component.

Therefore we can design a great variety of functions for each component
separately, and then combine them to obtain a desired affinity relation that is
valid for the application under study. It is then possible to refine the affinity
as follows

µκ(c, d) = µα(c, d)g(µΨ(c, d), µΦ(c, d)) (5)

where µΨ and µΦ represent the homogeneity-based component and the object-
feature-based component, respectively.

By defining g, µΨ and µΦ, it is possible to generate an affinity family for
any given fuzzy relation κ, µκ. As described in [10], the best performance
for the segmentation of jaw tissues is achieved with the configuration shown
in table 1, where M and σ are the mean and the standard deviation and
subindexes o and h refer to the intensities and the intensity differences (re-
spectively) of the defined cortical and channel regions. All the parameters
have been set as described below in table2.

µκ = µα((1−min(µΨ,
1
2
µΦ))µΦ +min(µΨ,

1
2
µΦ)µΨ)

µΨ =


1 ,if 0 ≤ |f(c)− f(d)| ≤ a1Ψ
a2Ψ−|f(c)−f(d)|

a2Ψ−a1Ψ
,if a1Ψ ≤ |f(c)− f(d)| ≤ a2Ψ

0 ,if |f(c)− f(d)| > a2Ψ

µΦ = e
− (

f(c)+f(d)
2 −mo)

2

2k2o , ko > 0

Table 1: Affinity components configuration

As mentioned above, the FCOE starts from a seed, which is a pixel be-
longing to the object, and computes the affinity of every pixel of the image
with that seed. Therefore the correct estimation of the seed is critical since a
wrong seed will lead to a wrong segmentation. To overcome this problem, a
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µΨ aΨ = Mh + tσh, a1Ψ = 0, a2Ψ = Mh + tσh, kΨ = Mh + tσh

µΦ mo = Mo, ao = tσo, a1o = 0 , a2o = tσo, ko = tσo

Table 2: Parameters description

new approach is presented using the maximum information available in the
CT study.

Our approach is based on the fact that the trajectory of the nerve within
the mandible describes a pseudo-quadratic path. Consequently, our aim is
to fit that trajectory using a polynomial in order to obtain any point that
belongs to the nerve (along its whole extension). To successfully carry out
the fitting process the nerve must be isolated as much as possible.

Since the pseudo-orthopantomographic projections are separated by 0.26
mm, the nerve can be viewed in several consecutive projections. In order to
isolate it, three consecutive projections containing the nerve are thresholded
and multiplied. The nerve has proven to have density values between 0 and
300 HU in all our experimental studies, so it allows a coarse segmentation to
be carried out. Figure 6.a shows examples of consecutive projections, which
are denoted as (Γi−1, Γi, Γi+1), and figure 6.b shows the resulting images
after thresholding, which are denoted as (Γi−1

th , Γi
th, Γ

i+1
th ). Fig.7.a shows that

common areas in adjoining pseudo-orthopantomographic projections, like the
nerve and other spongy tissues, remain after multiplication.

Γi
th = {x|Γi(x) > 0 HU} ∩ {x|Γi(x) < 300 HU} (6)

Γ = Γi−1
th ∩ Γi

th ∩ Γi+1
th (7)

To improve isolation, the top-hat operation [15] is applied on the result-
ing image. All the elements of the image that can be fitted in a vertical
structuring element with size 10 pixels (2.6 mm), i.e., the elements belonging
to the nerve, according to [16, 17], are extracted. Analytically,

γB = Γ ◦B = ∪ {(B)z|(B)z ⊆ Γ} (8)

γB = Γ\γB = {x ∈ Γ|x /∈ γB} (9)

where B is the structuring element and Bz denotes its translation. The
top-hat operation is denoted with the overline.

Since these residual objects can be considered a set of points, the outliers
of a mathematical quadratic distribution can be discarded by means of the
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a) b)

Figure 6: a) Consecutive projections containing the inferior alveolar nerve; b) Inner part
of the cortical bone of the same projections after thresholding.

RANSAC algorithm [18]. The remaining points (fig.7.b) are considered to be
inliers of the distribution and are assumed to be part of the nerve; therefore,
they can be fitted with a quadratic polynomial. These points constitute a

a) b)

Figure 7: a) AND operation of three consecutive thresholded projections; b) Set of inliers
or a quadratic distribution filtered with RANSAC.

system with many more equations than unknowns, that is, an overdetermined
system that can be easily solved by the least squares method. Figure 8 shows
an example of an estimated curve that is superimposed on its corresponding
pseudo-orthopantomographic projection. The coordinates of the points that
constitute the curve are used as seeds of the segmentation method.

However, in those areas where the nerve is not distinguishable, the FCOE
is not able to delimit the area by the nerve. In these cases, the algorithm finds
paths to exit the tissue, and for this reason, it classifies areas belonging to the
trabecular bone as the nerve. With the pseudo-orthopantomagraphic projec-
tions, it is possible to detect a priori those cross-sections where the FCOE
algorithm will possibly lead to a wrong segmentation (from now on, referred
to as unlikely-success cross-sections). To this end, the same three consecu-
tive projections are overlapped with an OR operation to get the worst-case
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Figure 8: Fitting curve for estimating seeds of FCOE

scenario (fig.9.a).
Γwc = Γi−1

th ∪ Γi
th ∪ Γi+1

th (10)

The same top-hat operation is performed, and the resulting image (fig.9.b)
shows those cross-sections that are suitable for FCOE. In the rest of the set,
only the hard tissues segmented. Since the nerve cannot be segmented, it is
predicted.

a) b)

Figure 9: a) OR operation of three consecutive thresholded projections; b) Set of inliers
or a quadratic distribution filtered with RANSAC.

2.3. Analysis and processing

As stated above, each cross-section Ωi is analyzed and processed according
to the region it belongs to, and the tissues present in it are segmented when
possible. In those slices where the nerve is present but undistinguishable, the
nerve is predicted. Once the whole set is processed, the different tissues are
reconstructed and the 3D volume is obtained.

To facilitate understanding of the proposed method, the algorithm has
been divided into three fundamental steps: hard tissues processing, nerve
processing and trabecular core processing as shown in figure 10. All the
blocks are explained in their respective subsections and are detailed in fig-
ure 11.
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Figure 10: Flowchart of the processing algorithm.

In order to improve the computational cost of the algorithm, only the
region of interest(ROI) of each cross-section is considered. The ROI is com-
puted as the area covered by the hard tissues, adding a safety margin. This
task is carried out in the preprocessing step shown in figure 10.As this fig-
ure shows, the hard tissues are segmented into their corresponding block as
explained in subsection 2.3.1. Depending on the area that the cross-section
belongs to, it is processed in different ways. If the cross-section belongs to
an area where the channel is not present, that is areas 1 and 5, the channel
is not evaluated and the trabecular core is defined as the inner part of the
cortical bone.

On the other hand, if the cross-section belongs to an area where the
channel is present (i.e. areas 2, 3 and 4), the channel must be properly
defined as described in subsection 2.3.2. If the cross-section under study is an
unlikely-success slice, the inferior alveolar channel is predicted as explained
in subsection 2.4. However, if the segmentation of the channel is a priori
plausible, the tissue is defined by means of the FCOE algorithm. If the
segmented channel has some required properties, it is considered to be a valid
channel. Otherwise, the channel is also predicted. Finally, the trabecular core
is defined as the inner part of the cortical bone that is not considered to be
part of the channel, as described in subsection 2.3.3.

2.3.1. Hard tissues processing

The hard tissues are defined by directly thresholding on Hounsfield values.
Worse results with higher computational cost have been obtained with other
segmentation methods [10]. The experimental results show that cortical bone
and teeth have density values of about +800 HU, but this value will clearly
vary depending on the patient’s anatomy and the configuration of the CT
scanner. In these cases, this parameter can be tuned manually.

To be coherent with the real anatomy of the jaw, a boundary is added
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Thresholding
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Parameters estimation

FCOE

Thresholding

a) b)

OR(inner(cortical bone),not(channel)) inner(cortical bone)

c) d)

Figure 11: Processing flowchart of a) cortical bone; b) nerve; c) and d) trabecular core.

in each cross-section, as shown in figure 11.a so that this tissue is always
represented by a closed surface. The boundary is estimated by means of
morphological operations as the residue between the section of the hard tis-
sues and an erosion of it with a small structuring element. The section of the
hard tissues is the result of the morphological closing of the cross-sectional
image with a structuring element large enough to remove the darkest inner
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areas of the cortical bone. The algorithm 2 shows this process.

Algorithm 2 Boundary addition

1: estimation of the shape of the jaw ⇒ Isection = φ(Ihard tissues)
2: estimation of the boundary ⇒ Iboundary = Isection − ε(Ihard tissues)
3: addition of the boundary ⇒ Ihard tissues = Ihard tissues + Iboundary

The expression ε(I) represents the morphological erosion of image I.

2.3.2. Channel processing

First, the surroundings of the seed are analyzed to obtain the parameters
needed by the FCOE algorithm. Then, the algorithm computes the connec-
tivity map of the tissue, which is thresholded and transformed into a binary
image. This process is depicted in figure 11.b. Afterwards, the blobs are
analyzed and forced to fulfill some requirements to be considered a plausible
channel, as deduced from [16, 17].

• channel.area ≥ 1.54 mm2 & channel.area ≤ 14.52 mm2

• |channel.centroid− lastchannel.centroid| < 1 mm

• |channel.area− lastchannel.area| < 1.35 mm2

Any blob with a size that is coherent with these values and does not have
significant variations as regards previous cross-sections (1 mm/4 pixels re-
lated to centroid and 1.35 mm2/20 pixels related to area) is considered to be
a valid channel and is therefore saved. If, on the contrary, the blob does not
fulfill the requirements, it is rejected and predicted as described in section 2.4.

2.3.3. Trabecular core processing

The definition of the trabecular core depends on the area that the cross-
section belongs to, as shown in figure 11.c and 11.d. In areas 1 and 5 (where
the nerve is not present), the trabecular core is defined as the inner part
of the cortical bone, hence the need for this tissue to be a closed surface.
However, in areas 2, 3 and 4 (where the nerve is present), the trabecular core
is defined as the inner part of the cortical bone, that does not belong to the
nerve.
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2.4. Gap filling

The nature of human tissues prevents the segmentation of some cross-
sections in the processing step. Similar density values of trabecular bone
and nerve induce similar grayscale values, in such a way that the reliable
segmentation of the nerve is not possible. This fact leads to the appearance
of segmentation gaps in the cross-sectional set, as shown in figure 12.

Figure 12: The inability to segment some slices leads to the appearance of gaps among
the cross-sections.

In order to obtain the 3D volume of the tissues under study, the recon-
struction process requires all the cross-sections to be segmented and thus the
need for filling the gaps in the segmented set. To achieve this goal, an interpo-
lation technique using Fourier descriptors is implemented, as in [19, 20]. The
hard tissues are easily segmented by thresholding, even in the problematic
slices, and the trabecular core can be extracted as described in section 2.3.3;
therefore our efforts are focused on recovering the nerve in those cases. The
contour of 2D regions in the cross-sectional views of the inferior alveolar nerve
on the border slices of every gap (m and n in figure 12) can be described by a
finite set of points. Their coordinates can be used to denote them as complex
numbers and then the Fourier transform (FT) can be applied to define the
Fourier descriptors as follows:

Zt[k] =
1

N

N−1∑
n=0

z[n]e−j(2π/N)kn (11)

where t identifies the cross-section, and N is the smaller power of two that
is larger than the maximum of the number of points of both border slices.
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The cross-sections in between are linearly predicted as shown in equation 12.
Non-linear techniques would lead to an undesirable acceleration in the trans-
formation of the shape. However, as figure 8 shows, since the nerve describes
an almost quadratic path along the hemimandible, the first Fourier descrip-
tor (for k=0), which represents the mass center of the shape, is predicted by
means of a quadratic polynomial. The rest of the coefficients are estimated
as follows:

Zt[k] = (1− t

T
)Zm[k] +

t

T
Zn[k] (12)

Afterwards, the high frequency of Fourier descriptors is filtered in order to
acquire a smoother boundary. The experimental results show that significant
descriptors occupy lower (normalized) frequencies than 0.05. Finally, the
boundary points of each cross-section can be easily recovered by applying the
inverse of the Fourier transform. The whole process is shown in figure 13.

Resample FT

Linear 

prediction

Lowpass 

filter 
FT

Resample FT

n

m

m
m+1
m+2

n
...

-1

Figure 13: Gap filling flowchart

An example of predicted missing cross-sections is shown in Figure 14.
This figure shows the evolution of the boundary from the initial (first frame)
to the final shape (last frame). Thirteen intermediate shapes were used for
the transformation.

2.5. 3D reconstruction

To shape the 3D volume of the segmented tissues, the marching cubes
algorithm is used as described in [21]. The algorithm locates the surface in a
virtual cube created from eight pixels, which constitute the eight vertices of
the cube (four each from two adjacent cross-sections). The algorithm then
determines how the surface intersects the cube, and goes on to the next cube,
and so on. This is why the segmentation of the whole set of cross-sections
is so important. According to the configuration of the pixels, one of 256
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Figure 14: Prediction of intermediate shapes using Fourier descriptors

predefined surfaces is assigned to each cube shaping the surface. Figure 15
shows an example of a 3D reconstruction of a patient’s jaw.
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Figure 15: Reconstructed 3D volume of inferior alveolar nerve (upper left), trabecular core
(upper right) and hard tissues (bottom) from segmented cross-sections

2.6. Data Analysis

In order to evaluate the accuracy of the segmentation process, 20 CT
studies from 20 different patients were considered. A group of five experts
(dentists and surgeons) was involved in the segmentation process. To con-
stitute the groundtruth, the experts manually segmented 20 hemimandibles,
on which some intervention was desired to be planned. The hemimandibles
consisted of 404 to 482 cross-sections, so the experts segmented by general
consent about 9000 cross-sections, which is an extremely arduous task. Nev-
ertheless, this task allows us to analytically evaluate the results of the seg-
mentation process, by using 4 different indicators of similarity and comparing
the cross-sections segmented by the proposed method with the groundtruth.
The indicators used were the Jaccard index, Dice’s coefficient, point-to-point
and point-to-curve distances, all of which are defined below, where suffixes
seg and gt refer to segmented and groundtruth images, respectively.

• Jaccard index (JI)

JI(Iseg, Igt) =
Iseg ∩ Igt
Iseg ∪ Igt

, where 0 ≤ JI ≤ 1
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• Dice’s coefficient (DC)

DC(Iseg, Igt) =
2|Iseg ∩ Igt|
|Iseg|+ |Igt|

, where 0 ≤ DC ≤ 1

• Point-to-point distance (PPD)

PPD(Iseg, Igt) =
1

n

n∑
i=1

√
(xi

seg − xi
gt)

2 + (yiseg − yigt)
2

where x and y denote the two coordinates of every point, and n denotes
the number of points established along the surface of both shapes.

• Point-to-curve distance (PCD)

PCD(Iseg, Igt) =
1

n

n∑
i=1

min
t

√
(xi

seg − ry(t))2 + (yiseg − rx(t))2

where r(t) = (rx(t), ry(t)),t ∈ [0, 1] denotes a linear spline defined in
the groundtruth image, as described in [22].

3. Results

The cross-sectional sets of the 20 patients were measured with the 4 afore-
mentioned similarity indicators, and the mean values obtained and standard
deviation for all the cases are shown in table 3.

JI DC PPD PCD
Mean 0.7259 0.8396 0.1440 mm 0.1628 mm
Standard deviation 0.0308 0.0187 0.0230 mm 0.0246 mm

Table 3: Mean values for the analysed indicators

Figure 16 shows two examples of segmented patients. The hard tissues,
the trabecular core and the inferior alveolar nerve are positioned with the
same spatial orientation to facilitate the interpretation.
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Figure 16: Figure 16 shows two examples of segmented patients. The hard tissues, the tra-
becular core and the inferior alveolar nerve are positioned with the same spatial orientation
to facilitate the interpretation.

An example of the mesh resulting from the marching cubes algorithm is
shown in figure 17. This figure shows the path of the inferior alveolar nerve
along the jaws of two patients, focusing on the exit of this tissue through the
mental foramen. The mental loop can be easily observed in the images.
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Figure 17: The mental loop is represented with high accuracy as shown in the marching
cubes mesh

4. Discussion

Since an inferior alveolar nerve injury can lead to different complications,
its location must be known to carry out any surgery that affects its surround-
ing structures. However, the similarity in the density values of the jaw tissues
complicates its segmentation. Several approaches have been presented aiming
this goal with significant differences among them, which proves that there is
still no clinical agreement in the way to achieve it. This manuscript describes
a new approach based on mathematical morphology and on the fuzzy con-
nectedness object extraction. Since the segmentation process is performed in
cross-sectional images, the evaluation of the method has focused on studying
the 2D segmentation in the cross-sections that define the path of the nerve
along the jaw. In other words, the evaluation strategy is based on the com-
parison of processed images with other previously segmented images, known
as the groundtruth set. There are no public databases of segmented dental
CT, which led us to manually segment different studies to generate our own
groundtruth set. Five experts carried out an extremely heavy task, segment-
ing manually more than 9000 cross-sections from 20 different patients, and
defining a significant database compared to other methods [13].

The absence of databases with normalized segmented dental CT also pre-
vents the comparison with other similar methods and the standardization of
the results of each method. In addition, radically different strategies are used
by different authors, which make this generalization even more difficult.

The results of the presented method in the described dataset have been
promising in all the considered similarity indicators. Regarding the overlap
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indicators, the method has achieved high values in the processed dataset,
that is, 0.726 ± 0.031 and 0.840 ± 0.002 (in terms of mean and standard
deviation) in the JI and DC indicators, respectively. Those values are re-
markable considering that these indicators range from 0 to 1, where 0 rep-
resents the absence of common areas and 1 represents a perfect match. Our
results are even significantly higher than the DC threshold value (DC = 0.7)
from which an overlap is commonly considered good [23, 24]. Regarding the
distance indicators (PPD and PCD), the method has achieved significant
results in accuracy. Specifically, the point-to-point distance and point-to-
curve distance have been 0.144 ± 0.023 mm and 0.163 ± 0.025 mm (also in
terms of mean and standard deviation), respectively, which are remarkable
values taking into account that the diameter of the nerve is approximately
2.5 mm [16, 17]. Considering this diameter, the mean errors of both measures
are, expressed as percentages, 5.76 and 6.52 %, respectively. The presented
results show that our method obtains higher accuracy values when compared
with other state-of-the-art methods [9, 13].

The configuration of the morphology-based and fuzzy connectedness-
based algorithms used in the presented validation is provided in the cor-
responding subsections. In all the cases, experimental results showed that
8-adjacency provided very similar results than 4-adjacency while significantly
increased the computational cost. This can be due to the recurring nature of
the fuzzy connectedness algorithm which ends up computing the significant
areas of the image, independently of the adjacency.

With regards to the input data used, in spite of the fact that the method
is presented for CT data, it should be easily adaptable to Cone Beam Com-
puted Tomography (CBCT) data, since images derived from data obtained
by dental cone beam tomographs are substantially similar to dental CT. This
fact should be taken into account due to the increasing number of CBCT sys-
tems that are being incorporated in the clinical settings. In addition, since no
special considerations are needed and no particular orientation of the patient
is required during the CT scans, the thyroid gland and patient’s lens do not
have to undergo unusual doses of radiation, thus avoiding higher cancer and
posterior subcapsular cataract risk [25].

Although the presented method has focused on the jaw tissues, it can be
easily extendible to maxillary cases, since the maxilla can be interpreted as
an area where the nerve is not present, or even to other body structures with
similar tubular shape.
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5. Conclusions and future work

This paper has presented a new method for the segmentation and recon-
struction of tissues of the human jaw. The method consists of sequentially
segmenting cross-sections that are defined perpendicularly to the dental arch
plane, starting from a CT volume of the patient and then reconstructing the
tissues using the marching cubes algorithm. The algorithm has been exhaus-
tively measured for four indicators: the Jaccard index, Dice’s coefficient, and
point-to-curve and point-to-point distances, achieving a high level of accu-
racy and providing reliable information to computer-aided programs in order
to facilitate oral surgery.

Future work will focus on adapting the algorithm in C++ language using
ITK and VTK libraries in order to increase the computational speed towards
a real time application. Further testing of other segmentation methods is
also needed in order to improve accuracy. Due to the random nature of the
RANSAC algorithm, other ways of isolating the path of the mandibular canal
must also be tested.
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of fuzzy connectedness segmentation for jaw tissues, in: Bioinspired
Applications in Artificial and Natural Computation, Springer Berlin /
Heidelberg, 2009, pp. 41–47.

[11] J. K. Udupa, S. Samarasekera, Fuzzy connectedness and object defini-
tion, In SPIE Proceedings Medical Imaging 2431 (1995) 02–10.

[12] J. Udupa, S. Samarasekera, Fuzzy connectedness and object definition:
Theory, algorithms, and applications in image segmentation, Graphical
Models and Image Processing 58 (3) (1996) 246–261.

[13] G. Kim, J. Lee, H. Lee, J. Seo, Y.-M. Koo, Y.-G. Shin, B. Kim, Auto-
matic extraction of inferior alveolar nerve canal using feature-enhancing
panoramic volume rendering, Biomedical Engineering, IEEE Transac-
tions on 58 (2) (2011) 253 –264.

[14] P. K. Saha, J. K. Udupa, D. Odhner, Scale-based fuzzy connected image
segmentation: Theory, algorithms, and validation, Computer Vision and
Image Understanding 77 (2000) 145–174.

[15] J. Serra, Image analysis and mathematical morphology, Academic Press,
London, 1982.

25



[16] G. M. Reiser, J. D. Manwaring, P. D. Damoulis, Clinical significance of
the structural integrity of the superior aspect of the mandibular canal,
Proceedings of the 3rd International Work-Conference on The Interplay
Between Natural and Artificial Computation: Part II: Bioinspired Ap-
plications in Artificial and Natural Computation 5602 (2009) 11–19.

[17] I. C. Suazo, C. A. Morales, M. G. Cantn, D. A. Zavando, Biometric
aspects of the mandibular canal, International Journal of Morphology
25 (4) (2007) 811–816.

[18] M. A. Fischler, R. C. Bolles, Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography, Communications of the ACM 24 (6) (1981) 381–395.

[19] F. Marqués, B. Llorens, A. Gas, Prediction of image partitions using
fourier decriptors: application to segmentation-based coding schemes,
IEEE Transactions on image processing 7 (4) (1998) 529542.

[20] F. Marqués, B. Llorens, A. Gasull, Interpolation and extrapolation of
image partitions using fourier descriptors: application to segmentation-
based coding schemes, Image Processing, International Conference on 3
(1995) 584–587.

[21] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d
surface construction algorithm, in: SIGGRAPH ’87: Proceedings of
the 14th annual conference on Computer graphics and interactive tech-
niques, Vol. 21, 1987, pp. 163–169.

[22] M. B. Stegmann, Active appearance models: Theory, extensions and
cases (2000).

[23] K. H. Zou, S. K. Warfield, A. Baharatha, C. Tempany, M. R. Kaus, S. J.
Haker, W. M. Wells, F. A. Jolesz, R. Kikinis, Statistical validation of
image segmentation quality based on a spatial overlap index, Academic
Radiology 11 (2004) 178–189.

[24] A. Zijdenbos, B. Dawant, R. Margolin, A. Palmer, Morphometric analy-
sis of white matter lesions in mr images: method and validation, Medical
Imaging, IEEE Transactions on 13 (4) (1994) 716 –724.

26



[25] P. L. Kaufman, F. H. Adler, A. Alm, Adler’s Physiology of the Eye,
10th Edition, Elsevier, 2003.

27


